1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
|
program FourLevelPulseProp_v3_Double
!
! Written by: Dr. Frank A. Narducci
! Written on: May 12, 2008
!
! This program calculates the propagation of a pulse of arbitrary strength
! through a two level medium. The equations used are the full equations
! based on the Risken-Numedal discretization technique.
!
! This program only "watches" the evolution of the pulse in the cell. This is
! due to the constraint that the cell is very small relative to the pulse lengths
! that we want to use. If we watched the pulse outside the cell and then increased the
! resolution within the cell, the increased burden outside the cell because huge.
!
! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16
implicit none
!
! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision
complex ci
!
! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a
! three level system
!
! Four Level Notes: Valid to first order in dt
!
! Version 3: Make a step function in the coupling field.
character*150 fname
integer nmat, npts, Nframe, tpts_max, NSkip, NWrite, zpts, zptsmax
integer iSkipped;
parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve
!tpts is the number of temporal points in the cell
!zpts is the number of z output slices - 1
parameter (zpts=100) ! Number of slices in z direction
parameter (zptsmax=200) ! max Number of slices in z direction
parameter (tpts_max=200) ! max Number of slices in t direction
parameter (NWrite=200) !number of frames to actually write
integer m,n
complex*16 a1,a2,a3,a4,a5,a6
complex*16 b1,b2,b3,b4,b5,b6,b7
complex*16 c1,c2,c3,c4,c5,c6
complex*16 d1,d2,d3,d4,d5,d6,d7
complex*16 e1,e2,e3,e4,e5
complex*16 f1,f2,f3,f4,f5
complex*16 g1,g2,g3,g4,g5,g6,g7
complex*16 h1,h2,h3,h4,h5
complex*16 i1,i2,i3,i4,i5,i6,i7
complex*16 j1,j2,j3,j4,j5,j6,j7,j8
complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10
complex*16 l1,l2,l3,l4,l5
complex*16 Omold, Omold_vac
real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,Gamma_super,c,delmax,del1_prop,del2_prop,delc_prop
real*8 dt,dz,Ndensity
real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34
real*8 Ga2,Ga4,Om_crit
real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tmin,tp,tshift,t_end,t_start,t_elapsed
real*8 tpeak,tpeak_vac
real*8 epsil,hbar,lambda
real*8 t,z(zptsmax)
complex*16 Om1(zptsmax),Om2(zptsmax),Omc(zptsmax),Om_vac(zptsmax)
complex*16 rho11(zptsmax),rho12(zptsmax),rho13(zptsmax),rho14(zptsmax),rho21(zptsmax),rho22(zptsmax),rho23(zptsmax),rho24(zptsmax)
complex*16 rho31(zptsmax),rho32(zptsmax),rho33(zptsmax),rho34(zptsmax),rho41(zptsmax),rho42(zptsmax),rho43(zptsmax),rho44(zptsmax)
complex*16 rho11_last(zptsmax),rho12_last(zptsmax),rho13_last(zptsmax),rho14_last(zptsmax)
complex*16 rho21_last(zptsmax),rho22_last(zptsmax),rho23_last(zptsmax),rho24_last(zptsmax)
complex*16 rho31_last(zptsmax),rho32_last(zptsmax),rho33_last(zptsmax),rho34_last(zptsmax)
complex*16 rho41_last(zptsmax),rho42_last(zptsmax),rho43_last(zptsmax),rho44_last(zptsmax)
!No Om_last because we never need the previous spatial point
common/para/ga12,W21
! Fundamental numbers
parameter( ci=cmplx(0.,1.) ) ! imaginary one
parameter( pi=acos(-1.0) ) ! pi=3.1415....
parameter( c=3e8 ) ! speed of light
parameter( hbar=1.054571726e-34 ) ! reduced Plank constant
parameter( epsil=8.85418781762e-12 ) ! Permittivity of free space
! Atomic numbers (based on Rubidium 87)
Gamma_super=2*pi*6e6 ! Characteristic decay of upper level in [1/s]
lambda=794.7e-9 ! Wavelength in [m]
Ndensity=1e10*(1e6) ! Density in m^-1
W41=0
W42=1
W43=0
W32=1.
W31=1.
