diff options
Diffstat (limited to 'mma/AbiSalloum2009.nb')
-rwxr-xr-x | mma/AbiSalloum2009.nb | 6699 |
1 files changed, 6699 insertions, 0 deletions
diff --git a/mma/AbiSalloum2009.nb b/mma/AbiSalloum2009.nb new file mode 100755 index 0000000..bcfd6ba --- /dev/null +++ b/mma/AbiSalloum2009.nb @@ -0,0 +1,6699 @@ +(* Content-type: application/mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 7.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 145, 7]
+NotebookDataLength[ 275207, 6690]
+NotebookOptionsPosition[ 270613, 6531]
+NotebookOutlinePosition[ 270979, 6547]
+CellTagsIndexPosition[ 270936, 6544]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+
+Cell[CellGroupData[{
+Cell["General setup", "Section"],
+
+Cell["This loads the package.", "MathCaption",
+ CellID->836781195],
+
+Cell[BoxData[
+ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
+ CellID->2058623809],
+
+Cell[TextData[{
+ "We define an atomic system consisting of two even-parity lower states and \
+two odd-parity upper states. We apply a light field with components at \
+frequencies ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), and ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition)."
+}], "Text",
+ CellID->525777075],
+
+Cell["Define the atomic system.", "MathCaption",
+ CellID->429217524],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"system", "=",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]",
+ SubscriptBox["\[CapitalGamma]", "3"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"4", ",",
+ RowBox[{"NaturalWidth", "\[Rule]",
+ SubscriptBox["\[CapitalGamma]", "4"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
+ "}"}]}], ";"}]], "Input",
+ CellID->433132487],
+
+Cell[TextData[{
+ "Define the optical field with three frequencies, ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ ", ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ ", and ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "c"], "InlineMath"], TraditionalForm]]],
+ "."
+}], "MathCaption",
+ CellID->133602844],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"field", "=",
+ RowBox[{
+ RowBox[{"OpticalField", "[",
+ RowBox[{"\[Omega]1", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]1", "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ "\[Phi]1"}], "}"}]}], "]"}], "+",
+ RowBox[{"OpticalField", "[",
+ RowBox[{"\[Omega]2", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]2", "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ "\[Phi]2"}], "}"}]}], "]"}], "+",
+ RowBox[{"OpticalField", "[",
+ RowBox[{"\[Omega]c", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]c", "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
+ "\[Phi]c"}], "}"}]}], "]"}]}]}]], "Input",
+ CellID->534530029],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Phi]1", "-",
+ RowBox[{"t", " ", "\[Omega]1"}]}], ")"}]}]], " ",
+ "\[CapitalOmega]1"}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Phi]2", "-",
+ RowBox[{"t", " ", "\[Omega]2"}]}], ")"}]}]], " ",
+ "\[CapitalOmega]2"}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Phi]c", "-",
+ RowBox[{"t", " ", "\[Omega]c"}]}], ")"}]}]], " ",
+ "\[CapitalOmega]c"}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0",
+ ",", "0"}], "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+The Hamiltonian for the system subject to the optical field. Each field is \
+assumed to interact with only one transition\[LongDash]the other terms are \
+set to zero.\
+\>", "MathCaption",
+ CellID->462076121],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"H", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Cos", "[", "_", "]"}], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"_", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input",
+ CellID->494599775],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{"Energy", "[", "1", "]"}], "0",
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]1"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]1", "-",
+ RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}], "0"},
+ {"0",
+ RowBox[{"Energy", "[", "2", "]"}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]2"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]2", "-",
+ RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]c"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]c", "-",
+ RowBox[{"t", " ", "\[Omega]c"}]}], "]"}]}]},
+ {
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]1"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]1", "-",
+ RowBox[{"t", " ", "\[Omega]1"}]}], "]"}]}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]2"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]2", "-",
+ RowBox[{"t", " ", "\[Omega]2"}]}], "]"}]}], "0", "0"},
+ {"0",
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]c"}], " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"\[Phi]c", "-",
+ RowBox[{"t", " ", "\[Omega]c"}]}], "]"}]}], "0",
+ RowBox[{"Energy", "[", "4", "]"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["The level diagram for the system.", "MathCaption",
+ CellID->358620443],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LevelDiagram", "[",
+ RowBox[{"system", ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]",
+ RowBox[{"-", "1.5"}]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]",
+ RowBox[{"-", "1"}]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}],
+ "]"}]], "Input",
+ CellID->167259034],
+
+Cell[BoxData[
+ GraphicsBox[{{{{},
+ LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{},
+ LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{},
+ LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}, {{},
+ LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}},
+ {Arrowheads[{-0.07659574468085106, 0.07659574468085106}],
+ ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}],
+ ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}],
+ ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.5}}]},
+ {PointSize[0.0225]}},
+ ImagePadding->{{2, 2}, {2, 2}},
+ ImageSize->94.]], "Output"]
+}, Open ]],
+
+Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
+"MathCaption",
+ CellID->577766068],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Hrwa", "=",
+ RowBox[{
+ RowBox[{"RotatingWaveApproximation", "[",
+ RowBox[{"system", ",",
+ RowBox[{"H", "/.",
+ RowBox[{"\[Omega]c", "\[Rule]",
+ RowBox[{"\[Omega]2", "+", "\[Omega]4"}]}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Omega]1", ",", "\[Omega]2", ",", "\[Omega]4"}], "}"}], ",",
+ RowBox[{"TransformMatrix", "\[Rule]",
+ RowBox[{"MatrixExp", "[",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
+ RowBox[{"DiagonalMatrix", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "\[Omega]1"}], ",",
+ RowBox[{"-", "\[Omega]2"}], ",", "0", ",", "\[Omega]4"}], "}"}],
+ "]"}]}], "]"}]}]}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Omega]1", "\[Rule]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",",
+ RowBox[{"\[Omega]2", "\[Rule]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",",
+ RowBox[{"\[Omega]4", "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]c", "-",
+ "\[Delta]2"}]}]}], "}"}]}]}], ")"}], "//", "MatrixForm"}]], "Input"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Delta]1", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1"}], "0"},
+ {"0", "\[Delta]2",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2"}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c"}]},
+ {
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1"}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2"}],
+ "0", "0"},
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c"}],
+ "0",
+ RowBox[{"\[Delta]2", "-", "\[Delta]c"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["IntrinsicRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
+ " supply the relaxation matrices."
+}], "MathCaption",
+ CellID->610306692],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"relax", "=",
+ RowBox[{
+ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRelaxation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellID->645617687],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Gamma]t", "0", "0", "0"},
+ {"0", "\[Gamma]t", "0", "0"},
+ {"0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ SubscriptBox["\[CapitalGamma]", "3"]}], "0"},
+ {"0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ SubscriptBox["\[CapitalGamma]", "4"]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Version using complex DM variables", "Section"],
+
+Cell["Remove explict time dependence from the density matrix.", "MathCaption",
+ CellID->690131918],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"SetOptions", "[",
+ RowBox[{"DensityMatrix", ",",
+ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}]}], "]"}]], "Input",
+ CellID->718931880],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
+ RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",",
+ RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
+ RowBox[{"Label", "\[Rule]", "None"}], ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "False"}], ",",
+ RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
+ ImageSize->{432, 33},
+ ImageMargins->{{0, 0}, {0, 0}},
+ ImageRegion->{{0, 1}, {0, 1}}]
+}, Open ]],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["OpticalRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
+ " supply the repopulation matrices."
+}], "MathCaption",
+ CellID->854192725],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"repop", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[",
+ RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
+ SubscriptBox["R",
+ RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
+ CellID->465762594],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}], "0", "0", "0"},
+ {"0",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}], "0", "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["Here are the evolution equations.", "MathCaption",
+ CellID->314466782],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"TableForm", "[",
+ RowBox[{
+ RowBox[{"eqs", "=",
+ RowBox[{
+ RowBox[{"LiouvilleEquation", "[",
+ RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//",
+ "Expand"}]}], ",",
+ RowBox[{"TableHeadings", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}],
+ "]"}]], "Input",
+ CellID->298399236],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "1"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]1"}]], " ", "\[CapitalOmega]1",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]2"}]], " ", "\[CapitalOmega]2",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]1"}]], " ",
+ "\[CapitalOmega]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]2"}]], " ",
+ "\[CapitalOmega]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "\[Phi]c"}]], " ", "\[CapitalOmega]c",
+ " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]c"}]], " ",
+ "\[CapitalOmega]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"4", ",", "4"}]]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxDividers->{
+ "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {},
+ "Rows" -> {{False}}, "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ OutputFormsDump`HeadedColumn],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$, TableHeadings -> {{
