summaryrefslogtreecommitdiff
path: root/fortran/navy_four_levels/FourLevelPulseProp_Double.f95
blob: e00e49a9104cd365518c08151d571ceffd2098fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
program FourLevelPulseProp_v3_Double
!
!	Written by:	Dr. Frank A. Narducci
!	Written on:	May 12, 2008
!
!	This program calculates the propagation of a pulse of arbitrary strength 
!	through a two level medium. The equations used are the full equations 
!	based on the Risken-Numedal discretization technique.
!
!	This program only "watches" the evolution of the pulse in the cell. This is 
!	due to the constraint that the cell is very small relative to the pulse lengths
!	that we want to use. If we watched the pulse outside the cell and then increased the 
!	resolution within the cell, the increased burden outside the cell because huge. 
!
!	v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16
	implicit none
!	
!	Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision
	complex ci
!
!	ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a 
!	three level system
!
!	Four Level Notes: Valid to first order in dt
!
!	Version 3: Make a step function in the coupling field.
	
	! ---------------------------------------------------------------------------
	! SYSTEM DEFAULTS
	! ---------------------------------------------------------------------------
	integer  zpts
	parameter (zpts=10)	! Number of slices in z direction

	! default values for peak amplitudes
	real*8 Om1peak_def,Om2peak_def,Omcpeak_def  ! default values for field peak amplitudes
	parameter (Om1peak_def=0.01,Om2peak_def=5.00,Omcpeak_def=0.0)
	! ---------------------------------------------------------------------------

	character*150 fname
	integer nmat, npts, Nframe, tpts_max, NSkip, NWrite, zptsmax
	integer iSkipped;
	parameter (nmat=3,npts=100)	!matrix size, number of detuning points in dispersion curve
	!tpts is the number of temporal points in the cell 
	!zpts is the number of z output slices - 1
	parameter (zptsmax=200)	! max Number of slices in z direction
	parameter (tpts_max=200) 	! max Number of slices in t direction
	parameter (NWrite=200)		!number of frames to actually write


	real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tmin,tp,tshift,t_end,t_start,t_elapsed


	integer m,n
	complex*16 a1,a2,a3,a4,a5,a6
	complex*16 b1,b2,b3,b4,b5,b6,b7
	complex*16 c1,c2,c3,c4,c5,c6
	complex*16 d1,d2,d3,d4,d5,d6,d7
	complex*16 e1,e2,e3,e4,e5
	complex*16 f1,f2,f3,f4,f5
	complex*16 gc1,gc2,gc3,gc4,gc5,gc6,gc7
	complex*16 h1,h2,h3,h4,h5
	complex*16 i1,i2,i3,i4,i5,i6,i7
	complex*16 j1,j2,j3,j4,j5,j6,j7,j8
	complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10
	complex*16 l1,l2,l3,l4,l5
	
	complex*16 Omold, Omold_vac
	real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,Gamma_super,c,delmax,del1_prop,del2_prop,delc_prop
	real*8 dt,dz,Ndensity
	real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34
	real*8 Ga2,Ga4,Om_crit
	real*8 tpeak,tpeak_vac
	real*8 epsil,hbar,lambda
	real*8 t,z(zptsmax)


	complex*16 Om1(zptsmax),Om2(zptsmax),Omc(zptsmax),Om_vac(zptsmax)
	complex*16 rho11(zptsmax),rho12(zptsmax),rho13(zptsmax),rho14(zptsmax),rho21(zptsmax),rho22(zptsmax),rho23(zptsmax),rho24(zptsmax)
	complex*16 rho31(zptsmax),rho32(zptsmax),rho33(zptsmax),rho34(zptsmax),rho41(zptsmax),rho42(zptsmax),rho43(zptsmax),rho44(zptsmax)
	complex*16 rho11_last(zptsmax),rho12_last(zptsmax),rho13_last(zptsmax),rho14_last(zptsmax)
	complex*16 rho21_last(zptsmax),rho22_last(zptsmax),rho23_last(zptsmax),rho24_last(zptsmax)
	complex*16 rho31_last(zptsmax),rho32_last(zptsmax),rho33_last(zptsmax),rho34_last(zptsmax)
	complex*16 rho41_last(zptsmax),rho42_last(zptsmax),rho43_last(zptsmax),rho44_last(zptsmax)
	

	! Fundamental numbers
	parameter( ci=cmplx(0.,1.) )	! imaginary one
	parameter( pi=acos(-1.0) )	! pi=3.1415....
	parameter( c=3e8 )         	! speed of light
	parameter( hbar=1.054571726e-34 )	! reduced  Plank constant
	parameter( epsil=8.85418781762e-12 )	! Permittivity of free space 