W21=.001
W12=W21
W34=0
ga12=0.5*(W21+W12)
ga13=0.5*(W31+W12+W32)
ga14=0.5*(W41+W42+W12)
ga23=0.5*(W32+W31+W21)
ga24=0.5*(W21+W41+W42+W43)
ga34=0.5*(W31+W41+W32+W42+W43)
! Atomic parameters
write (*,*)'New version from moved folder'
alpha1=3*Ndensity*lambda*lambda/(2*pi)
alpha1tilde=alpha1*c/Gamma_super
alpha2=3*Ndensity*lambda*lambda/(2*pi)
alpha2tilde=alpha2*c/Gamma_super
alphac=3*Ndensity*lambda*lambda/(2*pi)
alphactilde=alphac*c/Gamma_super
! User defined numbers
! Rabi frequency are unit less and scaled by Gamma_super i.e. Om1/Gamma_super -> Om1
Om1peak=0.01 ! Field 1 peak scaled Rabi frequency for the pump at entrance of cell
Om2peak=5.00 ! Field 2 peak scaled Rabi frequency for the pump at entrance of cell
Omcpeak=0.0 ! Field 3 peak scaled Rabi frequency for the pump at entrance of cell
! Maximum detuning in MHz for dispersion lineshape plot
delmax=0
Ga4=(W41+W42+W43)
Ga2=W21
Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4))
Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4
Om_crit=sqrt(Om_crit/2)
write (*,*)'Om_crit = ',Om_crit
! Now that the user has an idea of the dispersion, do the full propagation problem
! Detuning of center frequency of the coupling pulse in MHz
delc_prop=0
delc_prop=2*pi*1e6*delc_prop/Gamma_super !Now dimensionless
! Detuning of center frequency of the pump pulse in MHz
del2_prop=0.
del2_prop=2*pi*1e6*del2_prop/Gamma_super !Now dimensionless
! Detuning of center frequency of the probe pulse in MHz
del1_prop=0.
del1_prop=2*pi*1e6*del1_prop/Gamma_super !Now dimensionless
! Pulse width in nsec
tp=1e-6
tmax=tp*5
tmin = -tmax
tshift=0
tp=Gamma_super*tp !Now dimensionless
tmax=Gamma_super*tmax
tmin=Gamma_super*tmin
tshift=Gamma_super*tshift
! Length of cell in m
Lcell=0.07
Lcell=Gamma_super*Lcell/c !Now dimensionless
t_start=secnds(0.E0)
write (*,*)'t_start = ',t_start
!
! Set up initial pulse.
!
write (*,*) 'peak center at the cell begining i.e. tshift = ', tshift
write(*,*) 'tmax = ', tmax
write(*,*) 'Lcell = ', Lcell
dz=Lcell/(zpts-1) !(no c because we're dimensionless)
! It is crucial that dz = dt in unitless coordinates, there is built in
! cancellation of some term on grid because of it. See Simon's note.
dt = dz
Nframe=(tmax-tmin)/dz+1
if (Nframe.ge.tpts_max) write (*,*)'Error!!!!Nframe>tpts_max'
!
! Initialize matrices
!
Omold=cmplx(0.,0.)
Omold_vac=cmplx(0.,0.)
tpeak=-1
tpeak_vac=-1
write (*,*)'Nframe= ', Nframe
do m=1,zpts
Om1(m)=cmplx(0.,0.)
Om2(m)=cmplx(0.,0.)
Omc(m)=cmplx(0.,0.)
Om_vac(m)=cmplx(0.,0.)
rho11(m)=cmplx(1.,0.) !Change this to change the initial condition
rho12(m)=cmplx(0.,0.)
rho13(m)=cmplx(0.,0.)
rho14(m)=cmplx(0.,0.)
rho21(m)=cmplx(0.,0.)
rho22(m)=cmplx(0.,0.)
rho23(m)=cmplx(0.,0.)
rho24(m)=cmplx(0.,0.)
rho31(m)=cmplx(0.,0.)
rho32(m)=cmplx(0.,0.)
rho33(m)=cmplx(0.,0.)
rho34(m)=cmplx(0.,0.)
rho41(m)=cmplx(0.,0.)
rho42(m)=cmplx(0.,0.)
rho43(m)=cmplx(0.,0.)
rho44(m)=cmplx(0.,0.)
end do
! Propagation co-efficients
!
a1=1.
a2=0.5*ci*alpha1tilde*dt
a3=0.5*ci*alpha1tilde*dt
a4=0.
a5=0.
a6=0.
b1=1.
b2=0.5*ci*alpha2tilde*dt
b3=0.5*ci*alpha2tilde*dt
b4=0.
b5=0.
b6=0.
b7=0.
c1=1.
c2=0.5*ci*alphactilde*dt
c3=0.5*ci*alphactilde*dt
c4=0.
c5=0.
c6=0.