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 1],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 2],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 1, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 1],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 2],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 2, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 1],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 2],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 3, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 1],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 2],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], 4, 4]},
+ None}]]]], "Output"]
+}, Open ]],
+
+Cell["Make plots from paper.", "Text"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Re", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "5"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"5", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJwtmnk01c//x4UiCde+u9fOXVzr5V6ZIUuWWyKElCKKki1FkUqopLQqS6J8
+FNlSIpkpyRKSpQVJkbLvkiy/+z3n98/7fR5n5j3zej1fy5n3OUPad8RpPzcX
+F5cA5/G/N6s7fGR1lY1PTFb/lJsmgs8V9yZs/7FxH/XKEp4lgojUlplr82ws
+vnP+p98fIih20VzSGGPjxix+vadLRKDa2i3o2MXGzUd4Kz35SECw1oKWVcbG
+jm1yfa3yJNBbKBICD7LxwOGrNru3kMDpMwXzsW0OmLH5zSH5bBI4LxX47sFF
+ezwyRDYvC1EGim80c8I87PDk9Cn1ECsVsKx6QMJMxxZn8TvGUTRVQWYYbXvB
+sA3ecHZkoNxIDTR/mblc88IaH+15UfKFrQ6qqTA1JswKk1e4Hc0yNcBfQyGW
+ka4lnpGvTW4W0QKvXLr7bvJuxvSnf30FbmgDex8dx7Rqc3xLAJzZF0IBPoln
+Xm9JhngjLdWEdYgGztcUZv6sM8NbyvffPbedDlq3+9mfhqaYO/i1+4YyXaAn
+LL8SNGCC/avzebfo6wPpvG+b77sw8BMBjbve4obg6sPc6rY2A2x3aP7nIx0G
+2FH9EIc3GOBkz+t4nMEAku0FryWxAc4Z3frRADJA2lLpW4/HBrhfQflMnSMD
+3N+GWn4kGOAYm3Pha0MZoHzuU++0qQE+31F85VMZA/SYr18V/U8fm0fUWu1l
+GYNMV8E1TzP08XKv4vOWzcZgb6Awj9t1fUzsizQ2dTAGg9cl+NJO62NaowS3
+lJcxmPhFElbZpY8t3zXN1scYA+5kppI+QR837/kese61MdDoCgTOJ/RwqmHg
+lfU2JmCn+os92iF6mCe3OnVymwlIDBWIXeOvh2+dB2/adpqA3wIPcZGTHsY9
+NukJASbgEWvQXFBbD2/JTSwuuGQCaBnelrWfdXHy2XPa+W0mYPdQkW96iy7u
+mjE8rd5tAi4brsaFvdHF/44O4NR+EzDZnFFLKtbFzqekK71nTUDJSpd1TIIu
+Fnz/IPioBBMYeLvYMox0cRNthuzjwgS+BfcPClF0seuQ8rCKFxPcWJg5/5Ok
+i6kfHV53+jLB/JWrjdc26mKY0bh+QzgTlL96bz85QMf2shPRRSlMwFSx2/rw
+Gh3bPeVrD29ggoAjt4Niz9OxV2COmnArE6S9+J3sdoqOl//8enz1IxMsOSe8
+XxtIx+sYmsLO/UzwMu6N4z4LOv4ROWaT948JxlvFQkyM6Ti1u/jSiTUsoKjg
+kyJCo+OVyGglfT4WiHm6pq1aho7z13ZEOYiyQGxTdK7RDx38Z8yyQFyDBTxc
+HY6B9zp4UaGt6j6ZBfT7ZLdsqdLB62vD30rRWWBwpnzI/aYOjszZYH3fmAVw
+dHzlvrM6WMRPJKLKlAXu8LlcDAzWwTf3mIo9hSzAlpumRNvp4D0WwqOWW1hA
+/QFePsfQwScKwpu67FmAS+dyS7KqDm73POKzdRsLlFlQgrNWaHh/EKvvnQsL
+JDctwocjNKzmd2FHx04W8HdtIJR+pmGnU57p5Z4sIBvg96SmlIZHdXtyNuxl
+gdkZg7imuzQssmGgK8qHBZqjeVw6k2hYVIfQ8Wo/C+Tytan1RtLwe3pmzTd/
+jv8pWfODfjT8eBZ1tR/k+C93pG7CmYazbt21yQhkAYMHm1IXIA2fSdhhyDrM
+AkI6ggfX0GiYq7X3XUEQC/x63mUiIEfDG7NI9KkjHD0sHgqI8dOw74bes3wh
+HD2ajnXLzVGxkmDhz3EOh7taF6j+oGKf+tXg3FAW2NonHk19T8WPiAQzahgL
+aAb0s42qqNj3wsjeMxxeM1uiCB5SsYap9/h9DndFx07Y3KTiy0W809c4XMa3
+DTuepWKxGJ3jWzmcnKKQ4h5MxRYZc4ntnPX95Ub37vOiYhqXppYyh+GDSr1A
+Oyqezd7uYcKxR1bnPE84g4r71z6TlQ7m6PfcreOkKhXPKTjuf8nxr8VC/cE5
+AhXfwR90NTn+5zXNHk1eoeDrV3LC3Tj6nHatsb41QsHs0J+Kdv/Try9FKusz
+BWddOqK46sfRL8D7d14tBTsNtHsd9eXoN0urKCmlYNJZ7zf5nHj9jl4+X3mX
+gpd3KBvd280Cr/maPGqSKHgu8/e1HZz4pqXcITdFUnARxfbFGzeOXg8YzV+d
+KdjiL635IydfNHXWZQ5CCr7JmNwXwckn7oqOoAkqZ79dH6RbrFngaVOIyBp+
+Ct5VpyRzj5Ofya7w+/o5Mnb34J2XYbDAgT6hUtEfZLxRSFDaWpcF5GfznVWr
+yPgEd6fOE1UWmI+OUqU+JGM5++tZUwos8J7Pds7wJhnLRl126JVkgTNygzdt
+gsnYxXya+pJTX0MWxK4AVTI+derYoUM/mSCTlfDrqzAZH5l9XqLVzQQ7DMZn
+Hf9p4x3hGwOjOPWN1aqEGW3aeO1Clu37CiaIUFRRePRSG/vqOk6+f8wEFKkL
+2goPtfGbCbaQ1z0mSOXfacUTq42fRH+6I5HABFvXIKeIQG2c+4YRtSmSCXgX
+1byHXLXxgc7V0uEAJjgyMhP1nqqNs4uTeVocmMC65XJxWrcWLrvh8PKcAKef
+vJ1/KVSnhbl8NwnnLpiAUuT17nSpFub/L9V106AJUCghD/qf18LkA71pDcgE
+zF6rkzNgaOGFo56bNQ5x+m0STes/ZS1M/BAf0+xiArzP3TCSFdLCWYbTN3vM
+TMC7CJ/tXD818Rrh0Gs0YROQ7b4a33RVE+cvZ9qF5RmDnU5+10GMJqbUk3/q
+XjIGQvbN90oPamKDtQGeDiHGINI0rSoVamKoVPEjmWEMHJUY077jGjjidnqu
+chUDrJPOXP30RQOvNe7US01jgCqRtRvtazXw7Br2k91RDKDB3a6hm66Bi9tK
+V74YMsDKQJDXsq0GFktMmTh03wiUfe0MCDbUwJqbdsw7xBiBgI+mx/uJGljx
+4vZdEW5GoLNO4FrDH3V8cnL+dTafESh4lFt/44E6pvwRat2xxxB4Bvfq09ao
+44jHinYrI/rANW5MYM2YGkYSf73AC33gmLr0vf2zGuZt2lLWel4fWGLZK5HF
+alhAZ+9/v1T1AU3EbfTNHjV8vlNo31pnPcBd/P6+Z7Uq1hi+e3jnFTrIm8AS
+50+o4J5Dbjqm5logm6d11NNfBe8enEgof6EJMqS+1dCcVbCsrrnbaUNNcBUs
+h3Roq+DChqMS6hoa4MRlkxalLmXszt6lWsejBrbqlMY/M1bG8iFpLy7nE8Fs
+UM6f/jki/qNwJ/8tvwjwD/+xm9BPxH+1LLP3ygqBrkjSW7NWIlbLL1fNUhME
+r+LuXr/9iIiTu82zRzbzg+Q7abrb9hCxz9/Goms5XMAxSeNTeIoSLrVmv7m3
+t9XM6NaDB+8DlTAl98nFib5sM4VslXBtayXM9WRs5xrBuurhciVC36IiJqo8
+0/MO6q+O65eyt/dVxLFv54SyJ+arnzP5EYmhgB1TxuJ2lvOhTKv4SycJCphL
+K6A3UX09OufIu+vTiDxOtBHVX3tFADn5cf1NypLHwRLZ/x5v34hGUxb0FtbL
+4+MvvTstbAioLT1ijfOAHC7wFioI+EVAFf/Nvn9cLYcd3Fs7LseJoviXk4d8
+wuSwKtHzde1TMUQc+p3b0iOLn0fdF8uakUDrZv2OapXL4lSJTVePnJBEYysD
+m+NSZPFAGX2ayiWFKsW/95lYy2IBf2n7Y1zSaAf8IvugSAbHHetM2dYjg5j2
+bkOr52Uw3aayJNdeFpFcO8s9fGWwntXWQ3Plsmg88MMOERkZvHL3vWhcghxK
+uNWQfOKMNDbNLL1Qza2A1GOPf3zkLo1DN8+P7turgN4c0FDsoktjOt/nt7eq
+FBA389xj429SOLVjubLxgCLKUjaY838mhX+7msd0VigisKHf9NYlKRyx3p73
+Ap8SOtkDm+ZYUvjm+60ZgreVkFzthJiamBSeTFs6NNSjhCofZ3ruGJbE/y0o
+VrwVIqI/MUvDpamSuN265MQDOyK66Z+v9+OIJDZ+KneE6UdEBo4eUQQbzglT
+TnXv5lgiCiU9Xx88J4Ff04SuvS4iIoKA//a7TRJYeverh+a1RFQ8LXG7JUcC
+P7jRcdD6CxFt7X7TtxwlgXk6Jf06R4horCZMk+okgfW+3DWbWSKipALl4F1a
+EpzzXfTd+4IkpH3jQ/lFLgksLBYIxmVJqCE6drXykzgmR13u7dAgoQN+OjbD
+heJ452MbKy99EuLb1pssEy/O6dcLFkmbSCiXcenjFi9xnGgxVOBnTUKWRFPF
+4wbieIcX2WuKTUL9/CP7/9sgjitj4nV1d5DQmanbjz/+EMP24yECZHcSInZt
+mVtbKYZ9uiUa+3eREHr9x9QwRQybu7g6e+8hod35uXG+B8Rw291fiQ+8SWj5
+mkvTNSCGY9oDHZ5zOP0kr3iNpBieLr0dncGZz9z/xHN6TBRfyTj0192LhL6w
+9+WQakVxxxmv29Oc/Y4bEUYc00Vxbvl9vUMuJCSphPViw0Rx2MW4G++2kdBT
+viNRRXaimDcqPUnCloR2TCq87iWJ4qQ2y56t5iQ087lpvdBfAjYumDY/aUxC
+V1+d2L6plYDNV3LCsmkkRH+kffvQfwScUuSs9FaFhN5f/dKXFkPABiFHh0ek
+SCjoRKLmOxcCfmgQGSK9gYQEfRnBixQCDhRxtXFcJiI7wxurO7tFMHEu+e9M
+LxENKVjaJJaK4FKZmvoDLUSUuG4mufy8CJazrXu3WEVEtZ8cFSWNRfDLb4c+
+J9wiIl+8ut9KWAR3N5lFXTxLRGudvDyHmoSxaGXlqZdBRBQ7Kx2VqyWM8TnL
+PS8tiKi6NmL92s9CmEreF3SNTET/bnak+sQLYbh53C5PjIgiTK6UE/s3YnOZ
+I8mmNUooMIZv7k66IPaaW6rYOqyIkiTUan0cBfG9TRtk08sUUUGBxQ0KryDO
+k/2s3BytiMa7og2rAzfg6OpM6ylBRRTKmD36nSmA517cnuxVVECRk33zGl/4
+cCzbtm5WQg7dSVh5O5nEhxupx/PXfZBFlYrytyogHxaLULTadlEWLTm4Mezz
+1uHsSKG7N5dlUOzD5mNBx9Zi7eeLU8e+SKOEfZULZRI8OGDcjCATKony/n6q
+j27gxh6trW+SlCVR/ZW5VOtobsx3VlvgWJsEEkB0k88Da7CLq8dEFV0CJcv9
+F/nvCRcOmTm0NeCXGNJ+qDF39v4SihX/QF8GBGR9qWshQ2EGkZ/+tundy4cK
+brgOUhOn0fHun14GReuQWGZb+8vpKdSp7PRMdWkt6itsLPxaN4lm01fk+q/z
+ovmsow3MgVF04Imcr+nrNWivhtE9k0v9CB9f/71VcaEaxw9KDg+mIVWemq7P
+FiXVFEQTNxw+A3YWH7qu7H/LbD77wo3LB/4DpEX1CKf5KrNcS0s5u33VIEc5
+gxLwrs0MXRApujbRCpzf917ymRowm6uuW21s+Q743L5v/r44ZybirpLnZzYN
+Ul25kr64rgP1X/o74/qmwdLc+JNeaT5w2uM+T86ZGTBK/3TiYBcfmPZU2/Pt
+7Sz4pCBjseS5HrTv1pDcue0PuLiNHZy4UxDc9CXH2XovgeHWY5VmMgSw9edI
+iT/3Msi7NTakc5QA1vkVfDt3fxlMaH5llrcSwDF/Kuv17xXwrSLA8ES8KKA8
+lYrMeM4FJRLXlUaOigGh5zJ0SXMemDPSqEa6KwkCFv5aq13lgbZ/5hoapiXB
+W+MuL4N+Hohb7xxpspICMRV3Ljqd44VFT4giLUNSYKJS7ldyw1roHKkkZ6El
+A1pfKmTyOfHDoEqr8MzTcoCyslwmmcMPHVwSSLn1ciDRrPed2iyH9916+kxI
+HpijzL+bb66HeFfYn65b8qAUK7nEdglAMy7NlbgMBSC0huvQZfIGOH7ye5FW
+jwIIMO87k3lyA1xl9B9+IKMIlF9nFVcpCsKDW2IpfCmK4FoNSfDvvo1QOP12
+cUmwEhA0s/iRUbgRSioeLO+4pwTinu97brG4EXZWSvm9+aAEIh7n+CalCMH7
+/MSMBUkiGNd4w9T9KgR9Ds/Pi1CJwD97QOSjpjDUWxHXP2tBBDtvqb1UwsJw
+o0Tg0QOBRPCbP8f2x1oRePDG0bmOGCJQs35SVkYWgTLf8u2TU4ggE7dfcD8m
+Ap9FWPN3lRFB13L/HDlDBPaoSN7dX0sEkqxZ75XXIrAiy/wwvZMILj8VZ+QI
+EWCNUlvJ0WkiaJpWzT5qQICTM+3iQ6tEwE833LjFgwCravsTLwmSgOVhq+Oy
+sQQY4jIZvEeaBGIfufSPPiBA1s8cTU8VEqj6tX8rekeAZ3OLeKOpJPBXNaIi
+ZYoAearlnF8ZkYDRvnhVXylR6LSY5qkKSCD07s3LRptEoYb70J5saxIo7Mld
+5PcRhWoRxHQGmwRGZMr3dyeKwvplVZs+JxLQdKtrfVwoCvvMBK6lupGA7/VP
+rNgOUdg4Hft4lycJZH34leu0KArFXOyw5m4S6BFaIKgRxeDAveKphT0kIO3A
+H/3HSgyqiazd3+BNAi7npX83BIrBW14qrJscvvpW0zk9RQw+Xlm86smZ38Jj
+Uh1ULgb/8ipekPAiAQFzWy3zr2LwcpPLJuxOAtYx7tfFeMRhU/SmBjcXEjjz
+4uDqT01x6B7yw+7zNhJAC5EBz7eKw+DYgL5NtiSwZHih80K4OIywxQ/jzEnA
+OOwO9LojDqWCrRryjEkgvPhRvg4Wh+e6L/jm0kigZKxSkntQHLbNCj2I5Og7
+rv3udMcGCSjXv6ZCUYoEtA90j+bqSsD2V8IdKetJwO/BiFukmwR8WU+nv18k
+guwf/17bR0vAVs9TQu3DRCDnJX97sl4Cbm8bjFGq4+TXHQpvzbgEvONdXu39
+hAiufzI9ckNcEjrp//3qnkkEgk5eVkxvSSjD//ny/mAi2HL5cLFgvCR8znuG
+GuJGBOeaouW+5UvC3wefvVbfRAQr1plTZ/9IwnpGQ/IZXiJgxhXuclWQgryy
+o2mWTUrg2KvqOs3NUlDb4yutOkkJTLK+ZTQnS0EhnUEPm7VK4DudaCelLg0/
+1pUvEDoUgN+VVZbENmm4O5VffHekAhie6KWKHZeG9984JxrIKYDpwgyCcKM0
+lH9nP3BwhzyIEIrm2TgjDRM38rlWj8iBxcO75gTkZaDgjt+sxFNygJsq92Vd
+kAy0kDcNCUyXBfFJi428t2Sg5i4TGK0mCwRGv1RxYxlY377n/NwjGSCWn5q1
+QpCFqadocsL50kBVS/LA/FMOf1Xxe3ZKEuQlzrnP9spCxyMfHBpGJADld4f9
+NJ8c3GJU8t1khwQw+O+azri7HKSkRCmayIoDKzXCn5/LclBVflvYVBQB+JEE
+4zutFOBzxt5z/up8YDh25Fh7kAIk9inqvbm0FgT1NR78cEsB5j3aPJw4zgMi
+7p5nNw9xxmVg6t10LpCgwCdRe0kRclXpNup7zpjlyXDfL+tUgvGjXnJeoj+r
+5/iX+hr0SJBR8VlK20wMhWZsFhmyJsGQUw7aNdvE0aTuRcDvSYKSpdIG7H0S
+aNhDNtP6LAn+rjKt/HReCvUVGHvWtJNg9vdecVafHGpyPNpZFa4M89J2HRq3
+U0Z2P6t4exKVYTb9XlBbpzKqi+Q1+JeuDC8MtOZHeKug19nXrprUKkNztbeE
+jnBV9Hy2ZNszCRWo2TzdWJ6qjnJSxxuKnqnAnXeY51zfaCMi1ehvS6MKPLnm
+tlGwNRllvorWHO9VgUeOv4gsrCOj1GHBBAqfKrxQtzp5vI6Ckk3Jlg/dVGFR
+TdG98Bc0FNXnX529oArdBnv6cxm6aCG8aOyVoBp8cZoeaBqsi46u/yP/nagG
+O7sNZ/XydFGwXvwJJVs1WPh7QpIlqYf84u4bp99Wg4eDu6rjh/XQds3vpTeY
+6nCs+fbYYKgBcn23sN2DrQ47/s5HNGYYII8gkSlFb3W4O+ZfsVi9AfItAzp5
+59Shi+Bi2EdZQxQBM/MrW9XheNIklqswRFH9T+1O9atD1j3fTu1vhuhUfPPQ
+5nl1OPW7p/0urxFKbFrSaJbTgMONGd1VbCN0Z6fn/W9+GvDdUJT1+89GKPNf
+6Ob7kRpQa6YuSGbRCOVkXvhxIIkzX1H9ZLMsAxUMVBCnSzTg4/NDtAgPBkLB
+0hm8yxoQ7i7O6mtjoIHEzhta1zThGyxrNpZnjH6TxwzGH2jCLbnxz+ArYzTW
+wttR+lwTSu5QebvxizGaFzcQNe3VhB0NLgkyfCaI/97V5K1aWrDiV1+yrJcJ
+ErR8RBUz1YIZf7NSvUJMEOHXq6ZPW7XgQs5+T9VzJkiWOiWwN1wLEo4ZeVjk
+myBqxbaEMKQFdZsoHT+nTJDeLn914zYtmDCWpHWIm4mMVmNqlwa04NE7Odyn
+RZkIWhXyxAtow+quP5Weukxk+bs2205BGz4xzdipCpnI9uJXc2G6Nnw55DMf
+u5WJnD4Ixqa6aMNxvbHCfweZyDVcVcnrgDZsr+NJkD/GRJ5SptWkE9pwKejS
+l49nmcjXK3DpUZY2LDz+3lshnYkihhqOvxzRhsGq41+l6pkoU8G2W4qLDKv+
++8LF1c5EddvrN4WKk+FJgzavk1+ZSLryLbfGJjJUSG86YTzFsXfcav/p7WRI
+3PHuyolFJjqoXFvXvZ8MQ98lJrjzsFDlhZqkK8lkuOFeYdaoGAv9qLaYGM4m
+wyy28Mp9ORbaMPNqu1U5Gdpm/ipdUWahXZ5YcvEbGWb67wtNp7NQ3GUQuWOW
+DBvTotL6jVjocU11dyE/BRZENe1sM2WhFfLLLB9dClzUr8wusGEhdW9Tnmor
+CjzXVERLc2Chbddf7Jf2oMCTx4+yGdtZ6Hg9sz40iAJHveLCz7iwUNZShXbz
+GQr0v0mWiHFnoXq6ySWNWxQo4ByfTvZioSnf5xOn8ymQZBwWluTNQrK3GU49
+iAJl+5NW7vmwkEXzszKjDgq0TlbJPOzHQgFrjKRSflPgxreMwskDLHTN8Gnk
+yBIFFqlExFMCWajqoEGPFYEKH64xiFI+zEIDGU/MstSo8Ini4c/tQSwk2KZ3
+b9GECmtVXo+YB7OQwbpSHpetVEjmOb54OISjD1PXr2gfFfqpHbd2D2Whc0HF
+9euPUeElj+0b14axUGG2Dtn3IhUePWeSGMrhjx8LL1XfpUKnBeHRbA6vCNAm
+pcuo0O2498FbHFYHj53C6qnweJ8fZTuHt4ZRnjb3UKGph5jXB876x/7Ll9Kc
+osKdqsJKMhzO6taOOrOWBnm/vUrR4thTL/yop0eGBotd3Vp5OPZObtYCDBoN
+CtfWTuVx/JE5nncvxYIzfrqDX5bjr0WBBu+oKw1ukFNR3cnRI6Av1886kAY9
+P9C3+h5koavi6g1Zp2hw5ZDvJeDPQi+2PCD/u0aDDQfFB4Z9OfqU5EwWVdHg
+dWW15qd7OPr8VHYW+ECDeWI6jp92sZCXTPZT3580OKgk29TEiWfh6awoGSEd
+aBfd58tw5ujxVOlrmLIOPLbHwblwGwutDmWCFiMd+OtYy9clexZydMrgPbtH
+B1ZW/oCqlpx8iZf3/xqmA1OfkZtXAAvdq0xrYCTqwH05G73KWCw0rXwnebRY
+B+rFnal7osdCjZH2guQ1dGhz6liNjBILKcuFzT0SoMPt551tTWVZKKrqTq+2
+OB1aBgz83CzBQlqrQ8XaGnQYqnWshHcDCyXGJbposznflzbTd80xkc3l2kyt
+23RYuTqw6XMtpz7pYwkPs+nQTdQ8JQkx0fwH8RCtAjos7PpAoVUwUa6472Yt
+RIfKg2MrzAImWneH+7fmTzocNNw8G5/CRG/uA11NXV2odcmObe7ORPLW/rJ5