	! Atomic numbers (based on Rubidium 87)
	Gamma_super=2*pi*6e6	! Characteristic decay of upper level in [1/s]
	lambda=794.7e-9         ! Wavelength in [m]
	Ndensity=1e10*(1e6)        ! Density in m^-1
	! atomic decay parameters in units of Gamma_super
	W41=0
	W42=1
	W43=0
	W32=1.
	W31=1.
	W21=.001
	W12=W21
	W34=0
	ga12=0.5*(W21+W12)
	ga13=0.5*(W31+W12+W32)
	ga14=0.5*(W41+W42+W12)
	ga23=0.5*(W32+W31+W21)
	ga24=0.5*(W21+W41+W42+W43)
	ga34=0.5*(W31+W41+W32+W42+W43)
	
	! Atomic parameters
	write (*,*)'New version from moved folder'
	alpha1=3*Ndensity*lambda*lambda/(2*pi)
	alpha1tilde=alpha1*c/Gamma_super
	alpha2=3*Ndensity*lambda*lambda/(2*pi)
	alpha2tilde=alpha2*c/Gamma_super
	alphac=3*Ndensity*lambda*lambda/(2*pi)
	alphactilde=alphac*c/Gamma_super


	! User defined numbers
	! Rabi frequency are unit less and scaled by Gamma_super i.e. Om1/Gamma_super -> Om1
	Om1peak=Om1peak_def	! Field 1 peak scaled Rabi frequency for the pump at entrance of cell
	Om2peak=Om2peak_def	! Field 2 peak scaled Rabi frequency for the pump at entrance of cell
	Omcpeak=Omcpeak_def	! Field 3 peak scaled Rabi frequency for the pump at entrance of cell
	! Maximum detuning in MHz for dispersion lineshape plot
	delmax=0
	Ga4=(W41+W42+W43)
	Ga2=W21
	Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4))
	Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4
	Om_crit=sqrt(Om_crit/2)
	write (*,*)'Om_crit = ',Om_crit


	! Now that the user has an idea of the dispersion, do the full propagation problem

	! Detuning of center frequency of the coupling pulse in MHz
	delc_prop=0
	delc_prop=2*pi*1e6*delc_prop/Gamma_super	!Now dimensionless

	! Detuning of center frequency of the pump pulse in MHz
	del2_prop=0.
	del2_prop=2*pi*1e6*del2_prop/Gamma_super	!Now dimensionless
	! Detuning of center frequency of the probe pulse in MHz
	del1_prop=0.
	del1_prop=2*pi*1e6*del1_prop/Gamma_super	!Now dimensionless
	

	! Pulse width in nsec
	tp=1e-6
	tmax=tp*5
	tmin = -tmax
	tshift=0
	tp=Gamma_super*tp	!Now dimensionless
	tmax=Gamma_super*tmax
	tmin=Gamma_super*tmin
	tshift=Gamma_super*tshift

	! Length of cell in m
	Lcell=0.07
	Lcell=Gamma_super*Lcell/c	!Now dimensionless
	t_start=secnds(0.E0)
	write (*,*)'t_start = ',t_start
	!
	! Set up initial pulse.
	!
        write (*,*) 'peak center at the cell begining i.e. tshift = ', tshift
	write(*,*) 'tmax = ', tmax
	write(*,*) 'Lcell = ', Lcell
	dz=Lcell/(zpts-1)	!(no c because we're dimensionless)
	! It is crucial that dz = dt in unitless coordinates, there is built in
	! cancellation of some term on grid because of it. See Simon's note.
	dt = dz 
	Nframe=(tmax-tmin)/dz+1
	if (Nframe.ge.tpts_max) write (*,*)'Error!!!!Nframe>tpts_max'	
	!
	! Initialize matrices
	!
	Omold=cmplx(0.,0.)
	Omold_vac=cmplx(0.,0.)
	tpeak=-1
	tpeak_vac=-1
	write (*,*)'Nframe= ', Nframe

	do m=1,zpts
		Om1(m)=cmplx(0.,0.)
		Om2(m)=cmplx(0.,0.)
		Omc(m)=cmplx(0.,0.)