d1=1-(ga12-ci*(del2_prop-del1_prop))*dt
d2=0.25*ci*dt
d3=-0.25*ci*dt
d4=-0.25*ci*dt
d5=0.25*ci*dt
d6=-0.25*ci*dt
d7=-0.25*ci*dt
e1=1-(ga13+ci*del1_prop)*dt
e2=0.25*ci*dt
e3=-0.25*ci*dt
e4=0.25*ci*dt
e5=-0.25*ci*dt
f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt
f2=0.25*ci*dt
f3=-0.25*ci*dt
f4=0.25*ci*dt
f5=-0.25*ci*dt
g1=1-(ga23+ci*del1_prop)*dt
g2=-0.25*ci*dt
g3=0.25*ci*dt
g4=0.25*ci*dt
g5=-0.25*ci*dt
g6=0.25*ci*dt
g7=0.25*ci*dt
h1=1-(ga24+ci*delc_prop)*dt
h2=0.25*ci*dt
h3=0.25*ci*dt
h4=0.25*ci*dt
h5=0.25*ci*dt
i1=1-(ga34-ci*(del2_prop-delc_prop))*dt
i2=-0.25*ci*dt
i3=0.25*ci*dt
i4=0.25*ci*dt
i5=-0.25*ci*dt
i6=0.25*ci*dt
i7=0.25*ci*dt
j1=1-W12*dt
j2=W21*dt
j3=W31*dt
j4=0.25*ci*dt
j5=-0.25*ci*dt
j6=0.25*ci*dt
j7=-0.25*ci*dt
j8=W41*dt
k1=1-(W32+W31+W34)*dt
k2=W43*dt
k3=-0.25*ci*dt
k4=-0.25*ci*dt
k5=0.25*ci*dt
k6=0.25*ci*dt
k7=-0.25*ci*dt
k8=-0.25*ci*dt
k9=0.25*ci*dt
k10=0.25*ci*dt
l1=1-(W43+W42+W41)*dt
l2=-0.25*ci*dt
l3=0.25*ci*dt
l4=-0.25*ci*dt
l5=0.25*ci*dt
NSkip=int(NFrame/NWrite)
fname='MovieParameters4level.txt' ! File name to save parameters
open(9,file=fname)
write (9,133)Nframe,zpts,Gamma_super,NSkip,dt
133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2)
close (9)
fname='Movie4level.dat' ! File name to save movie
open(9,file=fname)
fname='Movie4level_EndPoints.dat' ! File name to save endpoints
open(10,file=fname)
iSkipped=0;
do n=1,Nframe
iSkipped = iSkipped+1
t=tmin+float(n-1)*dt
Om1(1)=Om1peak*exp(-(t-tshift)**2/(tp*tp))
Om2(1)=Om2peak
Omc(1)=Omcpeak
Om_vac(1)=Om1(1)
do m=1,zpts
rho11_last(m)=rho11(m)
rho12_last(m)=rho12(m)
rho13_last(m)=rho13(m)
rho14_last(m)=rho14(m)
rho21_last(m)=rho21(m)
rho22_last(m)=rho22(m)
rho23_last(m)=rho23(m)
rho24_last(m)=rho24(m)
rho31_last(m)=rho31(m)
rho32_last(m)=rho32(m)
rho33_last(m)=rho33(m)
rho34_last(m)=rho34(m)
rho41_last(m)=rho41(m)
rho42_last(m)=rho42(m)
rho43_last(m)=rho43(m)
rho44_last(m)=rho44(m)
end do
do m=zpts,2,-1
z(m)=float(m-1)*dz
Om_vac(m)=a1*Om_vac(m-1)
Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1)
Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1)
Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1)
rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m)
rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m)
rho11(m)=rho11(m)+j8*rho44_last(m)
rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m)
rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m)
rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m)
rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m))
rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m))
rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m)
rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)+f3*conjg(Omc(m))*rho12_last(m)
rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m)
rho21(m)=conjg(rho12(m))
! rho22(m) needs to be calculated lower down
rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m))
rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m)
rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m)
rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*conjg(Omc(m))*(rho44_last(m)-rho22_last(m))
rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*conjg(Omc(m-1))*(rho44_last(m)-rho22_last(m))
rho31(m)=conjg(rho13(m))
rho32(m)=conjg(rho23(m))
rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m)
rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m)
rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m)
rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m)
rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m)
rho41(m)=conjg(rho14(m))
rho42(m)=conjg(rho24(m))
rho43(m)=conjg(rho34(m))
rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m)
rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m)
rho22(m)=1-rho11(m)-rho33(m)-rho44(m)
rho11_last(m)=rho11(m)
rho12_last(m)=rho12(m)
rho13_last(m)=rho13(m)
rho14_last(m)=rho14(m)
rho21_last(m)=rho21(m)
rho22_last(m)=rho22(m)
rho23_last(m)=rho23(m)
rho24_last(m)=rho24(m)
rho31_last(m)=rho31(m)
rho32_last(m)=rho32(m)
rho33_last(m)=rho33(m)
rho34_last(m)=rho34(m)
rho41_last(m)=rho41(m)
rho42_last(m)=rho42(m)
rho43_last(m)=rho43(m)
rho44_last(m)=rho44(m)
if ( iSkipped.ge.NSkip ) then
write (9,120) t/Gamma_super,z(m)/Gamma_super*c,cdabs(Om1(m)),cdabs(Om2(m)),cdabs(Omc(m)),cdabs(Om_vac(m))
end if
end do
if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t
if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t
if ( iSkipped.ge.NSkip ) then
write (10,139) t/Gamma_super,cdabs(Om1(zpts)),cdabs(Om_vac(zpts)) !EndPoint File
iSkipped = 0
end if
Omold=Om2(zpts)
Omold_vac=Om_vac(zpts)
end do
close(9)
close(10)
139 format(1x,E15.9,',',E15.9,',',E15.9)
120 format(E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9,',',E15.9)
t_end=secnds(0.E0)
t_elapsed=t_end-t_start
write(*,*)'T elapsed = ',t_elapsed
stop
end
|