+TF0Y/jpE8t92Jgr/lcyjaakL50TW78mzYyIV7d5ODTdd6EPvetXLYqIzRSej
+NKJ1YVK3/asaBSYyr6yoUW/QhSGRPtdLvpmg6vf6rmp79eDAwQb6JKdfhvsk
+eBwN0IPPL6zGtLiYIK0/Xbtrw/Qg9bXXrTy2CbqueMZ/f7we/Lb67qPjJhMU
+cLj1+IN8PdjTFW0QIW+CJDccTlOb14N3+op5GV3GKMg6t0/toj7cdNXA+fQO
+Y6T4UjpQ/akBXJhxIHy3ZaDFlonRbywGHGw6WFKraYhelNQfsLllAgnbBd7Z
+HtBHC8+vbfdXM4WZJT49km90kUyKt4Fhohm8ZVV6TzKUjpy5JKbijkBY5KSt
+bJlDQ26NoTH2ZebQ55C1zNnTFNRy8gP/wX4LyKO4erHitTY6a/6w4QfZEk4d
+OLWPLaWFxrevTuwJsoLaoWGNTTka6J2dq5hBmjVMSeXuu3RYHQ26qB/2/W4D
+M3e5uvWaqaFw2z81IwRbeIfiXn8GcM4LidaxEaZ2sLTFgmLlqYKYXUJhXrH2
+MGLPaLZhpDLn7/nzvrRCBygTHXaO9zkJ2SUszvY9cYAj5mqJDWUk5Lcon6Be
+4QBf6JQ9u1xCQnf79uaX1DjA2IAf15XySUjk8chM3WcHyP3y12Z2JglNWa3G
+zXKzYWq71fdvcSRUdkz9P7YbGyb2Z3d+dSKh1uEtJtd2saG8b4dy3TYSGvUK
+fPd5LxuuXolJLHEgITXL4gmfQ2yod2r0znlrEropwjSOOs2GruqiTdZMEjr+
+kN2Qm8+Goesnvs2SSOi6fLDnaDEbzrYQgicUSaj48tUx3WdsGJF+W3hEjoSG
+jn4ivMRs6ES4F/VTgoQ8LPZ6tHeyYZuQ8tTgehKKeHp2VLqbDf9sXB4dWkdC
+VzVzY3b3sWHQic8zYzwk1Cg0kj00zIabo/cT/y4T0eDpjYY6k2z49zC3Fdc/
+IuKe06kLn2PD5biIUP4FIlI84OReuciGB7yM8whzRPT/9xHg/99HQP8HtnoB
+PQ==
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-1, 2000],
+ Rational[1, 2000]}}, {{-60, 60}, {-0.0005, 0.0005}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Re", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "3"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"3", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJwtmnk0Vd/7x83jdS8ZEq4hwzXfc64xZO/MKYUiQyQZKqVBaNKHCE1K0Uxl
+ppIkqXT3LpQ5JUOaJJlDxhL6nd9a33/OXa+199n7eZ73ez973bWOWuAe92A+
+Hh4eJerx/7+WHw8M//vngs0eP3pfL8sEnU9uj63+64JfkRmrOQpMEHWlefLi
+jAtONtEVu67MBCUe2vOsny54nWvw3r0sJtBo+Uhz7XLBtPKX3bormIBWY2N4
+q8wFTxzVaPqymQm+FEvugztc8M4Gq2qHXCaIO353JvbdWmz4oi3PzEIZnFwa
+1pB7eg3W+dMi75eqApSrtbMjfJzx4nrLqcwoVbCgsV3Wmr0aj464Z11hq4HM
+CEO3u0OOePRGjNMeseWg6cPkuapnDng4pEO6Z3A54BrAK8ci7HH72zPLH02q
+gz8mdEtT0g6XeEr2P5DWBC88PnZfErDFgQ+rxbdZaoE129iu17mr8IsZ34Kq
+GyywLfn4S6cUiAskPrstCuuAk1XFmT9eW2NCYHri2hld0OIWsiYOWuGxsfV/
+eD30AYehtBjeuwJbVCqHPltqCOQLvtrmeJhh8YzaU794CSqf+oUra8xwaNDV
+jgxBAmh0P3p8dpUZnvx2o9BJlACE/Bm9aAMzLBJ8vPyqJAEck82lnQXNcPdp
+BX9tFQJEbU/tGSszxVfas1pGLQnQpm0bZyljijOeCTS2RBCgy87QkhAzxSsl
+G66aRxOgO2DZtAaPKVYRCI7OOEyAkStj2+kjJpgIydHxjyOAgOgN129VJnir
+p3j7kxQCGA9OqSRFmGD/hrXMpgICXCjM4757Z4wf+N3cNP6BABu5hfhAnTHe
+e8fEvvATAeRa776Uw8b49EWzFr+vBLg+X/rK554xzmntP/qklwA561FzT5Ix
+1jy+cfOKMQI8nu74MmFljOeimH/X8JPgsNjH7jQjY5yhnfGwXJAEVipfekx1
+jbG0/8tRRRESYKfevsNLjbHitc6bbTQS1F8fH+WbMMI/Zh1f8cuR4NMq0X9L
+8o3wcGeJ3QoWCTI9abyPMoyw6avmhzY6JNgaxuDflGaErwYWetvrkaAvTVb4
+epwR7uC3GTNhk2CsX42hvtkIX5/a/PyFKQlK5zWkatyNcEA+2HLBnAQHpLSl
+Q1cb4d6Du2N8LUjw28Jw6R1TI+y+Q6WpfSUJ+FIsVIykjHBs6BjvHjsSVGet
+VGsTNsJJOh/e8DiQIPExVI9e5ODauFbXU44kEP/mwHo2zMHdRD1fgjMJZIw3
+sG1fcbD693RzhisJ2p08yR+VHMx74GyprxsJrvp5GyU95GDJxqdCN91JoJy0
+xazhFgcXf45uFPUgAasrDGw4wsGp+py8Xd4k8NJ6tkV3Hwd/aonjO+5DguT9
+YrG8oRzswTibeNqXBANihfi+Ower9HnvPOxHAvlNv7sTnTjYtGbXkS3+JFid
+7cjrb83BfsWf5My3kKDIsm8VTZeDPxs4rakKIEFXkkngdxUODl+efCFyK5XP
++4TjT2U5+MeHu1ghkNJP9X1WqjgHz63tvlNK8a5d6lXbean56wd0Vm4jwY2K
+/d/BLImD+LUkn1LcJPCSf+lPErvtTjfSCSLBoquUxmgPiZ3nGrefotgwI8Cu
+ppPEdrSF+M8U+w/eD7rRTOLJM2Ney4NJcM7kX0JENYk3HBF+5kUxjluX6/yU
+xH0XYUwsxeNNGTVqJSRObjXcf5ViVYWfP37nkvi63mJYNsWuIVZCLddJPCe3
+3yqT4tjS01r5qSQ+v/pH2UmKHyx2ORxLInGZx+q8YIp7nHVDPWJIbLRF6xtJ
+8ZLLh5L0I0hMb7lmMkrFZ/O9Np9/B4n1RXwjrlG8ny1f2+VP4r/sBztMKc46
+EjrwYCOJf3Uf7X9B5d/6ulzkpDOJY/mMnllRLCAjpBMASbz9zOfSPKp+xgEe
+q81MSewUqHjjH1XvoLs5O+j6JG7WULVzpDj99+TJH2okHl5WFh1D6fPKzrao
+cimJw4WN+bMo/WbOX6i/KEHiVHZqaRmlr9bnb0M7+Ulcre/m9ojS31OHFLf5
+Q+BhgZSi7M0kePzizZrxXgKfYTeWO1H+GZBQ2fW6i8A2Z/sXFr0ov/iEn8ls
+IfBSsTJW1iYSHJygNa2tJPDGVbMOxRtJUGC9+ad6KYEv1hg0yW0gwYdTdyT+
+5hPYyC99UxjlZwt153WFFwkcsKcnvcOFBDv3XA2PPUngPnXjjtE1JLj+bCBl
+038EDpU9b/ZrNQnmNyS9EQyj1v9QEVZuTwL9W+1jnwIIPF9TWHfQlgSbRzQl
+yzwJnGI46qO5igTPE6pdA20I/FdpNcvKigSjLdL7VpgT2Mx97WDuCur8MLel
+ShpS8TXHjPymzvuxR7zvuMsIPM2YQN4kpX9jTJ5pDxsvPHeo/adBAh/PtdHg
+DRu/5Im06FMjgVG3gpNTJRsfKk7WeaxM9ZPJx4Pel9iUHwLuLpUngYvihH6M
+Mxvbv/wV3SRK1TsXL5wwY+P23X5CfEIk4GGfa07RYOPjTT9CVPhIUGajv/fW
+oiHm7detlp4jgMLOkIdVpYY4RxUNfxogwNSkcULjTUOsmscr6k7106YYfo+2
+M4ZYtG69dTHVb2NTb830hRjiyPsykortBOiv6FohpmiIq1ycVPALApQJr8eu
+8Qa4Rau8WzCNACmpzFTvvQbYqGl9w9uzBAhVHNka6GeAr9ommcclUfuzT/If
+MDPAP6trH5yk7os4zyqHy8P6uJC2kWuxhQA+3alLb3XqYz4DBT8lL+q+2Bkw
+UFCjjw+ebL3z1ZUAAzELJ5/e1Me9t6b3iNkQYF2uWdPnDfp4fb+r6dByAmiz
+hTL7oD5+x9s3+06BAHxP3oePGehjsVbW1etLCPCocZ8kr4g+HmltTmug7kul
+qTsbNCr18OHx/7bB52wwaKPatVNDD1fXxeW3qbNBpmVS/2eGHh4qX7+rXIIN
+NhqPTrn+1cVa04anbWcNAdasZJi908WTnrwvAuoMwRURL3v+WF18dKQcXdlh
+CByaz5Vc/6iDq216h1KvGoD5VzPP6a918Ey43dR8jAEoRX4NcaU62NDcDdMC
+DQDzgV5f6Elq/k0b/mU6BmDq4mtFYzMd3PTD7eiHUn2Q5f0vsfGCNjaM7Fcs
+LtMDXu4haeCYNs5uOv7e4qIeoK9pul26QxsnyM+ahu7TA4esrldegdo4Npdj
+mKmvB1xVzCaCRlnY/sEnm9hMXbDYG+63sJqFO7Mz2xb36ADfvV+MDHm1sOjP
+PQyHei3gmfBTjPenJhbofbHkcoYWcL0y/621UxNfiNbOTtmrBeywwvlDJZr4
+yUJtaISsFjCU3DRSvUUTQ6dPE8t9NQFfyZscX64GNterv3yvXR0UjGHZk0fU
+8dGltRFZaapgKjx79vu0KuYXuDofOL4EhB7o8Zf6roqbksWa7sYvAV2H1F5Z
+t6jiR7bvsv/KLQEvEm6mXS1SxZ2ysY8er5QCKdeuk+u3qGLnP1wHfXkGcD3D
+6jiQqoJzw8xa67eIgAoLEaRmxsQEp7Ei8cWMdaZ94tmjUkx8K+/ArtXEtPUJ
+V4HNHcNKeDzX9SHr9qS1ewjPnzO3lHDL0d1fok+OW4+k/ub8FqXGi1eGu430
+WqsODuQ1f1Kg+umeq1qsh1yhqZBInccUi/qF+ryv5v5c7LVNSFXAPLnVe+Ln
+33CfynzrXuGggLGo9N3LPB+5G+EHhdz7y/Be4cZ7g0YD3KTLdSlHjsvjbuG+
+V1EaM1yt2IPtRd7yuGReemJ3+Cy3ejtLuYuQx9vBmi1vH/7m8lmcuGf+dSnW
+fmgVlkP85R79BBunLZfi2PfmEny//nEVa8akNaWXYuOrw317TvGgp/cyfTcO
+yWE7LcFX3ct40eyx+aHSK3K4dsq/mST50H61CtG907J4oPVC6jwUQFJioW43
+G2Wxagb3XjBXAJVMyF5tzpbFU9uEHLRXCKKfVRHaBu6yOCE8zaVQSwhtD2E7
+DhXLYPOm6lDymzASXv8lZVmiDBWPeMVfJxGUZ3a23clPBgeF7dvOXyyCvosM
+B+eLU3zvwU28RxT538lLCNoujUU+dJ949FYMLVz0aLwIpPEne99z+uri6MZR
+AZkqOWmco9aZ8nafOPrgEpitVrME19Icj9wWoqGDplLDrjeWYCfdjqH6tTQk
+p4I5sRFLMGzV9VA5T0Mbx5kvv6gtwUcro4ATXQJNdjaK0v9I4YA3jo1KqyXQ
+hRdH3Fa2SOFKoneXUpwEIop0r+7Kl8IinM23HMsl0JsLH7qvH5PC2gKesjcH
+JFD4kWTtBg8pPOKeV6guT0e0ILO9c/pSOIfeu6Pdjo6cTdL/eX2UxNrJuUkN
+6XQ0yLRzTC6VxOZdMr2ST+koWWgy5fFJSTwX5rbj1Ec60hq73d4XIIkF7OqF
+LOboqKbDVVnOXBJrWDR2qMkxUBD+F2zPoNaT/rPcjs1Agu5+voONDBwFn3ln
+2zOQjfqzIccjDDxwtHypjTcDxU7JH87TYeB3u0yWq+9kIG5NlKhgJx3vj00L
+XX2Qgf5een9lWyIdWykULT6OZyDz7Rztl8Z07HpSX2v/GQaKWnH+sep3CWyV
+LWt35AIDPRQbdfgvVQIvcRP40Z7OQOMf17R/BhKY7n3jWfIlBjK8VxhsNUrD
+zTt6b6alMVDYMeHpazdoOPNxVsriOQY6I6tZs82Vhsf7orO8TzLQ3bs26foC
+NKzNw2u/N5aBmmwDgqcfi2Mls3YRh0gGGu2KMeGGieNEsbRrX0IZiLH/umCS
+iji+NrUNr/RiIEL0Sdv6VjGcXJbgHerAQG632nPlk8Swgv87vy0cBtpvNhX5
+zUIMXwLrPusoMdDFZimHolFRHIXy/tXzM1BZMFsuIksUH4WI33GQjtrm1/ZZ
+eopiVy1zkNVIRzMXd5YLiIniMvos89s9Olqql5zY9FwE14bcVxM5S0fmL3M9
+L+0TwXftwr4p7qSjQ+PdM6wPwnizGY+3kjIdXUtafDV+RhjPqEblLpmWQE+V
+lS4/gcK4fNa6XaReAs2v3WS2pkAIL4kv7REJl0DM3gPCMpuFcNHjzcNKKyWQ
+9ZELHZ8YQrjZOJK0F5NAsYVN0eHRgvi92ez5/kwaug2HHc30BLH801Nbd4XQ
+0MsOEXmerwJ4Jljws4I+DQkI2VWkOghg7fmlv8RKxVFS4NPfZbL8+MChxLNt
+BWKo4E9HbUwdHz5WecHePlAM1Z6fvuIQw4d7RH020hTEkBgiVnT28mKfPdKO
+FQmiKEUx/9Dfhzx48KN7NeEognQLWdPxOfNol+uzWslEQbSrIzBdljaPyMbx
++naWICoWzDTJj/iL6itc5L1qBRAZKBNVbzOH4n564zxBAWSuyDsr+W0WvSuP
+H9Pfz4ccznb9zmBOIptI34Wd5CL3brpnn0HyBNKFX9bybFrgSme+a30+8Qut
+XQTRk4fnud3F9cWfX4+j5erXFFncOe7Mrcg6i94RdOz7U1O20Sx3K8v09oqz
+31FmVfChra/GuDixT26o7zpab3ljv2xfHlcfGcqYDB0HUUtlty2Kn7OeyTqV
+fm57PlhM4Il9b/LQOs/OTtE5kAu2BB0WtP9Za41OSd6/ONYCEm9on16BPlpP
+c1//q2/+Bs6Y0kv2L4xYS3qrF4RYT4Di+qDBc0Pz1rUfvrcldE8Ahc7mMLfO
+Bes4nxz+7OOT4GXVhjZm9aL1hK/mlq+vpsBAl3NjvTMPaPVnyXmtnwV0zd4d
+igw+cOZrv23Ur1lw8vXJ2zYxfMAuoGBf2sXfoFK8R8FwiA+UbdVpaun4A2yu
+FD0kMT+4FKSXsDpgHshXfHenbRYE634MPwjlWwAy/xVaRyFBIBRy9+uJnAXw
+xEmWJ1hNCESHGli+HFgEprYr/zzoFgL6j5YeyqjggVKOKQ2ctSIgeXr23F1R
+XnjlBNIZyRIBvSadec98eGHUMr3tP2dFQEb5lfcf5nkhV0NvsvCGKKBXLCPk
+VvHDtbd1PUGLGNj5+4+D5gV+KKn0b1+YvDh4Zd7lZ/ydH5Zq/fcq118cHHty
+7bT7CQEo07E8SueHOOj6czhrazvFnU76wZo0YGrh+2QvSxDi96bvLm6jgbGn
+iv0pdYJwYHwu4v4HGlj79+9ChoIQrJb1Cz4nJQEKLD/J3AsTgu2cVxwnRwkQ
+UHnDpkFCGK4TjTTVuysBKuePenf5C8PqHivG6o8SQH6l397B+8JQu8VWjCVC
+By3PmZnC7iJwbl6sRNyXDvQXF8rkskVgSnzMc6E4Oki2/tKgOSUC0w6/fViU
+Qwe9x7g9xvaicEZ6q+BEDR2sQpl/bC+JwkrzAtDRSweZ/45JbugXhUoRfeIe
+vAwwB7awAs3F4LrAF+wQRQbwjAXW+06KwfD8/rOCRgxQilU8YrvE4Dv9Mi1D
+Jwag8/LsOqcnDg8nv5X/6MMAO1d1H888Kg6Loz/fFg5jgFdx+Oq9JnH43p+m
+cv8gAyx/eaukUpkGbzg0SjTFM8AxvrjXDXtoEDeH0vzOMECXzdYvXZgGzZ0K
+unwuMIBp/KrpQSkJGOsd7fMynQEuVqnR/gRKwOPZ/50/d4kBaNY2PRnFErBi
+y56iiTQGSKgIrLCZk4Cnjq3QFU9lgAVOfEq/PR2mLJhrt59igKh72UFnUulw
+hJjsdD3OAKOsagvyMx06jCWcPRjNAKFZvZLt2gyoeo1e5ryTAbqVBPsPH2BA
+ToNyZzWVn9dlzecqmAHzchSze6n8B0SyV/cISsJdJ4o+5RszgKbDw7IyPUlI
+XycXRlNmgMD4KpUkN0loePHhBklBBsjErae8oyVhi7/tsweDdNC18H1aL4N6
+/9yGvtEGOpCznApYfEmNx2eseHWHDs49kjHLpktB+ZHqlJVBdNA4oZEVaSwF
+NeLVFrus6ECEMJFw8pGCae8C90lI00Fskcf3kVwp2CkyWWJQQfmpP3gdapCC
+OXoVf5YlSYA/GlFPUn9JwVvrfoArGyTA/puXzpmuXALXxoisXP2DBoo/5c2J
+bFsCayPfJx8pooHhZY+DPyYvgefryHnr3TQQlNZhGft+CZyaXkI/PCwOPE7K
+D9SFSUN5ydmapnoxcOGV9oYbqdIwtnCfRfpRMdDMv4Ib/lgaJve/mJ3QEwMO
+x7zTpPll4EYBnoyoeFFgHnEN+l2TgS0rhycbZEXAgZKiO2wsA602vRHfXyYM
+Hvx8KsfXJwO9Tp3+WOkqDHS3fxzJI2Vht4FQtvNxIaDop3R1vFYWGmdU8abX
+CQCva/oCVaOy8MDFcJ5iDwGQ1mG1J11GDvJki8XGf+UHNHc/e4sAOdiyUy17
+/wgfWHTI/BU/KwcrO9ZUvxnmAd8IVeelWvKwxOFeVLvIH+uQ8/8sZdfLw4LU
+t5dh1az10NgXA+mD8pCnapAhemjGeqI4Q4pRLw+9fvyeG2uftOYzUPwgFL4M
+wg+Jr5OfjVhr6Mhtn3mkAKFLgE8lu8Y6RI2W2GbPhDyPF3Pr/Ge5Q7HD0a3h
+TKi9mZn4Re4PN7y7fsfby0zolbBJzfbtHDfq5kmXpkEmdB3j3sxbu8hNYgrL
+1pxVhgEXI7/ie3yoYBlfTlmbCuQ5Gr5tx3dRNC0y313HUYN8i/3CUq4yaH+G
+reSggxoc32DURFbLoHHyNBDxVYPSJauerTKXRUM+CpkO8WpwoF5yN1NVDnXf
+NfetalWDFyRD3daMLkWNrpFtlQeWQ/ljjkE/YhVR9pXRuvvl6pBHitZ6iaOG
+VA1M/zTXq8MBl62VbaFqKPNFjPboF2r8yTXL1htq6MoQLUlfWAMWN1aNCAgt
+RylWenaFmzTg2WKeGLW25ehwdyg367cGZI9Wq7gEayA37W+l6RZaULtHX/aw
+Iwt5Nvx283HRgtxTzh11e1jIJ1zyl3KAFvw0qXqs/jILBZUBdsEJLWgzKRny
+uY+FomDmnactWvB9q5OCbZw2uublm/M1hAWD5XxuDOTpoMy/+21zDrEgfULl
+IbteB2VnnurZfoYF7c93BGj+1EF3e5+oTjxgwUWP1iNKHF2E9spnCCywIDDv
+3mBRoYt6k9vSdS5qw6HpznK7R3poQO+n8WiuNiyL2V56pFUP/WwWeF9aoQ3l
+Hm1+EPhLD83IGC+x+qINtQ5ZH12lr49Ebl9IWaejA+0YplpOmfrI4Mn6pAik
+A4WKDYJLIgwQZ3Oolvk7HVii8Hcd/1kDZPrvWM18rw4UC722XizPAEH7Yv5E
+MV2Yal7/xaTDALm/pcVe8dCFBcV552imhihqsO7g82FdKFNkXibcZ4gymas/
+LuXRg/NbWd+Pzxui1261K/fL6EGJlX237ixhI/mnr/hYK/Xg3C2XVmFrNnp6
+qurM+RQ9+KLb7caf82zUw7UZG8rSg/IqrBdjOWwkPvnCzf6xHvwuuzH3cgUb
+bfbFcnNf9eBPG8O2xS9stKj3/NY2Uh8uG7spwZQhkFaAFT/XXh96+9zn9ikR
+aH3as2B5H3343upP7GlNAt2af6LbdFwf6mTe9ww1JZBNU3mZ6Xt9KLpmDXOv
+J4FOhJfUikYbQJ6OOFnB8wQqzmLrBZ02gI/pQQm3LxGovb34LPemAUx+bx7P
+zKD2A/fcI2oNoJwqWv+okEC1jKJPn5YZQu8PHjNhLwg0bqsDzAwNIe9gzGPa
+awItO1hwO9XGEDZ6/LY510ignd15IQ5hhjDC/+U7iw4C0R5kj9+vNIQzk6uP
+GQ0TyPjH8g1ibw1hefxfy6ExAvkty3oU9MMQZh/P+5UwRcUXd+vwMjobZh9r
+8gxdIJCre4ZA/BY2LNwsHdkvQaKDiUqhnyPYkH7OYGuNFIluP71eZ5bMht63
+l289KUuiieXXUkZK2PBgRFhOtRKJ6g+toenxElDoeaovQ5dEyxUjpovECGgX
+J2v3S59EhyuvfdGVIaD/3zEPLptEOv8GS3RZBDybPvVSwYREsbekrhURBDwY
+LZZQZEaizlUr4nUtCOi20sVCy4JEyQnJHrouBBQ8P76ux5pE3Zol1kWeBKwL
+/ySpvopE5q87WLoBFNeInXO1JdGAKGtOJ4KA3NyR+P2OJHI8V5Opc5WAHRMF
+VzrWkSiT+JlUmEXAT4zipHhXEs28ldmnc5eAiXL+pUx3EuXJBNnqIAKGlRw5
+wPQg0eKj0/qFtQR09JoPjfckkeemh7I67wjYW+qyvnMTiYSu8Q1o/yDgeXGh
+4vU+JPK31H1bMErAXYO/ju33JVH5J7en2r+p9fgrZhI2k4h+7FB2AS8JhyJd
+ViX5kShY5fYZbXESLip6nDrkT6JKXBtZIEPCxlSVBd8tJJIJHPfXViahiMGd
+asMAElXnAFKbJKFC77b53K0kUnIIVSiwIKF6/AR2DiTRgf4Ufm07Eo6HCMZ3
+U9yYXD6S70JC76U8u0K3kUhd90sbaxMJBTSncr5SfLhBEOUHkLDM9bbn6iAS
+vdtlUMDaScLaO5GFORTr0j1S8yOo/R6frflF8fH7Rw+zYkj4NrXsHRFMoi7X
+nG35iSRcygz6vZVizkTDWtZ5Eraa1/idoPjUxUmT/KskpPXd17lOcY+xogor
+m4TPTt85nk2xRbuNSP5dEh5dPpaSSfGF6J2/tMpJOHBk64EzFA/JX+jKQ9T8