		Om_vac(m)=cmplx(0.,0.)
		rho11(m)=cmplx(1.,0.)	!Change this to change the initial condition
		rho12(m)=cmplx(0.,0.)
		rho13(m)=cmplx(0.,0.)
		rho14(m)=cmplx(0.,0.)
		rho21(m)=cmplx(0.,0.)
		rho22(m)=cmplx(0.,0.)
		rho23(m)=cmplx(0.,0.)
		rho24(m)=cmplx(0.,0.)
		rho31(m)=cmplx(0.,0.)
		rho32(m)=cmplx(0.,0.)
		rho33(m)=cmplx(0.,0.)
		rho34(m)=cmplx(0.,0.)
		rho41(m)=cmplx(0.,0.)
		rho42(m)=cmplx(0.,0.)
		rho43(m)=cmplx(0.,0.)
		rho44(m)=cmplx(0.,0.)
		
	end do



	!	Propagation co-efficients
	!
	
	a1=1.
	a2=0.5*ci*alpha1tilde*dt
	a3=0.5*ci*alpha1tilde*dt
	a4=0.
	a5=0.
	a6=0.
	
	b1=1.
	b2=0.5*ci*alpha2tilde*dt
	b3=0.5*ci*alpha2tilde*dt
	b4=0.
	b5=0.
	b6=0.
	b7=0.
	
	c1=1.
	c2=0.5*ci*alphactilde*dt
	c3=0.5*ci*alphactilde*dt
	c4=0.
	c5=0.
	c6=0.
	
	d1=1-(ga12-ci*(del2_prop-del1_prop))*dt
	d2=0.25*ci*dt
	d3=-0.25*ci*dt
	d4=-0.25*ci*dt
	d5=0.25*ci*dt
	d6=-0.25*ci*dt
	d7=-0.25*ci*dt
	
	e1=1-(ga13+ci*del1_prop)*dt
	e2=0.25*ci*dt
	e3=-0.25*ci*dt
	e4=0.25*ci*dt
	e5=-0.25*ci*dt
	
	f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt
	f2=0.25*ci*dt
	f3=-0.25*ci*dt
	f4=0.25*ci*dt
	f5=-0.25*ci*dt
	
	gc1=1-(ga23+ci*del1_prop)*dt
	gc2=-0.25*ci*dt
	gc3=0.25*ci*dt
	gc4=0.25*ci*dt
	gc5=-0.25*ci*dt
	gc6=0.25*ci*dt
	gc7=0.25*ci*dt
	
	h1=1-(ga24+ci*delc_prop)*dt
	h2=0.25*ci*dt
	h3=0.25*ci*dt
	h4=0.25*ci*dt
	h5=0.25*ci*dt
	
	i1=1-(ga34-ci*(del2_prop-delc_prop))*dt
	i2=-0.25*ci*dt
	i3=0.25*ci*dt
	i4=0.25*ci*dt
	i5=-0.25*ci*dt
	i6=0.25*ci*dt
	i7=0.25*ci*dt
	
	j1=1-W12*dt
	j2=W21*dt
	j3=W31*dt
	j4=0.25*ci*dt
	j5=-0.25*ci*dt
	j6=0.25*ci*dt
	j7=-0.25*ci*dt
	j8=W41*dt
	
	k1=1-(W32+W31+W34)*dt
	k2=W43*dt
	k3=-0.25*ci*dt
	k4=-0.25*ci*dt
	k5=0.25*ci*dt
	k6=0.25*ci*dt
	k7=-0.25*ci*dt
	k8=-0.25*ci*dt
	k9=0.25*ci*dt
	k10=0.25*ci*dt
	
	l1=1-(W43+W42+W41)*dt
	l2=-0.25*ci*dt
	l3=0.25*ci*dt
	l4=-0.25*ci*dt
	l5=0.25*ci*dt

	NSkip=int(NFrame/NWrite)	
							
	fname='MovieParameters4level.txt' ! File name to save parameters
	open(9,file=fname)
	write (9,133)Nframe,zpts,Gamma_super,NSkip,dt
133	format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2)
	close (9)
	
	fname='Movie4level.dat' ! File name to save movie
	open(9,file=fname)

	fname='Movie4level_EndPoints.dat' ! File name to save endpoints
        open(10,file=fname)

	iSkipped=NSkip;  ! since we want initial time points to be at output as well
        do n=1,Nframe
		iSkipped = iSkipped+1
                t=tmin+float(n-1)*dt
                Om1(1)=Om1peak*exp(-(t-tshift)**2/(tp*tp))	
                Om2(1)=Om2peak
                Omc(1)=Omcpeak
                Om_vac(1)=Om1(1)

		do m=1,zpts
			rho11_last(m)=rho11(m)
			rho12_last(m)=rho12(m)
			rho13_last(m)=rho13(m)
			rho14_last(m)=rho14(m)
			rho21_last(m)=rho21(m)
			rho22_last(m)=rho22(m)
			rho23_last(m)=rho23(m)
			rho24_last(m)=rho24(m)
			rho31_last(m)=rho31(m)
			rho32_last(m)=rho32(m)
			rho33_last(m)=rho33(m)
			rho34_last(m)=rho34(m)
			rho41_last(m)=rho41(m)
			rho42_last(m)=rho42(m)
			rho43_last(m)=rho43(m)
			rho44_last(m)=rho44(m)
	        end do

		do m=zpts,2,-1
			z(m)=float(m-1)*dz
			
			Om_vac(m)=a1*Om_vac(m-1)

			Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1)

			Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1)
			
			Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1)

			rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m)
			rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m)
			rho11(m)=rho11(m)+j8*rho44_last(m)
			
			rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m)
			rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m)
			rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m)

			rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m))
			rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m))
			rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m)
			
			rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)+f3*conjg(Omc(m))*rho12_last(m)
			rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m)
			
			rho21(m)=conjg(rho12(m))
			
			! rho22(m) needs to be calculated lower down

			rho23(m)=gc1*rho23_last(m)+gc2*conjg(Om1(m))*rho21_last(m)+gc3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m))
			rho23(m)=rho23(m)+gc4*conjg(Omc(m))*rho43_last(m)+gc5*conjg(Om1(m-1))*rho21_last(m)
			rho23(m)=rho23(m)+gc6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+gc7*conjg(Omc(m-1))*rho43_last(m)
			
			rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*conjg(Omc(m))*(rho44_last(m)-rho22_last(m))
			rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*conjg(Omc(m-1))*(rho44_last(m)-rho22_last(m))
			
			rho31(m)=conjg(rho13(m))
			
			rho32(m)=conjg(rho23(m))
			
			rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m)
			rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m)
			rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m)
			
			rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m)
			rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m)
			
			rho41(m)=conjg(rho14(m))

			rho42(m)=conjg(rho24(m))

			rho43(m)=conjg(rho34(m))
			
			rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m)
			rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m)
			
			rho22(m)=1-rho11(m)-rho33(m)-rho44(m)
			
			
			rho11_last(m)=rho11(m)
			rho12_last(m)=rho12(m)
			rho13_last(m)=rho13(m)
			rho14_last(m)=rho14(m)
			rho21_last(m)=rho21(m)
			rho22_last(m)=rho22(m)
			rho23_last(m)=rho23(m)
			rho24_last(m)=rho24(m)
			rho31_last(m)=rho31(m)
			rho32_last(m)=rho32(m)
			rho33_last(m)=rho33(m)
			rho34_last(m)=rho34(m)
			rho41_last(m)=rho41(m)
			rho42_last(m)=rho42(m)
			rho43_last(m)=rho43(m)
			rho44_last(m)=rho44(m)


			if ( iSkipped.ge.NSkip ) then ! Outputting every Nskip frame
				write (9,120) t/Gamma_super,z(m)/Gamma_super*c,cdabs(Om1(m)),cdabs(Om2(m)),cdabs(Omc(m)),cdabs(Om_vac(m))
			end if

                end do
		! the very first z point is skipped in above cycle we compencete for it here
		if ( iSkipped.ge.NSkip ) then ! Outputting every Nskip frame
			write (9,120) t/Gamma_super,z(1)/Gamma_super*c,cdabs(Om1(1)),cdabs(Om2(1)),cdabs(Omc(1)),cdabs(Om_vac(1))
		end if

		if (cdabs(Om2(zpts)).gt.cdabs(Omold))	 tpeak=t
		if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t

		if ( iSkipped.ge.NSkip ) then ! Outputting every Nskip frame
			! Outputting Rabi frequency at the beginning and the end of
			! the cell for given time to the EndPoint File
			write (10,139) t/Gamma_super, cdabs(Om1(1)), cdabs(Om_vac(1)), cdabs(Om1(zpts)), cdabs(Om_vac(zpts))	
			iSkipped = 0
		end if
		Omold=Om2(zpts)
		Omold_vac=Om_vac(zpts)

	end do

	close(9)
	close(10)
139	format(1x,E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9)
120	format(E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9)
	t_end=secnds(0.E0)
	t_elapsed=t_end-t_start
	write(*,*)'T elapsed = ',t_elapsed
	stop
end