+g1e9dlO86umTKq06Em5Z9yVgFcVXfL/dzXtHwtxmVqkIxePzIpe0PpFwMEt5
+XxUVr1Mm8V/eDxLm31Z6uY/iW8Bru9YYCYvkDeqkKf7d/Z9b3m8SXpGSKCqk
+6uF6PN9Ci48DvQr1ko0oLlB/o54nzoFK24oSH1D15KmZoWnJcuCto3616hR7
+hSjP5Cpz4KBl455TlB4lwg5fNbU5UN+LvPmD0muLc/oDTUsOnE9eyzxM6Vk+
+XHkt144Dayzmix9SetPP9sZrruPAuRWX1vVQfuC+MfLU3MqBCya2FiqUXw5s
+S/KJ3MmBM43sLA7lJ53ZLv+aCA6slprgsaL8lqZ8PDQ4kQPf5bxdRnqRaOfu
+loO5dzjw4U63ofwNJFLl1YiZLuPA5z8UrcIpf7elRcfZczlQw6EkTM+NRLBS
++dSPFooT296dos6HnPju65ozHNhSGPGk24nyTya+GfmPA1/PPpoMoM5THEcm
+p0bECAasOt/TaU+iEe9nd4MVjWCP8Xu7EhsSvSwQ5eZCI7iiv/7zP0sShTvk
+dWueNoJjL7eUmBmQSKPrT29kmhEsfcmottYj0YfdLoM1GUYw0eMhDeiQyC59
+6ldwiRG8StdK19MkkUKvDX9emxH0m1T6Vk71m1dxXzW1VI0h/69NdwrESKT8
+XD5M65ExPBWxezi2h0Ahy1TdViFj2D7atPL6VwLdi2SZba4zhs1HhbeWfCKQ
+laEp/4XPxlD49GxYQzuBfG5uuL4gaAJnR99Xv6onUHpcSsN7TxM44dm34fsD
+qr86COjH/zaB/+5a3WPHEGiueWzkq6UZ/Pvta6OPOIGePajd7nh5BXS4caTd
+xN0Q/a646BaqaQW9mt/6vtmuj5alBhibJFtD+eWj/L8f66INPLK/EvZA+Cvi
+3OwFQx20qX7/sTVlq+AzpmpQcgELNR99K7Ljuw3sM16WxfXTQvGrCut69Ozg
+0X2GaaXymmjU7d/YlnB7uJKsOy35Wx01OHtKG193gGKdC64K/Oqoz0Nrd9A3
+R1ggHBawKLkcHVg9WzUstRrec9vlkWKjhiqSHWKjrJwhoT3EE5Osiiy66BF+
+sWvg3OX+g88yVKh/852B14vXwvMdYVtO+Csj56S5qe6Ha6EXk22p562MQuaU
+krSerIU6/YGD7zYoo5vdW+88qFoLCYH0J6zVykjy3vDk6861cMXec5L9Rsro
+l/2/hCk+F3j/wWjbM1FlVBatle+yyQXuMEp78biciVqGnFZc3OwCK2KLwaUH
+TDTiF9bQudUFWu75cyDqLhNp2pWMbdvlAj/u6uK1ymKiS5IW5ofjXKBP4NTZ
+j2eZ6GChS13eHRfokn/gaVgwE6Up7fUdKXGBhyXWOAcHMFHJuQs/yXIX+Mo8
+PCHAl4kGIzuknmMXOLZ5/5SvGxP52Gz1aW1zgRame++FrGSiqEfxI/IfXaBB
+e/6h3eZMdEE775h/twtcbtw/GGnERPX04azBIRf4123bw9M6TNQXJ2HCHneB
+HGcZ8asaTMQ3zX59YNoFhu1/xF+gwkTK2929n85R+Yocv1GhwET/+14D/u97
+DfR/StZwhg==
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-3, 10000],
+ Rational[3, 10000]}}, {{-60, 60}, {-0.0003, 0.0003}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Im", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3."}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "8"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"0", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw12nk0Vd/7OHAiU+Z55pqne81c492myzVEZGzUgCZ6Z2qgEhWShBChTEmo
+FFLcZxsilaFSCplShkwZiiLf+1nr9/vnnPWs9Zx9znn2Xuc8r7U2YV+I+8FN
+TExMIYzD/85m/WE/NjZccK53YYhT3iL9U92dOdpfF3ySWWAyqWiRHpHVuZj2
+ywW/Ks888LZskf7QU21NdcYFb1urOrS/dpGu1N3P7dbngo+HdI7e716kc7+w
+Jt1+4oJ3u5g7dbMs0Qcr+f9DhxjjpX6SCz+6RI+5UP7r/Dtn/GbtQlex/TI9
+QezI6+IrTjjvXE2+vudvumyLWmGonyPmskF2uvGr9HWlIBFLbRoeUFLxLWde
+o+eFkraVT9ljhWwiqpfboHd8XrzW/JyKdZObRKRtmUF6i0hUQQ0V50uGt0o5
+M8NRc6OgmEdUzHHviyBhOzNw559ElLtUXJO+nmZ+gBmcD6zPP0ulYrNPQh21
+cczwapbNveoQFYPf1YHmVmZoZZEUviNGxcaSzIO+rpuATkRZZ0PtcHPuU9fu
+UBYYOvg6IjzYDq9tgCI5mgWY8rw8jx6yw0fqw/pLLrGANe8xQb89dti+S1zg
+5k0WaJ29mWToZIddYuI93wILdDxYPD+tYIev17n5Z/KwwoDu3UN+72zxNdc/
+LuWVrLBqyGtmpGuLFwLz4x5wsMHJw8UNsVq2+OrKtXF7ITZYyTNHb1VtcfJj
+H9YJGTb4xX7E7qisLc6o+pBA0WeDhc9trgVbbHFZiG2O8242+BEdc4D3uw2+
+Zd9S8a2aDb68WLr6PdsGL33xcXY+wg6Nnv3DGaw2WLaw/lbPPAesFGctnN2w
+xuYxFO+qfxxA+uXJGvjHGjvRlFtzuDkhO6Nb1XjeGmt4hf66rsYJJ3pfBPf2
+W+Ovrc2SPP6coOT7cE3ssTXWr5Q479jDCZd2XhS/6W+NT6Y37KO2cIHTfm23
+HLoVJhVM6T3q4IbhByub++qscLOpbMSbL9wQttb4XLzaCtceuXt4eYYbbt3Y
+rppx3wqnnSksOc7LA7Ntp/6lZFlhDlqBKq8bD1zXaim/dMIKB5HOXlz8wAO9
+yz6cJ1SscCZ1/vjgNC/sj7/Q5JCMcGIFv/WdYn542V99OD8B4W0H/7iefMAP
+JO1JwV9xCNuvDZJ96vjhzwfX/YVnEP40WdWq18EPKYoyrP+CEF74N8iyfZkf
+6um1do9tEKb96G91sxcAtanP180WKDhPR13j4oIALKag0YkJCv5QY9h4dV0A
+6MZ39TKGKPhLxWLFbQ5B2H4x7P38Gwrms/xa/01WEM7L84mU3KVg/+ctirNO
+gvDJyzaLfxcFT0d1L7OUCkJCc2XetzZL/FSw2eVukBA03fHnedlgiXVGH5Ur
+RQjB2jnhqLLHlhi/rfR+GCsEweanfUPyLXHak96vC3lC4F5tJ7waYYldZLSk
+VD8KgeTdgQRuFUss5PWwere9MJQncoXrx1lgxwtf9pYaisC3oIavIqctsHiO
+wpiEnQjI2h93XwmxwH4+SSm3totACstH7YYdFthJnu3Nh1ARCI+6M0XVt8Bf
+3/aXST4WActg8l6/UXMsSFLO2mwoCt3bApxikDnemki9q2ovBq1qupsEjM2x
+/evt2U3eYvB84+/T20RzzNO4WBgSJAYlFddVsKQ5vjwZfZApUQyiOBuYN5bM
+sFzF+4yNDjFQaxR6GnXPDDvs3r3pqq84xOg0Kp0UNMOdP4cuPTonARHsSf3s
+nGZ4d2BjZ2uqBBwd9ErN3DDFpn25Ez+LJcAnaXqjZtoU77pNlEh8IwGkCbH+
+5VZTfMZ0m1arpCT05QdfDz1jigWuvZ+58lwS9Pik/wWPmWCC0jMlDz5pyJDR
+f6/fZ4LLKuol7FSlYVXTsXSlywRX/ihy9KJIA3Y46X7huQmmq5PNe0OkwfVC
+T8mNVBPcRbsS7ftOGo4uJ7nWIxMsyzvHm5orA8X967c5c8m4S86kIHarHHBM
+CUd0ppIxZ5y149vDcnB0RdMpLZ6Mr7RF8lIvy4GBiN+ydBgZ70y6w1uC5aBp
+aw1Nx4mMS+fesRZJysNgY/CC16oxFou8H6uZJg/ipUM2RZ7G+PTvA2bz6QSQ
+bXm1nuVkjG9EldVfKiaA0nB17VUrYxw9f03JsIYAOuJJmpFEYyzRz+/f10sA
++3iykONmYzxQxvTYSVoBIoKuj849McJcJYf2L91TgA9qNjFmwkZ4mF1o35vP
+itBnSzLT4TLC1dJym5tmFGF4r8SyEpMRrhclUD4yK8F01lwQ77QhdpniPbFD
+QwlYOW+5jTQb4sc5a6+HopTAYHJJ7nKoIXY1SFbhUlOG1Hsl9HfvDHAMh2FV
+b5YKbKffw2HtBtgi+5tKzAMVEH1f3iSKDfD85hhpl1YVyFmravWrMMCPHzzK
+d1lSgSJX6By9bIDfK22ClW2qULvcO7hgboA1P+7abSysBgNWnBuCd/VxyRHn
+9DM16pDnxc1cnauPXdXPXeN4pw7+R/hYvNP18T8nUcGmGXX4ni7CnhOjj42P
+7VCsV9aAuXECn+JOfXyty33kY6YGbEo2ldMX0MftCuMK63GaoNp3hOJxRg/P
+thVqL1wkgo/K8z0a/+nh/jNu9bVlRIg/wXWeOVAP+63fzm/sIsIE1z38wF0P
+8/punSmSJEGZ2Xcrbg09rA6p6c8fk4CUu9f2xSddfNTv9mLDojbsnnxw4Fan
+Lmb+0t1zhVcHrhluxIW26OLmxQ20V1EH5jtyXxAe6mI5MsU2xkUHHv3ro569
+rIsFy6yPVBbqgMFeT5qxESPWk/q4xUcXDpQXHeLV0sX8H3Ky94Towo2VxYRv
+BF3c6fDXcOSSLvxKSX2VxqOLmZKeFITU6EJtY5fT/JgOzsoT9X8hpgemio5b
+76Xp4Llt5z7VftWD82+iS4xGtbF8qq7ypiID8PNyjqR0aeMTtn0zC2AA+sOS
+Dg712rjAvaNffMAAvi/WTvpmaGMBg4T+zSKG4CK1oBXtqI1Fwy2OHE8wBMnD
+AY+bq0jYj+fyq4koI3jC7ordYolYX6to48R1MiRfl7nue5yI439fnxp8QoZA
+qWn/fbuIuE/3dt3VT2SQ1E5gCTMm4qzfgnnV8iYQ49VMzfyhhX8p3A82eWIC
+W4uNO754aGG6hX/A/glTmLSW7zuspIlx6jN278sWkGd2efwLnyaelQ86fqrW
+ArYbzC65/dXAz+V6eZbGLQAr1/MZv9PAIrK7e37SLCGLw8eO5bwG1nhlwcEj
+SAFq57WHOf3qeDuJct7OF0GB78alN6lq2Dx4JIBP3Bp83APSKWfVcHz6M0tN
+Q2vgdeq4U3VIDZ8Wnm466G4Np8xz6rOQGpY5VBKjd9Ua3OSMFw7MqmJZ4oVU
+TlYb+DcWvGudpopNtA7+OL5sAzuOD+qTmFXw18MLj9M+24FX3AwX84wyPpi6
+wVL2yw7cstZG3n9SxpdqWQJuCVHBFkumnHqojHkrtEw4XKhA4veebtmjjLtI
+zzNyGqigphTQnOmkjFfaiHF6n6mMJig8+7CxMu6TidBIWKKC+N40B34+ZRxk
+8pY1QMMeNj3sKtpBV8KD7u87jqbaw1rz4BlSmRJePuE1nnLfHn73zrgzZyjh
+sdcD7R4t9jC9sYX57jElzJ7R71W0ZA8fXB12LUgrYfHbl6UWXR2ge7+3wQsO
+JawoMHws5aADvIoM2JK1pIh7BK8eKD3tAPT8uDqLN4q4sqG9yrDQAUrnsEjC
+GUVcZZU8bjPjAAUs3dM7AhXxcRFipsE/B8gVG2omeShipp32f0/z0iCVsv5f
+j4Yidr7HNPJLiwZJHty0u6KKGD3aFqtoRoNLgVLypzcp4v7ZNLl0BxqcuWbS
+KdengBu6dtro+NMgotCheOGFAl5LEjnncZQGx2u9o148UsC5Y8cJZRE0OPw6
+wCMrVwHL91Tb6JynwYGhcI0jCQpY7IKf9Gg8DXYvxjFbhitgQX9d5voUGviy
+p3/i91fANNv0Q88yabBdqvDBV2cFXHHtyvznXBps1a66VENWwAt5c15ihTRw
+sGnclaCkgGPDLlwMuUsDG+9ug538CjisdiN5qIwGlkeGtmivEXApE6HqQAUN
+yOdmR5knCDglLH3HWiUN9NLW63reE3Bu4VfVogc00LrLff0uEPC+SodvvoxY
+5blU0On7BKxSGXJDipFP6NKguGQSsPthhZDx+zSQ/moiKh9LwBzHBoael9JA
+9LfDzEIwActl2V3NLKIB/xaflhd+BDx4+LrXqXwacMkF5mRRCXiLZaPn3ps0
+YNWPOHFEj4B73rYNO6XSYIN6kWYpS8BPC5MSzRJp8McvXV6Ai4BX8zoUtWNo
+sBRc+PvrsjzW+vzluUokDQLDRncLfJXHB6vcascZ9e87RWi17JbHRap0kU7G
+/Gw9t5d4tEEe3za3PtXnSYPGuPz0m2XymMnl8hMeGg0MEgf/tmbK4/Da16+C
+GPNdek1m/1KcPH5zqGNumrEekrNzdF33yGPmCCeVCB4aMN/uy4pylseb3W9e
+O7vmAGHFEkxlJvLY9FFATc2UA+x4mNnJKiyP7+9Rnqe3OIBbkmpv2HU5vEEq
+7Q0PcQCjzOLiriNy2G1byR0rHweQKVAM06DK4V38e9g8kANM1coJDP+RxWeF
+mm5u53WAuK9iTk4HZPH50PlY8wJ7ODx7Q6LEUhav5XQW5160h22rQhNMErL4
+i7NM8/4ge5Dl479Y0yGDW/r0O3S07OGpKQcQjGWw80LBimsFFfLsLl2NEpDB
+nVtO8folUeGiG+vO3h/SeFI6fWD2MBXcA5hWk25L43Cjxsw3KlSYvr6it8Ip
+jcXfvW37dtMO5CcnSjoHJLHdl8Tetf9s4XJme/KZC+I46nkvd/AWa1A5f/Jj
+ma84tlYQFWIetYKWIFXZPh1x/Cy1S73mqRVsMr1YQR4Sw6DTZp8ZYAVRA+jN
+spkY3nq3N6ygBcEJwlPO48si+FPt2s4cCQoIcAVuy38jgu2I0gU+nZbwcEHk
+ZmehCJ4KJPFDrCXMNIeqEd1FsEXsuFrmvAUEBWjbT1UK46bOhqWed+aw+35J
+3IEgITzsxfG487kprKd5vkmjCDH6uVv/RUeZwq0oVuFmUSEsPJJb9sfCFD67
+7CskvBDEEfwHzPY3m8D2eZmmQYIg/sg07vq7lwyLn95w8q4KYBHuhFjlfDKk
+Np7ZZtEtgMtmmwYVA8nQlfp5OOesAKY7UE5dWzUGR8MbGz79/PjE/Lc9AmrG
+MCljax9fxY9XVARePlw2gni2xeTaBH6838HytmSLEbzodZMVJfPjcJEwBdp+
+Izi/JH66RJ0PvxPr05stM4QjZ9mXs29x4+YnAh78uw0gSUT5xX43bvyse5ea
+sakBlJdb39Bi5cbRy79iVkUNYLYv2pB+ZAseEA796PhOH04YL4WPmHLhHnJk
+/7KrPqR1ClDLZjlxbE5Fe6eOPjw5qC0aWsCJx/LbpIwF9eFX2uEaVi5G3JVb
+9+CjHpyaH/6l+pkd+ziLHRYJ0IPsy/9a55PYMSVrL6+lkx48k5XOrEPsWOCG
+SdWkjh6sOXsbO5Wy4e6ugz3N67pw/l5HZHDkZnzK5+q4T64uXN73bOWJCAv+
+Y9bkVLegA6WrvS+j2zfhSTdn2u4hHXiZspxFjd6EY7NYPgS/0QEu0DH5NMaM
+jw42aXfc1YFkqbun/j5mwtk5Q9x++3XgQVULrSWQCaPo3NNGHjrQTRuVuCrF
+hM+mzYqH2eiA4rxpmAXbBlxwjObjVdYBjXuqy7FFa5DBrCNP/qwNR3v33RDh
+XoP0liTJJro2VG7OM7wb+hdq+Y5JrBVpg+4+4YhX1n9g5y3PushQbTiR4iq6
+s2wVnCQsKdU7tOEJPbFmRmAV3CMy07JttYEsxfybf+Q3cB2Xmtgurg2naeaZ
+BQ6/Qf73d0UVFm2oj4w0Nnj4C0wICcWZsySg9MxEep9bhoO3Lh3Z3kYC6tW+
+lVyZRYjuzeRnO0+C8hte34nxC1AucoX7bwgJhPLevW9Y+AlP34kWRu8lwXDl
+q8ovbfPAXG3kqmJDAvta6q1jevMgOqPWSzMkwY5zF4X+mswBG9f5wWVVEvy6
+Hd5uOjYN3meOt47ykqDl0bEiv7of0MOTG0JgIcH1poPnTidPwRXsrz72mwha
+Y56Gz8gToDHs2ftzlAirSy78fTzjEBks+cP0MxFaN1N/rI5+g/Pm97eydhPB
+X9XojsnVrxCY/6xeGIhAIpOifPeNQtudYEu/WiKsOah4nzIegVZD/3/SD4nQ
+7iurd5N7GNxcKz123mPc74OW5InmL6BEPHlbrJAIbb+kux8d64dHpKltW3OJ
+sE+c59JPsc/QfMxseCOTMZ7Juplu00fwkH3UqZlGhMwdMz+PH+2Bmerb998m
+E0Ev+svdh6Lv4N/Af/w/E4mQZZHzfDimC7o0bt9JuEyEzvNnVPd+fAXOlfW8
+OXFEYGnZkTak0Qr+tiGCyheIQGY339h9rhFG6yNPqJ4nQn86+WP93ToI66rc
+uHOWCFSp1Yrnbg/h+jBbRno0EfCl76JT33MgOzNJeiOK8T5AEjacukDJoAZe
+HGHEvwoSb1wLuks5pPi5w4yRz/+addFhSzXF2oPyj4cxXomtrZTjPjrlT5uA
+hs85IsgONd4pHmimWM+NhkjGMPyQM2KoEv+SUqq/Z3V7LBEe+zC/KtHvoBRv
+df7LfokIkMj/IG2um5J6JL5aP4EISofkVz3s3lMCJTlDPyURIdFex0Y45wNF
+WLAv4VcKEeaU0dWe+V5KBpbakXyDCNtZ3XrTqX2UvFJmj9vZRHg2uofgeWuA
+kp/YPaF1mwhyjSFHRBYGKY4+A3kGJURYprdtvOocodQUkctrHxNBrbJL6f7q
+KOV4VCDF4DkR/HJ7aVeUxihPbBMPk5oZ9TkznuZ0+jvFlXTtVF4PERYOzz3V
+LB6nNKX7/RQZJIKy3+8vW7onKKa1Y2q8E4znJbOrvVH+QXkdcSUybp0IDap8
+LuVu05SnX+ROs3KSYF5U7ETSmRlKkb+PEKcICTyXVeqd385Rzu3a5lNEIgG/
+r2JpgOUChZu656FNEAlefv76IW54gXIw07bq4CkSxPgVsRReWKSc9UJu2ldI
+sLBDec9Q6xLlJGU8Dz9k+GzgW9J60DLFjGOfUFILCfbtKnkmteUXJcjyxH22
+zyR4v1tV1Mf1N+Wve/oxAVZtSBoat4n4+Zuy3Uqnq1hSG2z3lv6XnrZCGY1z
+bv6py/he+Kt3dPeuUvJo24Lr9mlDxgHNONreNUr0oc+ajh3asPXbj0eBm9Yp
++8Q/SHyZ1Aa2gPKhi0XrFC8tpaRcFh2IDCSaNU38o1Rv2hSrq6ADWtVip3Kf
+MiFKSKuvzwEdiF/+fa2ckxk1WW/+sRSuA2OGn0qe+zEjv4s8hzbF60BuTVbP
+5zVmdCsmcVtEhQ7wPpXQEbViQYP//ZCYXdeBwyurVOVUFpS+NKdlKaQLreS+
+XQZfWVDCTVl2bnVdOFuXfcX9Iiv6LyxlUNVLF+aeSY0nt29Gk3J8FSkMLzr/
+/bueK8mGDkYNHNro0oVSswHhiiNs6Bq/1NLqpC7srb9l/ZqHHSVf/lZzU04P
+uhtk8tjdORDpWVZQ7XU90Pq3/kS0kAO1s3lP1z7Qg3jLwdfKSxyIW653w71T
+D6wgb9UmgxN5IcWte3n0oQrLeZ7v40JXZFjrt6Qx/m/NBO7VfTxIdvePSCu6
+AXBbWo/mVvKgvN/31HjGDCDu6b6n1n940AXWwuiTXIYQUVF4IOk6LzqruLFH
+39cQfDKVG+QwH3Luk4va9c8QrlULGxfyCqAx+pD9+SBjeLOgVBBuIIAUAvLa
+32UZA4eOIY+DnwCi3txa9aHdGM6XeX6dLhZASktegnNEMpzIz7hmZCGIfrhN
+7o/6RwbPBPGJ9iNCqOCOf7l0oymktqp53LouhPSbVeNT1kyhk8WEHlwrhC6N
+8nE/IZsB9axvuhCLMJKuyBFme2wG5NBstCtbGJk0CLRXPTAHqV3SN+dfiqAP
+f8PTM9osYURH3lFMRRxxso54fK6wgoCUDTMRV3F04iSTt0OvFUzNDRKFToqj
+lG8xPX1M1rBQmSvA90ocGZZbpfhst4ZNRKnPbMESSHf0oJf+mjUoqYsG/aqW
+RFMXRYs+OdpCafyy79KgJHp2ReyMcpgtaE30OC2wS6GcQRM+lGsLBnfTtGd9
+pVAvHHB/MWsLdsoCv7+tSyGt7kHpXcl2EEDgvvTBTgbZn5QN531GhanzPyLf
+B8sgDvuEd7pfqBA8/OrQ20wZpGPQVvN8gwoR+QkuHZMyaGeGxJ4pa3u4LMMu
+8uKqLFLalWzC3WgP3NHf2ZprZBF5mrq9ftAeUgZerOAhWdR+8dfdor/2kJUT
+N1CvK4f8pOSLOfUZXpTYVPTkgxxSLjxDvZPpAFqnRm5U/ZND8rs8PJIrHcDn
+6LDNJyF55JAmT0hh9PMDr8Hwo7k8sqb2RLQwfJl35gHJc5s8Au5/H+eZaLBX
+M1+156A8Im8l3lcWosFY4lmJd8nySKTwr0a+AQ1KTIMFtxXKI9H/PJ8P2dAg
+aGrXlu5aeeR6ZE+ivDsNNLJdWF3fyKM8xRn9vXtoME2zWO8YlkcuXOJZuUdo
+ULmq9ct5mXH9MOrvZfjy+D3pudecBBQ//+0gL8NHer7cE46yBNT9cOsYYvhp
+mWNtuF2PgKySeaghDF+dyLXhn6QSUC+9PO00w1/zulcoHDsIyMJE5fUVhs+O
+tb4LVg0hoK4DzBmFDL9N+UnmUWMJqFaL93MTw3dBc/4dBzMJaIHZ7vEUw3/f
+Yu+txd0noOiq+Chphg/3if/ULAICSnrk1PI/Pw6Xk3c0vyeg07GSbv/z5W6r
+84mj4wSkIswj+Y+R3/+hrY55jYDqO+RdDzF86nOYb1KeXwGd3h7tMsHw68d/
+XuJISQF96SkuiGb4dntanv0esgLK7cvi1GL4963q94izzgoo6N5w0K//+bie
+WJK7VwEFCmV0DzH8/MYt/EN9mAJ62up98gfD147f6lkH4hWQDge5QTqBBm2n
+WA3+3lJA068K5CIZPrfldd4v+UgBZXFZWv1j1LepIC3V5IUCsrRtHa1m+BIZ
+9zf6fFZAYf0TI3cYvmx4rfAzckYBCWvKGrcyfPl06ZFrjYgici/Fli8ZnjRK
+WD37QV0RlYUNbK8k0uCxjFXlkoUievJdP+6LLGM+qd3c+gGKyDyPUqu24QCF
+WbPtD2oUUftIw+e5WgeQJxqtdr5SRNkvzpfkFDHWW2O02uygIuo+51/4JMUB
+sqa4L2uxKyGd2KPZKNABks01be95KyFxAUsBK4YfTw8H0gtWlNDNyT8aPfb2
+sBL2YKaRWxmFD+TJ/0e0h3DO39Ij8sro34DXWKOgPRzXu3RGjqaMrpUvtyQP
+UCEgroh866YyYhUnJlodo8I2tZGqG6YqqOu9uq/6JTvwer2yzc9FBf257fa7
++rAd+AXz/5Tdq4J8Sp5y6LjawYEnFO3Siyoo3IMYvSxmBxEo7/6zbhVU+tJG
+hvmeLWT77CgaClBFQtqD/168soGx+A831NPUkGlI4NAVMWuY0JwxmC1WQ4PE
+DymC61Yw08naU/VUDfVbBgc/Yfjyl7CBoPmgGqqP1A5xrrQCjjupyVvV1VFn
+tuTvQaoVEOtcL4eCOtJ2hYNMZxFETLafbPihgSLHR7fNcFtCngytX4xJE51W
+2/C7O2ABbdteWpwQ1kQ5sR/Ha8stQPxZ6yZVC020wyvu0oCLBTxLbE5KSdZE
+s2fRmm66OfzTbLi9X1cLSTdKrUzomIHKXnMWup0W2mY5Kbe22Qxc058fFPfT
+QrN7DOr39ZvC7bU6jY4LWuhO89EvapdNwbqj5olRjxYiGyp3XR01gYvBD19y
+RhKRVvyrYN9SMlQWaGseuEJE/Mq1c/9dIMPHj5VX6flE1MXH2fVxJxlUKBXu
+oS+J6JTkr7xYQTK85CsbGJAgIbjkt2lHjDFwPyqcf1BPQk0n/qMmHjWCV6ec
+uDWZdRDpbqS+argBKEiFLpdx6aC5CBJ3ra8BnK7PHtQQ1kF83LfLTlsagPrG
+5EMNVR20j3XlSg6HAcTHxXtquOig4MkRW3K+Pthfe5GnfpMRcy1dv/BBD1qK
+KLpqurroVNIrKNyvC9LUQMlSU11E57g/Pe6iC2HjySxqtrookPK2xIOsC4oa
+gx9UvXXRkdfeh27z6MKFB1GnVaN10fTU8f7Nz3TA6llds0q7LtKcNN7NaE2A
+3qXvpeyvh1jJjzZbfiNC2P7LfuGH9VDKoZePFBn9pPrvvt0vQvUQf3QaweYO
+EdJlLwQevKSHBD417yXuJsLhY90ni+/roSeDQxoFfVoguuVYjvIvPaRdnD1a
+8kUTgqklw8pX9JGF/MVQBU4NUOpbHQtP10db/C/7B8yow+djLpMvcvXRufFj
+FR/fqoPtjaWfBx/qo4s3LH6a5qiD5Jg1S8kHfaRkFurDoaMOrTFDyiryBohJ
+uKf7sL8ayDaIH1GpNkALP/2dxUdUIEBCfpsVGKD/7jtSvF6qQEW4qvHOdgNU
+qGz3qP6BCpiTjFhSvxggXo/JWuZzKuCX75GzvtkQtdSps+2XU4EbMcmve7wM
+0YXlq7xmgcrATWXVil0xRPJKnKVaAkqwvWCLYN4mI5SwFNowsqYIOf8EV55y
+GyGWTd0r1ROKoFFLaJmVN0J3XNLGnmFFcFCj7PSjGSGbbzkvtU8oQizX6STd
+bCNULucbcr1PAf50zk0PmRmj6b7vNpVAgIt6Q4kudsbIqm3ScuUBAfgzOtWe
+bzVGN98X7vO+TQCVXRUHMvyN0X+ES0nbYwjg/uPwgPNlY8QpTfSi2hKgjP37
+67p3xujRmz0aEx3y4IcGytIOkVH7GtE9ZFAOvhW+dmAOJaNNM3HMrc1ycJz9
++ffgKDIaIL4otbwnB5c6byo4XiOjogP3fqeHyUHVTu9spmoyuqEvu7uLWw64
+Tr1LOMZkguLuXORwspGF549eBtlnmiCv9fsBC63S8OnLkYlzd0wQV82hIqNK
+aVji5At6et8EaaodtMm5IQ2kfZ6B6tgEGUkvNbYckIYCwdGDWyZNkOGncyWp
+rNKQGPp3X5epKXrsuL1hiiYFfoakXd6Dpmg5Jq5EbUoCIv3fDlybMEVfh1au
+C32QgPSrYTtfLpiiqZLzt8SxBHR+e7bDhN0MuRrz+x/PkADrDHs/KR0zlN1Z
+93ebrQRjPe/1HooxQ7T/pHTrisRh5WnatkBlcyT02oTCFikGPtOyCQskc4Sb
+jldLBIhBnVwZjiabo4r2gEaKpxicvoS1053M0QWfQa1mfTFY85jhafzPHDlc
+Vd9V9FMUmOaoryTp5khmR7VM3XFR4FD+Y93pZYFaSt+fiz4jAkE+F0/77rVA
+F9zGBKuOikD7Ff6qsUMW6GGBueqvXSKQuKBC+BtlgTgu+EeVIxHgxh4bqoUW
+qCxEL7qLTQT4d1Q8j5mzQBR6wqmBG8IgcX2vgWG8JQpedX5wiS4En2rELqdc
+t0THma4utTwSgoyBzs8/si3R3389TXzFQiCoZnGuoMIStbSYPH11RQi4QOIV
+33tLdOzyWfMeXyFYm363Z0qGgp6IjTxWXRGEYQe7K/mPKYh35/TgQQtB8GAS
++RkXgtBVVz5P43F+iIp03JIVhpDOUtRXxwF+KJo9p3z/FEKlVnc1Dr3lh6WB
+Kd+3sQjdPHmz7MVzfkivw00yWQhlRY9PrqXwQ8+Jo+k1GCG/ityTPhb84Pmt
+2XhCwAo9zfoEb035wPvVibNOT6zQj09XqA/nuUHe7tYSe50VsqlNP3hjmBum
+4MXhlgYr9I82Ih3fzQ1nq8W9LdqsUGjHddGMh9xQcpuurd1nhYbM9a+4/8cN
+SxFcI4JM1mhImCcQLW+BVMUCmz4na/Qzn5ByhW0LdEa95Tj01Rp9yXex++vE
+CSP9PXOJE9aoePQCxhacsGT66WP5jDVqz7m7I1WbEyRWB4vmf1sjMXmLZ75C
+nHAgfBqd5LZB1qH7syL7OeDvMfZTlw1t0D7iuOjYMQ5Q22MxWXzZBpklXx9T
+zmGHWKt77aOatojl7WTiY2E2aLlpTZ/WsUWPRhd4PTnZgG2hv+qXoS3a198f
+vLG+GRILeG9xIVsUaGKRGzy+GVJYwoL1ttuiXpOwx9XPNkPeC0uhC1G2iDZw
+7vvgvs3wlNazk9BhizrrbrXtrWOF2W0bc3uC7ZDvUl3g3mgWeFeRhIRC7RAt
++mdiVhgLVHNKXm+NtGN47vi9j0dYIKrRQI8YY4d0sw81HfBjAS7dw2F/0uwQ
+Cr36ps2YBZT5P6yk19mhsSL9rKLFTbCzs4z5FSsVHa7Y+Sc9ZBO8dvQSMsih
+olvcCkXWkczw3VPl2IERe+TZ7JZ1jrxBD6P9bv4hQEMeTK3pj2zX6E/jqecj
+zB2Rl+yc7+vmVbppH2/orvNOiHPsRsPDoN90kvCnfTmVzqj0627P0ehluuPl
+P0vDj52R9xA7ZTB8mR7wR/qySp0zCkjqujd4bJmeP+x//1GzM5Kt0F6e3rVM
+56/4sdj2yRnV+Yhuplgu03/abcQtbXJB9lnfFWo2luhPIlXuuni7IOsR76bP
+F5fo3VMOJmk7XdCW1ZHTe84u0ad3HXn9yd8FndZl2zoZsURXtn04t/+oC+pV
+4idzBi3RM/hNyadjXFD+n8NtpxyX6CfvubSX3HdBT8vIllL8S/R06eM7ph+6
+IMftyeYjHEv0h9dSZ3RrXNCfiEsq95mX6JPhvQIN2AVN7Fx/5Li4SPez9vd7
+/8EFfWmb9376cZEeUR07Ld7vgqrZ9A/kdi3SU9VKzu4edkFr61l2l14u0l/x
+/iiYnHJBs2s4av+zRfr3GB5D7XkX9LGOucP78SJ907J2W9iyC5JI3z/uWr5I
+lw1y9332xwU1SGm1OxUv0v/f/jb0//e3/R+fTfKC
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-1, 1250], 0}}, {{-60, 60}, {-0.0008, 0}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Im", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "6."}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "6"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"0", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw1mnk0VV/Yx83zPM9T7nXN83y5+5oyNkgUkaTI1EAqUimkkspQUmkyNCkN
+iuI+G6kImcpUhkJmMvMzvOdd633/uXd91zl7n+d8v3uf83nWOsoBB933sTAx
+MVUSP//7b9kVNbq+7oafCFi4/bs6w2gvvT/p9J8bVnGfvap/Y4YRndUwkz7v
+htdOSHZE3ZlhFG2nrKiNu+EynYhTbE9mGKqNXXxbOt0wWfuKh2PVDIOv2kbn
+3hs3XLyeOL53fobR/VzoMDrghlWHl5SW/GYZ8WefzZ9pdsU128orRC3mGBck
+Q7/mXXLB0SqTl55sXGAofKQ8jPR2xlqeXz9Jxy4xVlWDxa11nXDs+Mu8e3P/
+MXIidbY+G9mId7ZdOj4kvs6o75i5UvXBAf86+LWOm84McrziJx+8dcBCPY0N
+ok7MEEY1CY5/6YCl8PtzG7YyA9/d44hW4IBHOElyHnuYwTVwdep9mgN+uaz5
+YDmeGWonONxfHXDAviWmU3s+MsMnVhmx+5IO2Ew54EilGwswtFHWqUh7fH3h
+h6hmFCv07PsafTTCHj9muhieG8cKTDme28MO2OPJT5aNqudZwUYgXMR7tz0+
+YsRSb5HNCp8mbqYYu9hjstRIWBlmhfoXM2fGVOxxhJPjUzlBNvipX3DAu9kO
+G5ybdkx6yQZLxgKWJvp2+BjF+FWNAAccD8krP6dlh/3JOjVx0hywmENFTWp2
+uDO8otFclQPmOUPtwxTsMOVAU1ONOQdMd3ze/IDXDr+buX7KeR8HjMbFBwoM
+2uLPqqfLv5dzwK/q2cuD2bZ45UXo8OajnFCxvav3OpstPmv8tLtznQsW87Km
+T63b4G37egaH+blBZ347W9CyDZY+UCrALscN2dcb1UynbLCw38X53WbccKSt
+OqKtywafs0n58PgwN6juLFqRfG2DM/1VeLMHuSFpV6LUzT02uNlcl8W7kwdc
+9upuucWgY80Vi+9843zQ+2KRvbOUjj+OcTYcW+WDqJWKD1LFdOxjZKn4j58f
+bmd6qF1/SscfrG4LCuryw8TnE2tXs+i4yfei4PJhfrim9fFZ0hE6Tvzjqnh7
+mR/a5nZwHyHTMW1gZDxNUhDCbFSgSJmOmWNo7mPqgsB0ZTRqUo6OjyyEhHpS
+BYFCOdUbJkrHZ837BX33CEKM98N3QUx0nOUkcMTkmSDIw/g+306EuUo5na6r
+CMHe5LOVjqkIH2zf+TqgUgi+dBWH3L2AcKN8k8PJOiHQ0R0WmU8gjn/5ZHv3
+hxAsf9+892Eswt02MU+YR4Xg6gZ5trVghANlY+PNxYShjPHO/rUtwheDBl3P
+BAsDZaTjmuU0DZMvxMV+khKBmavo99AQDf/UPapPVhUBhmmBwfUeGj7zx2Pl
+qq4IeCRGtUzV0fCWcB++ZAcROKMkKJ5fQMOiLSJlq1Ei0O5plyXkS8M9DxMH
+xFpF4ELV85yBz9bY02Q2MvCWKFTe38P/pdwa37qrnej3WBRWToudfPLaGjsd
+jRQNficKEdSYnQfvWuNj3mvsT1pEwb3YXmwp2hovKNsPjPKJgUzBzwt8ZGt8
+veEiNe6sGDy7yHPUMMEK3210d02NEYeB4PI/4jFWOLr1yZ3HF8VBYeMh98WD
+VngqLeBjW7Y4XGX9oVvuY4VvDNXxhn8Qh6Mn7484GFrhpqpDA6dWxcE6wszf
++zcVH5JeeumTKAGNW/e7xCMqFoj0P/A3VxI+UfRZhE2p+ET/Zu1dbyXhw/p/
+Jfe0qXjq57rUwGdJyC+8RsYyVBz8+vCQ4agknOQuZ16ftcRzu/B/XwykgFIh
+WnLysSXeIZAQNVEtBfF6FarHRSwxZ/GfROVVaYjmTOni5LbETvZb2vyEZSCs
+2zPtxroFzhXHvW9IMrAjZWz97ZgF7v72pPLpJhnQGZLsmvtkgd1k9gfV3JeB
+zrsR1yJjLbDsJ5lLI66yYCAotxbRb44ntdzMeEvk4Lq8YYthpzkmYZmPxU1y
+sKTp/Gjxmzm2Ca3ZnTAqB9jxuPvZD+ZYVyuxO1VRHjafbc3PTDPHc6ZK1f4X
+5CFsLmVzGTLHj0txl1mgAuR1rd7jvmOGHaWRaaScEnCNiEU3pJnhPOU1nlZN
+JQhb1HRJTzbDoby0/1wslcBI3HtOLsoMb8ZTk/HeSlC56a2TnosZ7r8QHsub
+rQTdFRHTnkumeGfTpH2FvDJIPeqxzd1uiv949Q4ZmauAwsfa1SwXU1zeFFF6
+3kUFVHuL312mm2Imm+KkBV8V0JNK0TymbYodq+lCuudUYGOymagzuykeD7rV
+yPZNBaKDr/2efGOCc/TZixPCNsB3im28pZgJHhi4Lv0Fq0KnnY6lHo8J3vLz
+WCOtTRV6/aXnVJlMcApPfM6vcVUYy5oMFhgzxhKZ9m0psiRg4769pa/KGLPO
+1W2qOk4Co+FZxfORxnhXvEF3jwUZ0h7nM5qbjfCqBNJP7FUDD8ZjHFVjhI18
+dV6kL6uBRMuzSglshO8kq2k0iFHg1sqrT96FRpj2aSDtixMFcjdDw+/zRnh4
+Ohp+FVPg3Vxb9zTVCJM6rCt6r6vDTzr3ukiBIRZmH3mqe1oTcjz5mIvvGOKF
+cNULiXc1YU+oIKtXhiG+3VfQKYY1YTBDnPNWvCEe2GlY0cesBZN/lQU37DLE
+cvsuSdgkawFLqoWiobAhvhr4csOle9qg1hlK2xZrgNcKxnYcYNaDHeQPuzUO
+G+Dn6uI8/pJ6kHyE5wxzkAHOPipvdFZbD4Z4HuMX7gZ4u+nprc7eevDEcpDO
+p2GAd3AetJsp1gOdO/521e36+Aar5eTMUX0w8t/uZGqij+9vetbyT8YQAp/l
+HhDQ0sfJ/319sWRiCJmLMxcGlPXx8WjeNpNthjB/Na02nV8fBwgd79uaYgjv
+Kr65TPXr4S9n9jgIMRuBxQbnTY/T9XDl76V3DbNGcKYuLt/kty5+c2JfzCF2
+U/D2dD1G+6aLNZ6Ia06STMGwV8bRsUwXC+WpTmQ7mMLgzLvhndd1sSXNXuR4
+sim4yU5rxTnr4tRmi1lLATOQCdn/uuqVDvYL9jkcpGwObzg34y3ntPGlp1+k
+Nf0tIfWa/LWdh7SxX9DLvh8JlhAkO7YnwFcbm32+u3rlsSXI6F5gjTLVxh21
+R6dUZiwh3rPK4caoFk4vl3ucmUSFTXmm9b+2aeE7qPd+7TMrGLZR6gxR1cQx
+myLrlPppkGN5/u8vQU2cLPUTb2JD4GE0MbvlPw2c9ubwyz0SCDCpTNC0WQO/
+vfrTZMUcQRbXDnvWMxo43yNupvIUgk3M4B4dqoG17mzYtO8KArZlkv+wpwZW
+WJK9WXMXwcHRmZhv2hr4xNX4cw2AwKHhStGtLnXMIT185vwKgpVP8+UCn9Xx
+lzvLtAUeOrwC36/xr9SxQ+9FHQlpOsi/1BwMuqCOTx/uTtthRIfmx2kznVHq
+uDkt+eYxOh2SHywxbfJXx2ZXMmaom+gwm/5Z1shUHZddzDV6tZ8OT1J01AtU
+1HFurDqb3xE6+CdmmsgIqOOryHi5II4OX6P3bmUaoOBUjYpagXQ6nDlY6xfZ
+SMEhN8I4KXfoYBKsHzb4gYLfveTVb8+nw4Od60l1aRS8nevYr/kSOuxw359B
+O0XB+/N3+AZU0EHApf7+qwMUfLbd7pNfDR0+2hq9IG2n4KHjiw0jjXQ4Qb1V
+loUoOGyzkwN7Ox10jFlqebUoeOuhVdHCbjr0ax9oOyVJwbrlN8z7+umQTW7s
+/8dCwZwFUi33RuiwRdF0OnBCDSvufCU5OkkHDqmc9bYONXwk7qA3zNKhTIid
+36VaDev9+Mojv0SHI9xhMowiNfx8xqqYdZUOaiwtavq31fAjn5eskUw28HPZ
+3Dj3vBoeSpgqD2G1gbSZezaSkWrYR2atZoTdBhzHOLdc9FPDzNy+WjOcNrDW
+H+G76qSGW8cduBK4beDNr+8hh4zVsOelxrt3eGwg5Af1+B8lNbybeWUb4rUB
+pW8PEz351PDDzJLcMEJ//8yTXrNAxoOT3/Q2EPoiPnyP+oeMhzAuDiTGo9L2
+whcNZDzckyRoQMw//5L2QeU9GbevbzFLIa7/7En+l8w8MjbVV3WMIuoLeMj/
+g4t4RZbHhEeNstiA1O2oP7EnyfjgYLzgzDodGjK6piaCyDg4ij85ZYUOCZdt
+1vZsI2P7Y4eDSxfpYJH0mPe7NRlXT4l4xhL+TZ0SknbUIOPfGTeFWgl/fQ51
+G+owkzG7hNeBrQN08EwY52EeJ+GWrQty13uIPLJW+lraSXgrWZcnroMOdljm
+6okiEq5jlmOyqKODdat6kOttEt64ZHVQrJoO5kNm1orJJNwU3Pj7ZjmRv5DX
+2MfdhE509n1RSAeK6v6qGy4kHF0/6GKXR4cNZkezQ0xJ2C1Hhy/1Nh2k/NMd
+hQRJ2O/pjLfzRTqwFH3L9WGoYsOXV98XBdBhpao7VueJKs7co7fPZAcdFtrG
+3Zmvq+LU0wWhSW50GFvnZS4IV8WmxiFvr5rS4ftmR99pOVW87UfF7dvcdHg0
+icUvxG7APNccjFcLEDxgbRzzCdqAMQc5O+oWgjuSPVU62zbgMInOhr5UBGm0
+1cOtGhswV+be1IKjCGKvmDcodqrg4Gh3ww22xPNB91XSWzMVHBCafuMK0MDR
+tsL3gqoKLth5y8KrgAa2Xo1Gu4RUsEyblMKmKzQwOz3xm3lIGUesNpb82E0D
+5W8aNLcbyvi0iLD3I1YazEY8XPgzp4SHau0Us3ZYQ1DUbz/hP0r43p/dL2ft
+raHzhPIn60YlPJuSkn3b0BoqEu5m3HyihNt/pSS2CFpDavYt/c27lfAbt8Zt
+q1+tgPleZ9ZJVyW8aK/4vvWDFUTlSTM9MVfCYttcWtefWoFP0Y0GNjElHO66
+LOFx2Qq2pKi1RV1TxMfJabocHlZgciMv71uoIj5wa2g9xcEK5B9siNJwUMSH
+nE9PhJpbwcg7ReHeZQWcHSTmbahkBY2Vd3osvitgbwMfdzkxK3hXL/s884UC
+tljQ9vfjsoKEP5IuLoEKWIo7xmjiHxVCJjKl860VcCXTuiz1LxW2LokOMUkr
+4I8v2nz+/KSCgqBQ4tt6eSwSvuudVQ0VSiy4QNlUHifyPr6lkE+FHPukyyeF
+5bEdFnYxyqFC4ha2XW2jcnile6vwg+tUcN/PtJRyTw7f6+B8lJBMBbPDpz7/
+jZHDu04/qlmMp4LiyZVMm+1ymCy7mlsVS4Wxa4sGi9xy2ENk8rfPISo0345m
+3tYvi5lET++lhFKhtGD2WyFDFls8U+p02k+Fe6+O5HDdlMVF7MWfYQ8Vksqn
+wvZGyuLz3L0FF3ypEPYlwpLhJotb3a3/5e+kwraWMW5piiye8rspLulJBYvu
+kPZIFln8g1PmbIc7FZSGh/IbfsrgTrcTd8c3U4Fjdv9R9Xcy+Pkx3WZ3NyqM
+r/XbJlyTwfjK/RguFyq0cu8V6QmVwd0ObnP8TlR4L9bXa+4ggx/azmQHbCTq
+U9z9IkOJ0IOA2R2ocF7jV9zksjQ+mnKkZN6OChHGPq7O36Vxt8e5RiNCe6AO
+mbwX0lj7xEYPsCXqc/EaXr8gjb3NxVIyCa3s+f2dd6A0fn3Av/wtobn2bEsq
+tpbGuY/7NVSI8ROhTR5C0tK43fW9WBuhW6M3bwidkcJv1o+XtNoT9cXX/6uu
+l8Khetu2yvxvfSkuWOmRFG6z15cqcCTqu1GTGntWCtc8+2ob40wF8pnjP57s
+lMJlMV0BVa5U+BisptCpJ4UZzidcfQl/9m79sY+bSwo3XtdedCD8Y7FILDTr
+kcRc/Uw+p7cT86sYzQW9lcS/M7OD2An/abx/qDcuS+Iv5n4C7buocPInqpuz
+lMR2g7Z9fvuoIFs9KUoSlcSFtvV/hEKIegtzfDxGJPBF/jPavAepsHBqZeRV
+lgQedOfRbT1BhetBTw1+H5TAZb2CL+6dpoLRFu8Y4Y0S2MS9kuNlIhWOKJdw
+H5oTx/k5A2VZaVQQ5gnaerdOHC9cqmwLv0mFomnxmw0PxfE9djvbs/eIfKsi
+Kdru4nh/utmxwBdUCN6vu3HkuRie8j7MPPGNCpybu1Olk8Tw+T81O+60UyHf
+9PIPR18xLDKh/OFsHxX+cI3uK+AVwyfNZkdHZqjg9zQ/ITBYFJNi7vQIylrB
+avr2unSaKK59UxC9iWQFt0+yiVVJiOLBHtqtUl0r6HALeKhcLYIDsmMrhOyt
+wGNKvrJbWQS/eavQdO+wFTgbZ67v6BLCjulCv8yarCD0FOdc9m0+HDKzKYFx
+3xpSxEnVe7fwYWHqUvPm59bw7JlNphYbHz7GQxUcfG8NE51xxoxQXhyv4rFT
+vtUajpjOHu2z4MHC/5wSb3HQ4MRU77xaByf27171Wg6hQfb5tU9TKZy48OCl
+o4HHaPBeQe5GKeLE79m2dFedo8GKq5epyyMOfHvYvdLvNg3OPK4/FnGMHW/2
+2B04UkeD8wHvF9+Is+KA+PEqO3EEj5bavsTVsODpsAzrMRkEX67OZTnEseCq
+kjyu80oIeEDPvL2fGYc5hjVmaCJIlS048d9rJmyskOLMTkfw4tVHp49BTDji
+bqCnpQOCRqff0pdlmXCdTornHhcEG6Ysoqw41iFsa2927HYEGo/V5s7lroCu
+qKdTdzCCsLaATHG+FRC7m8h+IRzBc/Yc44LI/2DvfHmu0hEE+gFi0bU2yzB6
+l1VePBaBmSzzglDfAiRITlhypyCIcaLeeOC4AB4LLW7CVxGUHTtmalQ0D+xk
+zUusGQhorePHvE7PAX3VzzmPeJ85XO5cvCM/A0PY78L3xwieZXoOaidPQ+Dj
+DopEIQLRnOaW8ul/cMCt9DqtCEHv89rnvz5PwYv6yL8ubxFsfOdwO9xgCgJR
+5jadUgQ+pxNF/zOfBP3+1/cWPyCYv3e0xqJ/DD7f0GGzq0Dw8WV4rnfpKEgp
+2736WIXgWuW+0zGpI8Ay3XJI6xMCrf7txu/NhiBkw+G9RbUIlmbdhDr5/8LZ
+v67WdXUIPrE7jC79HoCP1xyPNTQg2KNmct/88h8Ip97dn9iMQMdM5+TOgN/Q
+0hrSYt5K8LUj2euEaR9IjVnztn5HULNTweAmXy+gUY+JbW3E9b5ryRyp+gVv
+Csf8StsRfJ6Xa3wZ3gXKFzbT2ToRBEjxJ/2T7AAmlZZYoy5iPvNVS/3KHxDA
+93Pe6SeCGz7j/w6FtYKRWe9tu18IDOJ+FRRJNMMZygFv1W6iX7C69aE3/hvU
+z4orDBO64Uysmv+PWogSu9Oe1oOA9aNPeo/GJ6DN1J9U7iXy5KSu+52ugIVN
+aesZhO7KMPtRVlAKH3wnvcYJ7SC7VPhhSxE4l3Gc1ugj+pOkQYmRwVtQoSp5
+yJXQWqAjZjxylvZn7CRlG6HnH1zMvBJcQItzfVVgTWihr2wzjrzFNK3QzZMC
+hM63s5N1DmDQeEx4WD8S8yv0VNzP+1lF614pHvIl9NCtPmNy8heaX5vNo59E
+va93MNfmG9bTVJrLXBCh4aLQi/TJRhp/v3NPMnF/qgeUlrbZt9B+PdU+/Jbw
+4+JGPVuxW99pXfPlwjWEX5MkdLl1qo22XSi0BRN+erBtactw6KQNd5bU3iH8
+fv97t/L22z9pla+tBPw7EChWHAwVn+6mXVC695aTyGeO8Xm9tqGPVmHW8YCT
+yJPy/Jvq06XftMV5YxX/FgTed9qcLqn208r8ouNymgh/Yv+mu8QM0uJzv3vU
+1yOYDpks0cz7SzM8nyjH+IqA5L3wi7dxiCaWYOiVWUPUa8ZJqSON0k4E6Dcv
+fERQribo9mzLGM2k9WH4uUoEUxKSR1Jix2mKcVsM5ol+bvscucy1aZI2/3EP
+S9p7wt+dGx7tt56mRRqfe/noOfH86PjzPaF3mnZP4gFD6ymCeO9c1odnZ2hS
+Ot1PMwm+nPYh7e75NEtrnvoRKXkPQYufmsSOzQu0zktynv1EP5nS89c2+t8C
+7eTUo8msSwjs/B8dzkhfpGX947E2Po/gzR71+sa2JdrF8/tTyEQ/ej1QM8HJ
+f4W2t3Vi70IIwZ8Doy+DWFZpR5f+cM/tQ8Cx/1lPYu4qLbBNrPyXP4JjQdqW
+lUNrNP5T/6SPeBLrp1jyxJ0SJiTMovvyNUIgUCKtJ0FnRdvJxfs5RRCELC45
+kNJY0VsJS7dJXmI/mnX6Gv1hRVq9ppRadgSnSrMvuSeyocoy3qriaRpMvpf9
+m1rDjqhbHewmCf5tLJfP4XTnQq0vnMNMvGiQXqXMtxTAj56ncnOqxVsDn7XN
+7zvP+dGrqZk7n6OsIaEkoMRmmR8FX1m5cjjYGqILHwamXBNAg28lQgc2W8OO
+G6RyRSyIriQJOgcrWsOVYjHThwLC6KBDskRxhRXUTas+OGokjAQuu+/wf2sF
+XHrG/I7ewohrIuKSKsG3Z55s/zOWJ4xqJaby/8uwgiN3r18xsRJBh3fqNawf
+sILtF6SGakJFkdZIxhtTGStI+0TZdvuaKPKd9mwbELKCBlZzRsQ7UUR+1+FS
+xmkFDqd2ZoiyiqHqjv6ZgTmCJyOzkW+2GGpf2Zvv0EqFqKInT3WxGIoa+oq3
+1lHh5fh7CZZBMdTE0v8y5SMVNIK7xvL1xZHK7eqGzGKCN3zlbk59EUcaa2Vf
+BLKpsCNbi61qgtBmV468SqdCRhv1YKaYBDLj8XO9fJkKfO6+9hb+EsjrmovW
+GMGvjlfCi/iSJFBQjNza4ZME/9bFyfY8lUCIzeyGwTEqrDnk/Du3IIFUGE1P
+gsIJnkt4vstTXhK9FVYY+hVMhWMVjM8UW0n0uN34SFogFd6sNRj8FyyJTva6
+qSX5U2HKsudOfaokerrPrL+U4CWtE5Nc995IIqZSjwQdgqeC365HHumURF7C
+p/r6Cd7KnRHssWOSQoPxSy2/CB7r01NyliRLodu8ew1ktlBh/9V1S/HNUmi9
+QsgnmODZkclubdHjUmgl+WsZJ8GzEZsZisL3pRAPz/k9SwQPTj+/IyxYK4WK
+tQ9vsSZ4MVogjpV/Rgq5rtVfbiN4cjl81xyPnDRSKmuS+UTw5ql6y79c9tJo
+VOTEHA+hWbRlOzgipJGK/26pAoJXk1KWa9luSCOrpbSYW4TmGesoY8HS6Oae
+IMFhQqe6lD5nGpZG2bvtP10lxos+zbq3JiyD2nuOX0wnrpfFczxtxUIGdV5f
+sZkmeFouxCthea8M2rvFtrmQqPdejUn0YooMOvBzTfwzwa+q6hLB88UySO9i
+/6A1cb+Pkud2znbLoGTlg1IShB9aQ60u05yyKMQl57jbNoIHN76xmtKTRSPe
+r78NEP2BUUG67sROWeQfPNrT4030PxyRymNnZVHQS5N91N1UoO53Fx15KosE
+9MbFVvZSwZ4kvDCwKosqxTXyCyKoUJswNfSHLIfSL2c1ZERRYVP/t86+zXLo
+144bz//GUMHzYSrj1305JEYdqsVEf9TJElHUVSuH+s5p8jleJfgxwO1Bx4wc
+sj6gIGCaReSnzJf03V4evQ/YMef2mMjvzOixlgh5lDUcdC36FZFfb+2Bphvy
+KCLopzdXGZHX3Qtu9cPyyHZhd3BwI5HXWjDtq4gC4nnhyWnaReTl56hfY6mA
+XpinJh8cJPhfnlO8+rICahtr8lJYI9Z73CBH1VsFNGRdlJnBYwVXf1Yv4h4F
+9MU6JCNK0gqybiX8LNNXRFTO7/yHDazgkTRL7pvvisi6JeuPe7gVsV77Ml+t
+KaKhgYPnBOKsYEdYr227qBKaKIAbekS/+/MrGP+gKqEAg0zRvOdW0H/xlHRz
+qhJq6gs8aDxvBXNcK701BsroOI9JV/t1glfv2AoNOyijrNNKFL5n1jClf4nG
+5aOMQnOztqZUWMOIt0yOwzlltOQadzRk3Bp6n5n5VLUoI6abTQ+8HWlQt+Xo
+97IoFTTLfDHeiQ2B80AZ289kFRT8b/rKYyGCT06wGf13WwVdHXirKCWPoPJB
+epp5tQpK2YFbpEwQlMy+3PxWfAOy4LvPFEHw5MOsiZoXbzcgeskw3wGCn5S0
+TZYaajegLNM2+0fE+zSnIo4y0b0BjbMm3WvsJ3hlhO+8FqcqCrHdyNG8QvAt
+VdPusZcqGhus2u+iSQe+piORX0JV0d/PnO/Pm9Dhwr73D/6eVkU3rb+63qDT
+ISHViZn8SBWpWmuKk7zoENMbxHiwqIpMvm1sLTxNh8WoF+MVfCQkXbL0zeQC
+HY5yL8j1KZGQ8i5Dlbg0OhwySIpVdCKh9fJWe9NcOkx8qn9i7UtCu+QTx/Oe
+0SHUR7zT9zAJteefy/78hg77E3LNbt8koSaTc0YyH+nQLzUW9KGQhFI4VnY5
+fKXDnkLDG50VJPSKqZlVrpkO3fTYT0vfSSjv7chEVjsddv2onJMaISFnf5H5
+99106AjhIZmtkZD4lnnWM/108Fzf6uElQkYtrpKSg8N02Erpe5VpQUakwIcv
+Ls8Qx78ubvV2I6Nh58nyxAU6eEcI/VPwJyPvFlE20n902C1MufrnCBkJ8TtY
+hKzRIfANTfdRIpnI30PTg9kGgr28GsKyyGinhWxxH6sNhC9HhOs/JSMO+PdF
+mMOGWE9JfPPlZBScxBv2h9MGolHO0/eNZJQFTe+2c9tAzJ9i59N/yIipV78z
+iMcGTifVD9vOkxHS+i0uzWsDCeoDyVzcauhF263KYEIn162o1cuqoYvpzm6e
+hE45KPb5mo4aOnpY36yPGH9NRGu/J12N8I9dlpvQ14tt2WU91FDop+UH9Vw2
+kL3DJ7dnvxrKvVGfpkPUk/PfEdvcE2pIqfBdpSa7DTzMufg7OEUNvSrdo1TN
+YgOP6A/ite+qoce3Pz9fXqfDs/5SpemXaki9SCSpboUOL883wduPaujGyIEW
+iyU6vNUY9ottI+bnL2m3n6PD+3qmNdqIGponBY+NT9EBDkndYVtVQ+b5UicM
+x+jwUVSPWiNIQWaH7Fcl/tLhy9uNXZdVKOgaaZjnZh8dmleipSUdKWjz8fMH
+Yr/T4cfd1JIubwrCCRrUXw106LLJ97oXTkFjtvezez8T6yf5e6Z6OgUJ3F9i
+fCuhw5DmuNFEHgVlGP++Ul5Eh/EGttZXJRSkJ32eeesjOsyLGYlQuynodxw5
+Mfw6Hbjup6VuUldHVx1qqPcjiP1i90RblKqOXIJOfu/ZSwfhvxV1bZvUUe3+
+wM6GHXSQ0f7HsydKHUWLF+35SOwf7dLN5yNBHa1kJldbCNHBYFcQ2axZHb3m
+/PtDnZUOJuunqlf61dHCO7GLP+YQIPvnrEk8Guj12uSvgwQ/uzfxncnaroG2
+TfsrtxI8GT1cc7x8VAPtM/zsPr+B2O/yTl2STJqo4lEnxYDguc9bv1gdEdNE
+Fq71r+lMCKTef2JRs9JENjs+76t5R/TTF6tSrqZqosDrntNjKjRY0yy/t1df
+C4mtNFcqT1pBYkTRF+5j2ijiCuXm4DFLeP5AVzPwkjY6D29k0rZYwo8fzy8z
+7mojkwZa3WZ1SyDTCt0jv2ij/v8afnF3WcAXwSc/f0rrIO6M1qhCmgXwvXw4
+9aJMBwVaqDEpCJpD7QkXPk1mPTS4/eHVhgYTUJGNnHvCo4daWJJjy56bQExZ
+dreGmB7SkODoaE81AfX14SINNT10ls1/8c5mE0hOSN6u4aaHGkb563e3GMPG
+K9U56jf1UPeqqUzvHyP4mEvTp+jro8EtdL9eiiHIOQTJPLLQR7G3aCyVAoYQ
+9TeVlWKnjwYkVeaaZg1gg0b3dzUvfdQ9e3wttsIAzr44GaMWp4+0qAufp3cZ
+AP19aRW5Rh8dC83TMLutD4xvhp6kPQZo0/VlN28LPYjae977aIgBYuKv+7RA
+0gP1hU6/6kgDRFt9Nl8qrAcZCmeD9iUZoD0X2Ls8W3QhJLzxeN5TA8SctqMw
+2kQXJHjDb5HmDVClR/3nR9w6EOGQ30u6ZIgCiqlXUK8mqHYu9R/NMETxuzlV
+H4MmdIS7DVffMUScSc8Wne9qgl3m7L99RYYIJP4mmO3WBJl+G9b874bISjTf
+9XmfBnyK7yGRlYxQs4uz170pdVAolwolFxuhXlnPkAJDCuyXVtpKByP0Vfvr
+HEmSAoVH1Ux31Rghc8c4jfZlNaDqmLCm/TJCAZf73nyvVAPvu9turbIboyCr
+4KuU7WqQGZ/6tdXTGIndcuX4epYMfA5sWucWjdGUQeVz8roqeDzgFclhMUEF
+EnzHHYdU4daayGIJnwny+ZkpdK1JFTTeKX+cUDJBrwfiPTJzVcGRQtvl7WSC
+nHB1l7+rKpzjiUnRzzZBK0W8jmUPNsByw+RYj6Upyia9YDkcrAKJBj0X3exN
+USZbiYOIlwoIXW+gfNhkimQXrpnW26sA2bcw8PoeU3TKOXvblQ0q4D4a8tP1
+vCnyz36ybN2rDE84B7+WNpuiw2dTXyv7KYM3+vkk/YAZUuhbGS4JUYKBh18d
+mSPN0E9y9GbjXUpwiPPDYMRJM2R/nr+12k0JkhpuqjhfMUO/zg09UNFXgle7
+vLKZis3QOVLwhdR/isBzovlCOJM5+hP/wtBCUhE+vPwSvPGGOQJugzqFOHlo
+/xU6dPq+Obovv9fhYoA8zHILBpc8NUcCUgsbZR3lQSdge5A6Nkdffc7AM1F5
+eCDyex/vMHH+rsLSxGdycDHyv4BvFhaogsTd0NIvC97GOr5e3RYosevARqUI
+GTi2p+nnlSELJH72gmuZlwxkXI7a9WXaAk3VZSwcpctAw8B7H3NOS1R3jSuY
+Li4DNtc3esvqWSIV2bhhA4Y0sZ79vXriLZHBRcnCbeLSsFiSvjWIREUXFCvW
+qW2SsGNM4cK0DhXt3fHB9VC1JJQqPsFxZlT0uc5va8lrSYhJwroZLlR0MFJ1
+NfGqJKxsG+evOExF32DQTcxFEpgmHWplGFRknuC9oa9KArhIyzYNnlboykf/
+xyFV4hC8IzFmp78VaugQDlp6LQ41l4Re9R+wQgrlndo3c8Xh4jRZ+b+TVihB
+KPogb5I48OFt62oPrdD9e6vL75zEQcin8EP8pBUSrOpKk20VA+lr/kbGydao
+qzpH7sCsKLS/lTx/9Zo1Gg8v59D5KwrXfzZ0jGZbozwf3ktMnaIgQrE6/aDQ
+GuV2HhJvAFHgAelawRZrZGmcqsidIgorY827R+Rp6LBJxNAEWRR6He0v3X1N
+Q+yr7A1r+0QgJ2Ll13IZDbW8rDP18BaBXRmv9Tw/0VAEPU6keJMIdPQo/+Dr
+oKGXHJK/skxFoDl6TSlmjYbOqLkp/OUWgYBmH58nqgjpb5zwvVYkDNuYxP8l
+HCRwwDSC+p5dGE4ec+bNikJo8pDEVPyyEOROnCY9PYHQv7/hfNsnhWD258jO
+pnMIcbE9ocl3CEFGKa6Uz0LozM7lDsNCIWg9EpbxFiMU6juaEOYlBNsHqkyH
+hOmIvQWfcQ0SBK/aI6dc3tBRfMfmrFIhflCyvz3LWUpHubH4yiYmfhiB6pCP
+5XT0qutI9b9JPjhVLOVl9ZmOhHl1HwV844P8ewxd3U46Kh9MOz6Wygez0Tx9
+Ikw2iPZ1kCVNiA/SNjyw7XSxQcn54ZfeyfNCw8kmrgN/bNBdUs5W513c0NfV
+OnlxyAadeLDG6HLjhlmL9h/Pxm1Q0Whe+QkaN0gvdedOLdigzd+QYZcKNwQe
+HUPH+WyR2b7vew1GuOC/cM4T541t0avgYltSLBdQdlsN5523RZkl6elleZxw
+jv645remHfpW+480LsMBH2/aMMb07JDwgYCxQ4IcwDHd9Wre2A6xMNPrV1k5
+4OIDgds8yA6dvKL6zmCcHa6yRkUYeNihQJdjclyYHXKqrUXPnrRDU33ve3YE
+sUOJU+su5Xo7pDhlc9C9jA0mtq5P7o6wR9I2ZSt1cazQXJiCRCPtUUKRWtVs
+FCsUc8tc+3TMHvUvKuephLHCyQojA+14e7Rp/2TuVW9W4NEPiVpOt0eGnDlz
+b0xZgST0fTGj1B6FrFxZk55hgV0NT5hr2RzQ0b/20noRLPDV2VPU6JYDkW9s
+cGQUMwxuJ4cH9m1EkiUVdRU664wop4WqUWEnNBnEvO+r2QqjJNnhTDTVGZks
+i17+9HaJYdEpEOl7xgVl39wK6j4LDB2x9oBbz11RMSlMxu3QHMP5/PJs72tX
+9Hv6SLhT8Bxj/7LceXKpKxJOP+3g7D/HuNu75+nLKlcUxjF/cueWOYZQ4ejM
+53ZXFBCqdLtQb47xz349YZbFDcWUU9+oT88y3hwjF7h5uaHH4jbR3sdnGY0j
+jubpu9zQGHeqSt+hWcaYb+jX9j1uaDHJeDz0wCyDZFc0uTfMDV1oPdB02XuW
+cV3Iwiwm3g39k6g5w2I1yzj+2K0m/6kbohim9TxjmWVkyB3yGStyQ5N3RHii
+/pthFF1JG9d/64aG/sZuoM3OMIaPtgmXYzd0//glyb6BGYa3zR7vlu9u6FdJ
+5ZttNTOM6OJzY1Jdbsjm5i0Oi8oZRhol/5RfrxtSt83XU/0ww6gVGH0wPOKG
+6vLILGyFM4zBeH5j3SlifBZ/7lLeDINlTvdz1JwbOvSRS3QmZ4ahEOy+8/2y
+G1KS8XKdujHD+L/vgdH/fw/8P5ata74=
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-3, 5000], 0}}, {{-60, 60}, {-0.0006, 0}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{"MapThread", "[",
+ RowBox[{"Equal", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], "/.",
+ RowBox[{"\[Rho]", "\[Rule]", "dr"}]}], ",",
+ RowBox[{"Collect", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqs", "[",
+ RowBox[{"[",
+ RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.",
+ RowBox[{
+ RowBox[{"Complex", "[",
+ RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
+ RowBox[{"a", " ", "i"}]}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"i", " ", "\[Phi]1"}]], "\[CapitalOmega]1"}], "\[Rule]",
+ RowBox[{"2", " ", "E1"}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "i"}], " ", "\[Phi]1"}]], "\[CapitalOmega]1"}],
+ "\[Rule]",
+ RowBox[{"2", " ", "E1c"}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"i", " ", "\[Phi]2"}]], "\[CapitalOmega]2"}], "\[Rule]",
+ RowBox[{"2", " ", "E2"}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "i"}], " ", "\[Phi]2"}]], "\[CapitalOmega]2"}],
+ "\[Rule]",
+ RowBox[{"2", " ", "E2c"}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"i", " ", "\[Phi]c"}]], "\[CapitalOmega]c"}], "\[Rule]",
+ RowBox[{"2", " ", "Ec"}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "i"}], " ", "\[Phi]c"}]], "\[CapitalOmega]c"}],
+ "\[Rule]",
+ RowBox[{"2", " ", "Ecc"}]}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}]}],
+ "}"}]}], "/.",
+ RowBox[{"\[Rho]", "\[Rule]", "r"}]}], ",", "i", ",", "FullSimplify"}],
+ "]"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
+ RowBox[{"DeleteCases", "[",
+ RowBox[{"%", ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"a_", ",", "b_"}]], "\[Equal]", "_"}], "/;",
+ RowBox[{"b", "<", "a"}]}]}], "]"}], "\[IndentingNewLine]",
+ RowBox[{"StringJoin", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"StringReplace", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ToString", "@",
+ RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
+ RowBox[{
+ RowBox[{
+ "\"\<Subscript(dr,\>\"", "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_",
+ "~~", "\"\<)\>\""}], ":>",
+ RowBox[{"\"\<dr\>\"", "<>", "a", "<>", "b", "<>", "\"\<_dt\>\""}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ "\"\<Subscript(\>\"", "~~", "r_", "~~", "\"\<,\>\"", "~~", "a_",
+ "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}],
+ "\[RuleDelayed]",
+ RowBox[{"r", "<>", "a", "<>", "b"}]}]}], "}"}]}], "]"}], "&"}], "/@",
+ "%"}], "]"}], "\[IndentingNewLine]",
+ RowBox[{"Export", "[",
+ RowBox[{
+ RowBox[{"ToFileName", "[",
+ RowBox[{
+ RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<code.txt\>\""}],
+ "]"}], ",", "%"}], "]"}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "1"}]], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "2"], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "1"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "1"}]]}]}], ")"}]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1c"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "1"}]]}], "-",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "Ecc"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"2", ",", "1"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "1"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d1", "-", "d2"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "1"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"2", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "2"], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E2"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"2", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1c"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"2", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "Ecc"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"3", ",", "1"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "1"}]]}], "+",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "1"}]]}], "+",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"3", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "+",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"3", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"G3", "+", "gt"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"3", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+", "G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d2", "-", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"4", ",", "1"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "1"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "1"}]]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"4", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "2"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "+",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"4", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+", "G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "3"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "1"}]]}], "-",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "2"}]]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "d2"}], "+", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"4", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"G4", "+", "gt"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]]}]}]}]}], "}"}]], "Output"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "1"}]], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "2"], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "1"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "1"}]]}]}], ")"}]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1c"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "1"}]]}], "-",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"1", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "Ecc"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "2"}]]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"2", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "2"], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E2"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"2", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1c"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "1"}]]}], "-",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "+",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}], "+",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "3"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"2", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "Ecc"}], " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "2"}]]}], "-",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "+",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"3", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "3"}]]}], "-",
+ RowBox[{"E1c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "1"}]]}], "-",
+ RowBox[{"E2c", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"G3", "+", "gt"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "3"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"3", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+", "G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}], "+",
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"E1", " ",
+ SubscriptBox["r",
+ RowBox[{"1", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "2"}]]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d2", "-", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"3", ",", "4"}]]}]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"4", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"i", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ SubscriptBox["r",
+ RowBox[{"2", ",", "4"}]]}], "-",
+ RowBox[{"Ecc", " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "2"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"G4", "+", "gt"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"4", ",", "4"}]]}]}]}]}], "}"}]], "Output"],
+
+Cell[BoxData["\<\"dr11_dt = gt/2. - gt*r11 + i*(-(E1*r13) + E1c*r31) + \
+G3*r33*R31 + G4*r44*R41;\\ndr12_dt = -(gt*r12) + i*((-d1 + d2)*r12 - E2*r13 - \
+Ec*r14 + E1c*r32);\\ndr13_dt = -((G3 + 2*gt)*r13)/2. + i*(-(E1c*r11) - \
+E2c*r12 - d1*r13 + E1c*r33);\\ndr14_dt = -((G4 + 2*gt)*r14)/2. + \
+i*(-(Ecc*r12) - (d1 - d2 + d3)*r14 + E1c*r34);\\ndr22_dt = gt/2. - gt*r22 + \
+i*(-(E2*r23) - Ec*r24 + E2c*r32 + Ecc*r42) + G3*r33*R32 + \
+G4*r44*R42;\\ndr23_dt = -((G3 + 2*gt)*r23)/2. + i*(-(E1c*r21) - E2c*r22 - \
+d2*r23 + E2c*r33 + Ecc*r43);\\ndr24_dt = -((G4 + 2*gt)*r24)/2. + \
+i*(-(Ecc*r22) - d3*r24 + E2c*r34 + Ecc*r44);\\ndr33_dt = i*(E1*r13 + E2*r23 - \
+E1c*r31 - E2c*r32) - (G3 + gt)*r33;\\ndr34_dt = -((G3 + G4 + 2*gt)*r34)/2. + \
+i*(E1*r14 + E2*r24 - Ecc*r32 + (d2 - d3)*r34);\\ndr44_dt = i*(Ec*r24 - \
+Ecc*r42) - (G4 + gt)*r44;\\n\"\>"], "Output"],
+
+Cell[BoxData["\<\"C:\\\\Users\\\\Simon\\\\WorkLaptop\\\\Home\\\\RocSci\\\\\
+NavySTTR2011\\\\mathematica\\\\code.txt\"\>"], "Output"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Version using real DM variables", "Section"],
+
+Cell["Remove explict time dependence from the density matrix.", "MathCaption",
+ CellID->540592006],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"SetOptions", "[",
+ RowBox[{"DensityMatrix", ",",
+ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}]}],
+ "]"}]], "Input",
+ CellID->227015699],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"TimeDependence", "\[Rule]", "False"}], ",",
+ RowBox[{"Representation", "\[Rule]", "Zeeman"}], ",",
+ RowBox[{"DMSymbol", "\[Rule]", "\[Rho]"}], ",",
+ RowBox[{"Label", "\[Rule]", "None"}], ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",",
+ RowBox[{"TimeVariable", "\[Rule]", "t"}]}], "}"}]], "Output",
+ ImageSize->{432, 33},
+ ImageMargins->{{0, 0}, {0, 0}},
+ ImageRegion->{{0, 1}, {0, 1}}]
+}, Open ]],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["OpticalRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
+ " supply the repopulation matrices."
+}], "MathCaption",
+ CellID->164472800],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"repop", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[",
+ RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
+ SubscriptBox["R",
+ RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
+ CellID->358732873],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}], "0", "0", "0"},
+ {"0",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}], "0", "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["Here are the evolution equations.", "MathCaption",
+ CellID->2682843],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"TableForm", "[",
+ RowBox[{
+ RowBox[{"eqs", "=",
+ RowBox[{
+ RowBox[{"LiouvilleEquation", "[",
+ RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}], "//",
+ "Expand"}]}], ",",
+ RowBox[{"TableHeadings", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], ",", "None"}], "}"}]}]}],
+ "]"}]], "Input",
+ CellID->161699191],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{"\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
+ RowBox[{"\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{"\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
+ RowBox[{"\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]1"}], " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"\[Delta]1", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{"\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]1", " ",
+ RowBox[{"Cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]c", " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalOmega]2", " ",
+ RowBox[{"Cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"\[Delta]2", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"\[Delta]c", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}]},
+ {
+ TagBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]],
+ HoldForm],
+ RowBox[{"0", "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[CapitalOmega]c"}], " ",
+ RowBox[{"Cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"\[CapitalOmega]c", " ",
+ RowBox[{"Sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"\[Gamma]t", " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxDividers->{
+ "Columns" -> {False, {True}, False}, "ColumnsIndexed" -> {},
+ "Rows" -> {{False}}, "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ OutputFormsDump`HeadedColumn],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$, TableHeadings -> {{
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 1],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 2],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 2],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 2],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 2, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 3, 3],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 1, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 1, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 2, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 2, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 3, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Im, 3, 4],
+ Subscript[AtomicDensityMatrix`DensityMatrix`\[Rho], Re, 4, 4]},
+ None}]]]], "Output"]
+}, Open ]],
+
+Cell["Make plots from paper.", "Text"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "5"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"5", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJwtmnk0lc//wG1FEq59d6+du7jWy70yg5DlyhKKlEpkSYoUfUgSKimtyhpS
+oiyRSGYiSSGJEiWFSvY1Kfzu95zfP89zXueZM8/7/Zr3zDPPOUPac9B1Hw8X
+F5cg5/K/O6svYnR1lY3/m6oflp8hgp6aW5N2f9m4n3rxH54jgsj09tnLC2ws
+tm1h2P83EZS5a/3THGfj1lwB/ap/RKDW0Sfk3MvGbQf5ar35SUCoyZKWW8nG
+rp3yAx0KJND/QPQQDGTjbwcu2e7cTAIn40sW4jodsbHV8xCFPBI4Ix38+vY5
+B/xjhGxReUgFKD3Xyg/3sscTMyc0DlmrgmW1/ZLmunY4R8A5gaKlBrLDaS4l
+v2zx+lOjQ9XG6qDt4+yFxic2+OinJ+Uf2RqgngrTY8OtscYKj7N5tib4YyTM
+MtbbhCcUmlLbRLXBM/e+gWt8VphW9cdP8KoOcNir65xRb4FvCIL4PYcoYG9y
+fMPmVIgFaemmrBAaONP4IHu42RzbVe/LOe1CBx0u/g4noRnmDmvYvr5SD+iL
+KKyEDpni3fXFfJsNDIDM3S9WBe4M/FBQM8dXwghcKiqs7+w0xLYhC8P3dBlg
+a30RjmgxxBe9r+AJBgNIvStpkMKG+M6Y03tDyAAZ/ypeeN03xD8UVeKbnRmg
+YAtq/5ZkiI/bno5Yc5gBquc/9M+YGeLkrrKLHyoZ4JPFulWxOwbYKrLJejfL
+BGR7CHFXZRng1X6lx+1WJmB3sAiv5xUDrDAQZWLmaAK+X5HkzzhpgHVfSfJI
++5iAyR8kEdUdBtj2devcy1gTwJPKVDYgGODWXV8j1zaYAM3eYOB2XB9nGAVf
+XGdrCrZpPNmlc0gf8xTWp09tMQXJhwXjuAP0cfoZ8Lxzmyn4KViES131ce0n
+28ykIFNwj/XdQkhHH9sVJpeVnDcFtCzfTU09evjsqdM6xZ2mYOdIqV9mux7+
+NGt0UqPPFFwwWk0If66Hl44M4fRBUzDVltVEKtPDHidkan3nTEH5Sq9NbJIe
+Fn9zO+yIJBMY+rrbMYz1cBNtlrzXnQn8SgoChSl6eNuIyi9VHya4ujh7Zpik
+h8nvHRu6/Zhg4eKlV5c36GHzrFfr1kcwQfWzNw5TQ3TsJDcZU5rGBExVe6ei
+yxyu4n8X0cIEQQdvhMadoWPf4Hx1kQ4myHjyM9XzBB3/+f3j/qX3TPDPLenN
+mmA65mdoibgNMsHThOfOeyzp+FvUuO3dv0ww0SF+yNSEji/1lZ0/zs0CSop7
+00RpdLwUFaNswM8CsVXcnfWydFy0pivaUYwF4lpjCo2/6eK58U0lEpos4OXh
+eBS80cV/FDvrCsgsYDAgt3lznS5e2xTxQprOAt9nq0e2X9PF4fnrbQpMWADH
+JNbuOaWLCf6ikXVmLHCT3/1ccJguvrbLTLwKsgBbfoYSY6+Ld1uKjG3azAIa
+t/HyaYYuji2JaO11YAEu3QvtqWq6+K33wb1OW1ig0pISlrtCw3tDWQOv3Vkg
+tXUJFo3SsKb/2a1d21ggwKOFUNFDwy4nvDOrvVlALsj/YWMFDY/pfcpfv5sF
+5mYNE1pzaHj9+qHe6L0s0BbD696dQsOiuoSuZ/tYoJC/U70/ioY76NmNXwI4
++aflLnz3p+F7c6j3XSAnf/mDzZNuNJx7Pcc2K5gFDG9vTF+ENByTtNWIdYAF
+hHWFArlpNLzypv91SSgL/HjcayooT8PCuST69EGOD8siQXEBGt63vv8U/yGO
+j9ajffLzVKwo9GB4gsMRHjYlat+o2O/laljhYRZwGpCIob6h4jtEgjk1nAW0
+ggbZxnVUvOfs6O54DnPPlSuBIirWMfOdKOBwb0zcpO01Kr5YyjdzmcOV/Fuw
+8ykqFonVPebE4dQ0xbTtYVQMsuaT33H6D5Af273Hh4p1ubS0VTgMb9fqB9tT
+8e88Fy9TTjxyumd4IxhUPLjmkZxMGMffY8+u/9SoeFbRed9TTn7tlhq3TxOo
++CZ+q6fFyf9u69yR1BUKzriYH+HJ8XPSo9Hm+igFux4eVrL/n7+BNOncHgrO
+Pn9QadWf4y/I9+fdJgp2G3rnc8SP42+OVlNeQcGqp3yfF3PG62fM8pnaHAqe
+36pifGsnCzTwt3o1plDwZPbPy1s545uRdpPcGkXBRRS7J889Ob5uM9o+u1Gw
+1R9a23tOvWjprs3+Dik4hzG1J5JTTzw1XaGTVAp23/FWpt2GBapaD4lyC1Cw
+T7Oy7C1OfaZ6wK/r5snYy4tvQZbBAvsHhCvEvpGxkLCQjI0eCyjMFbup1ZFx
+FE+37kM1FliIiVajFpGxnMOV3GlFFnjDbzdvdI2MpaIvOPZLsUC8/PdrtmFk
+7GIxQ33KmV8jlsTeIDUyPnHiaEjIMBNks5J+fBYh4+C5x+XafUyw1XBizvmv
+DnaJ2BAczZnfWL1OhNGpgwUWc+3e1DBBpJKq4r2nOni3nvPUm/tMQJE+q6NY
+pIMbJ9nCPreYIF1gmzVvnA4ujflwUzKJCZy4kWtksA7Of86I3hjFBHxL6r4j
+Hjo4sHu14lcQExwcnY1+Q9XBBWWpvO2OTGDTfqEso08bP7zq+PS0IGc9ebHw
+VLhZG//du1GkcNEUVCCf1ycrtDH/nXSPjd9NgWI5+XvAGW1M39+f0YJMwdzl
+ZnlDhjbmjvS20gzhrLcpNO07KtpY8W1ibJu7KfA9fdVYTlgb5xjNXPtkbgpe
+R+514RrWwlwihy/TRExB3vbVxNZLWrhkOds+/K4J2ObqfwXEamGNl+RhvfMm
+QNih7VZFoBY2WBPk7XjIBESZZdSlQy0MlWu+pTJMgLMyY8ZvQhMfvpFZqFLH
+AGtlslc/fNTEa0269dMzGKBOdM0GhyZNPM3NfrgzmgE0ed5p6mVq4rLOipWP
+RgywMhTqs2yniUWS0yZDCoxB5efuoDAjTUzeuHXBMdYYBL03OzZI1MSy51x2
+RHoag+5mwcstvzXwsamFhjx+Y1Byr/Dl1dsamPpbuGPrLiPgHdZvQOPWwEfu
+K9mvjBoAj4RxQe5xdfxE8o8PeGIAnNP/fX3Xo465WzdXdpwxAJuw3MWoMnXM
+p7v7zg81A0AT9Rx7vksdx3cL71njpg94yt4UeNerYc1fOQe2XaSDu5NY8sxx
+Vdwb4qlrZqEN8ng7xrwDVLH398mk6idaIEv6SyPNTRXL6Vl4njTSApfA8qEu
+HVVc1HJEUkNTExy/YNqu3KuCPdk71Jp51YGTbkXiIxMVrHAo48mFYiKYC83/
+PThPxHOKN4tfCIiCgIhvOwmDRCyisylvt5ww6I0ivTDvIGLV4mq1XHUh8Cwh
+58qNe0R8ps8ib9RKAKTezNDbsouI9/95VXo5nws4p2h+iEhTxhq27Oe3dneY
+G1+/fftNsDJWLXx4bnIgz1wxTzVCx0YZby0f38Yt1Fz/q1qZMLCkhGVVH+n7
+hg7WJwxKOzj4KeH0F/PCeZML9Y+ZAojEUMQmaeMJ26r5UbZ14vn/CIpYQjuo
+P1ljHTrtzLfjw6gCzrMVM1hzURC5+nP9SclVwMck8/7ed9mAxtIW9RfXcfip
+b7elLQF1ZkZyuw3J4zJf4ZKgHwRUc2fuzf16ebx5e0fXhQQxlPh0KmRvuDyW
+I3o3NFWJI+LIz8L2T3L4UXSBeO6sJFo7539Eu1oO50puvHTwuBQaXxmySkiT
+w18r6TNULmlUK/F1wNRGDosHyDgc5ZJBW+FHudulsvj00e60LZ9kEdPBc2T1
+jCzWsa0tL3SQQySP7movP1nMsnYKma+WQxPBb7eKysrivzlvxBKS5FHS9ZbU
+4/EyeGN2xdl6HkWkEXfs/b3tMjjCamFsz25F9Hy/plIvXQaT+HteXK9TRDzM
+0/dNvkjj4q7l2lf7lVCuiuF8wCNpPOFhEdtdo4TA+kGz6+elcfg6B76z/Mro
+v0+wdZ4ljbPeOGUJ3VBG8k2T4uri0ng+41/IyCdlVHs/23vrLymct6hU80KY
+iH7H/vtVkS6FO23Kj9+2J6JrAcX63w5Kcfa38geZ/kRk6OwVTbCVwnryarut
+4ojoMOnxurB5SYxpwpcbSomIIBjgktMqiSV3PiuyaCKishnJG+35kvjO1a5A
+m49E5NT3fGA5WhKvdkn5d48S0XhjuBbVVRLTPuaYz/4jopQSlbAd2pLYtjAm
+p0CIhHSuvq0+xyWJxcWDwYQcCbXExK3WfpDAlOgL/V2aJLTfX9f21wMJ7HXf
+1trHgIT4t/SnyiZKYDeLRcuUjSRUyDj/frOPBE61HCnxtyGhTUQzpWOGEtjV
+h+wzzSahQYHRfXfWS+BHsYl6eltJKH76xv3338Sx/cQhQfJ2EiL2bp5fUyuO
+d/dJvhrcQUKo4beZUZo4tnT3cPPdRUI7iwsT/PaL47c5P5Jv+5LQ8mX31stA
+HMe9C3Z8zOHM//gkGqXE8WzFjZgsTnvmvofeM+Ni+GxWyJ/tPiT0kb0nn9Qk
+hgfifW7McN53zJgw6pwphm9VF+iHuJOQlDLWjwsXw2HnEq6+3kJCVfwHo0vt
+xfC66MwUSTsS2jql2NBPEsMpnZs+OVmQ0GxP6zrhPwTMKpmx+M+EhC49O+6y
+sYOAwUp+eB6NhOj3dG6E3CHga6Vuyi9USejNpY8DGbEETDt05NeoNAmFHk/W
+eu1OwKWGUYdk1pOQkB8jbIlCwIGiHrbOy0Rkb3R1dVufKCbOp/6Z7SeiEcVN
+tskVorhCtvHl/nYiSl47m1p9RhTL2DW/XqojoqYPzkpSJqK44UtIT9J1IvLD
+q/usRURxV6t59LlTRLTG1cd7pFUEi9XWnngaSkRxczLRhdoiuOH0pl1PLYmo
+vily3ZoeYUwm7wm9TCaiv9e60vcmCmNgNWF/V5yIIk0vVhMHN2Br2YOpZo3K
+KDiWf/5mphDeNv+vxumXEkqRVG/a6yyECzaul8usVEIlJZZXKXxCuFSuR6Ut
+RglN9MYY1QevxzH12TbTQkroMGPuyFemIF56cmOqX0kRRU0NLGh+5Men2XbN
+c5Ly6GbSyoupFH78hnqseO1bOVSrpHC9BvJjkUgl6y3n5NA/R0+Gw921uChK
+OOfasiyKK2o7Gnp0DVZ5vDR99KMMStpTu1gpyYsDJ8wJsoel0N0/H17GtPBg
+/46O5ykqUujlxfl0mxgezH1KR/BopyQSRHTTniFu7O7hNVlHl0Sp8nei/j7k
+wsGzIU5BP8SRTpHm/KmCf+i4xFv6MiAgm/O9i1mKs0ir6qdt/25+VHLV4zs1
+eQbF9A37GJauReLZne+ezkyjjyquj9T+rUEDD149+Nw8heYyV+QHr/Chhdwj
+LcyhMbT7obyfWQM32q1pfMv0/CB6dmzd1w6lxXqc+F3q1/cMpMzb2NtjWV5P
+QTQJo1/xgF0WckUl4Lr5Qt7Zqxf23wHaSxqRrgt15oWbNsnb76kHxSpZlKDX
+neborGjp5ckO4Pqm//ze6SHz+frm1VftXwGX51err0vz5qLbVe/6m8+Aqx5c
+KR891oKXHwe7EwZmwMr8xMN+GX5w0quANz9+FizQPxwP7OUHM97qu768mAMd
+irKW/7zXgXc7NaW2bfkN0reww5K3CYFrfuQEO99/YKjjaK25LAE4DY+WB/As
+g9Lr4yO6RwhgrX/Jl9MFy2Ba6zOzuoMAjgZQWQ0/V8CXmiCj44ligFIlHZX1
+mAvKJK+tiBoTB8KPZelSFrwwb/SVOilHCgQt/rFRv8QLLX/Pt7TMSIEXJr0+
+hoO88EXHzYOt1tIgtubmOdfTfLD+IVG0fUQaTNbK/0htWQO9o5TlLbVlQcdT
+xWx+VwF4uNY6IvukPKCsLFdK5QtAR/ckUuFLeZBs3v9afU4Auu65XvVIWAFY
+oOw/VtfWwRc7wn/3XlcAFVjZPa5XEJpzaa0kZCkCYW6ukAvk9XDpv6+l2p8U
+QZDFQHz2f+vhMmPwwG1ZJaDSkFtWpyQEAzfHUfjTlMDlRpLQnz0boGjmjbLy
+MGUgZG75LevBBqisFFjddUsZJDze89hyaQNsrZX2f/5WGUTez/dLSROGOQLE
+rEUpIpjQfM7U+ywMdx5YWBClEkFA3pDoey0RaLQiYXDKkgi2XVd/qoxF4AbJ
+4CP7g4ngp0C+3bc1ojDw6pH5rlgiULd5WFlJFoXiX4odUtOIIBu/O7v9qCh8
+HGkj0FtJBL3Lg/PkLFHYoyqVs6+JCKRYc74rDaKwJtfiAL2bCC5USTDyhQkQ
+KXeWH5khgtYZtbwjhgQ4MftOYmSVCAToRhs2exHg06bB5PNCJLDpgPUxuTgC
+POg+FbZLhgTi7rkPjt0mwE3D+VreqiRQ92OfE3pNgMmFpXwxVBL4oxZZkzZN
+gDz18m7PjEnAeE+imp+0GHReyvBWAyRwOOfaBeONYlB9+8iuPBsSePCpcElg
+rxjUiCRmMtgkMCpbva8vWQy+XlazHXAlAS3P5o77D8Tgd3PBy+meJOB35QMr
+rksMts3E3d/hTQK5b38Uui6JQVl3e6y1kwQ+CS8S1InisP9W2fTiLhKQcRSI
++W0tDrVF1+xr8SUB9zMyP1uCxWG2jyrrGocvvdByy0wTh0UrS5e8Oe3beU3r
+Q6vF4W8+pbOSPiQgaGGnbfFZHKa2um/E20nAJnb7FXFeCdgUs7HF050E4p8E
+rg5rSUDvQ9/se7aQAFqMCnrsJAEPxAUNbLQjgX9GZ7vPRkjASDtclGBBAibh
+N6HPTQkoEWbdcteEBCLK7hXrYgmY2HfWr5BGAuXjtVI83yVgx5zw7SiO3wmd
+1ye71ktCxUHuGiVpEtDZ3zdWqCcJ3z8T6UpbRwL+t0c9ozwlIX5Jp79ZIoK8
+b38bHGIk4RvvE8LvfhGBvI/CjamXkpDd+T1WuZlTXzcpfI0TkjDTt7re9yER
+XPlgdvCqhBR0M/jzeXs2EQi5+lgzfaWgrEDPhX1hRLD5woEyoUQpiPjiqYc8
+ieB0a4z8l2Ip+DXwUYPGRiJYscmePvVbCjYyWlLj+YiAmfBgh4eiNNwgN5ax
+qVUZHH1W36xlJQ2NvD7T6lOUwRTrS1ZbqjQU0v3uZbtGGXylE+2lNWTgl+bq
+RUKXIvC/uMqS3CIDd6ULSOyMUgS/Jvup4sdkYPFzt2RDeUUw8yCLIPJKBqq9
+dhgK3KoAIoVjeDfMysDIDfwe9aPyYOnAjnlBBVkotvUnK/mEPOChyn9cGyoL
+NyuYHQrOlAOJKUuv+K7LQuIOUxijLgcExz7W8WBZ+OzdrjPz92SBeHF67gpB
+Dl49QZMXKZYBatpS+xeq5GDmZ1X/RyekwN3k+e1z/XJwx8G3ji2jkoDys8th
+hl8eOhuXfzXdKgkM71zWndguD6lp0UqmchLAWp3we3hZHiorbAmfjiYAf5JQ
+Yre1Iqxi7D4doMEPfsWNHn0XqghdBpT0n59fA0IHXgW+va4IT92z+pU8wQsi
+c86w20YUoaosTM/J5AJJivySTeeVIL1O75WB96z5XVmegspuZeg85iPvIzZc
+Py/wb6BFnwR1a3qkdczF0eEsK9ERGxIMO+Go07hFAk3pnQMC3iQoUiFjyN4j
+iX55yWXbnCLB6Tqz2g9npNFAiYl34zsSzPvaL8EakEetzke66yJUYEHGjpAJ
+exVkP1zH9ylZBWbSb4V2dqug5ig+w7+ZKjBlqKM40lcVNeRdvmTapALN1F8Q
+uiLU0OO58i2PJFWhZtvMq+p0DZSfPtFS+kgVut9knvZ4roOIVOM/7a9UYRT3
+DeMwGzLKfhajNdGvCoOOPYl60ExG6b+Ekij8avBi8+rUsWYKSjUjbyryVINl
+jaW3Ip7QUPRAQH3eohr0+P5psJChhxYjSsefCanDJyfpwWZheujIut8KX4nq
+8F2f0Zz+XT0Upp94XNlOHZb+nJRiSekj/4QCk8wb6jA0rLc+8Zc+ctH6WnGV
+qQHH226Mfz9siDxeL7p4sTVg55+FyFdZhsgrVHRayVcD7o39Wyb+0hD5VQLd
+u6c1oIvQUvh7OSMUCbOLazs04GTKFJavMULRg1X2JwY1oMktv26dL0boRGLb
+iNUC5/nPT+9y+IxRcus/zTZ5TTj+Kquvjm2Mbm7zLvjirwnbR6Jt3vQYo+y/
+h60KojQhebY5VHbJGOVnn/22P0UTDilp/Ncmx0AlQzXEmXJNeO/MCC3Si4FQ
+mEwW37ImBDvLcgc6GWgoufuq9mUt2IjlzMfvmqCf5HHDidta0K4w8RF8ZoLG
+2/m6Kh5rQYmtqi82fDRBCxKGYmb9WvBdi3uSLL8pErh1KdVJWxvW/BhIlfMx
+RUKb7lHFzbThrT+56T6HTBHhx7PWD07a8E/+Pm+106ZIjjotuDtCG64/auxl
+WWyKqDVbksKRNqS1UrqGp02R/o4ADZNObZg4nqIdwsNExquxTf+GtGHEzXye
+k2JMBK0f8CYK6kDc+7vWW4+JNv1syrNX1IE1Zlnb1CAT2Z37bCFC14GVI3sX
+4pyYyPWtUFy6uw4c0x9/8DeQiTwi1JR99uvArmbeJIWjTOQtbVZPOq4Dl0PP
+f3x/ion8fIL/3cvVgfeOvfFVzGSiyJGWY09HdWCo2sRn6ZdMlK1o1yfNRYZP
+7nzk4nrHRM0uLzceliDD/ww7ff77zEQytS94NDeSoUJm63GTaU68E9b7TrqQ
+odLW1xePLzFRoEpTc98+Mjz0OjlpOy8L1Z5tTLmYSoaCtx7kjomz0Ld6y8lf
+eWSYxRZZKZBnofWzz1ysq8nQNvtHxYoKC+3wxlJLX8gwJ2DP4Uw6CyVcAFFb
+58iwOSM6Y9CYhe431vc9EKDA0ujWbZ1mLLRCfpq7V48Clwxq80psWUjD14y3
+3poCE1tLaRmOLLTlypN9Ml4UGHfsCJvhwkLHXjJfHg6lwHGfhIh4dxbK/Vej
+0xZPgQHXyJKx21noJd30vOZ1ChRyS8wk+7DQtN/jyZPFFChvEh6e4stCcjcY
+rp8QhfM9Slm5tZeFLNseVRp3UaB1qmr2AX8WCuI2lk77SYGCLxgPpvaz0GWj
+qqjRfxRYrBqZSAlmobpAw0/WBCos4jaMVjnAQkNZD81z1anwodKBnnehLCTU
+qX9ryZQKW1QbRi3CWMhwbQWvuxMV6vAeWzpwiOOHqedfuocKQ9SP2Ww/zEKn
+Q8terjtKhWe8XDasCWehB3m6ZL9zVBhz2jT5MIffv39wvj6HCrcsiozlcXhF
+kDYlU0mFLsd8A69zWAPcdw1/SYXRA/4UFw47hVOq2j5RIfAS93nL6f/onWJp
+rWkq3KomoizL4dw+nej4NTTI9eVZmjYnnpci9z59kqXBUg/PDl5OvFNW2oBB
+o0Gxpqbpu5x8ZI/dvZVmSYMVJ7sE5Dj5WpZo8o150KCAvKraNo6PoIFCf5tg
+GvR5S3fyC2ShSxIaLbknaHAuxO88CGChJ5tvk/9epsG2QImhX34cP+X5U6V1
+NHhJRb2tahfHz7CKm+BbGrwnruv8YQcL+cjmVfkN0+CQslxrK2c8H5zMjZYV
+1oVOMQN+DDeOjyrlz+EquvDILke3B1tYaHUkG7Qb68KfR9s//3NgIWfXLL5T
+u3RhXe03qLaJUy+JCgGfw3XhtUfkthXAQrdqM1oYybrQM3+DTyWLhWZUbqaO
+lelCo4T45of6LPQqykGIzE2HjieONsoqs5CKfPj8PUE63HLGzc5MjoWi6272
+60jQoVXQ0LCVJAtpr46U6WjS4UHto+V861koOSHZXYdNh7YVbfQd80xke6Ep
+W/sGHdasDm3saeLMT/p4UlEeHbqKWaSlICZaeCtxSLuEDit631JoNUxUKOFn
+pY3oUOX7+AqzhInW3uT5qTVMhyNGVnOJaUz0vADoaenpQa3z9myL7UykYBMg
+d5epByMbDkn9dWGiiB+pvFqb9OCM6Lpdd+2ZSFWnv1vTUw/upPc+62cxUXzp
+f9GaMXowuc/hWaMiE1nU1jRqtOjB0Ki9V8q/mKL6NwYe6rv14Y/AFvoUZ72M
+2JvkdSRIH1adXY1tdzdF2r97dzaF60Nyg8/1u2xTdEUpPmBfoj4cWH393nmj
+KQo60HHsdrE+7OmNMYxUMEVS6w9kqC/ow6sDZXyMXhMUalM4oH7OAMJLhm4n
+t5ogpacywRpVhvDPrCPhqx0DLbVPjn1hMeBwa2B5k5YRelL+cr/tdVMo4SL4
+2m6/AVp8fNklQN0M5pTv/ST1XA/JpvkaGiWbw2vWFbekDtORG5fkdMJBCO+7
+6qhsyqchz1eHYx0qLeDeEBvZUycpqP2/twKBg5ZwvdLquZoGHXTKoqjlG3kT
+nNx/Yg9bWhtNuKxO7gq1htqHw1+15mui1/Ye4oYZNvBaOs/A+QMa6Lu7xgG/
+r7YwY4eHZ7+5Ooqw+904SrCDNynbX8YDzn4h2SYu0swelrVbUqy9VRGzVzjc
+J84BRu8ayzOKUuH8PffsyXjgCOViwk/zPSYh+6SluYGHjnDMQj25pZKE/JcU
+kjRqHGGdbuWjC+UklDOwu7i80RHGB327olxMQqL3R2ebexzhat0PK3Y2CU1b
+rybM8bDhtXfWX78kkFDlUY07bE82TBjM6/7sSkIdvzabXt7BhjJ+XSrNW0ho
+zCf4dc9uNly+GJtc7khC6pvKJveGsKHBibGbZ2xI6Joo0yT6JBt6aoi12jBJ
+6FgRu6WwmA3D101+mSOR0BWFMO+xMjacbieETSqRUNmFS+N6j9jwSOYNkVF5
+Eho58oHwFLOhG+FW9LAkCXlZ7vZ6182GHcIq09/XkVBk1akxmT42XNiwPDay
+loQuaRXG7hxgw0PHe2bHeUnolfBo3sgvNrSN2Uf8s0xE309uMNKdYsPFAzzW
+XH+JiGdetzling1XEyIPCywSkdJ+1+21S2wY4mNylzBPRP9/HgH+/3kE9H+e
+DALX
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-1, 2000],
+ Rational[1, 2000]}}, {{-60, 60}, {-0.0005, 0.0005}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Re", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"2", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "5.9"}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "3"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"3", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJwtmnk0Vd/7x83jdS8ZEq4hwzXfc64xZO/MKYUiQyQZKqVBaNKHCE1K0Uxl
+ppIkqXT3LpQ5JUOaJJlDxhL6nd9a33/OXa+199n7eZ73ez973bWOWuAe92A+
+Hh4eJerx/7+WHw8M//vngs0eP3pfL8sEnU9uj63+64JfkRmrOQpMEHWlefLi
+jAtONtEVu67MBCUe2vOsny54nWvw3r0sJtBo+Uhz7XLBtPKX3bormIBWY2N4
+q8wFTxzVaPqymQm+FEvugztc8M4Gq2qHXCaIO353JvbdWmz4oi3PzEIZnFwa
+1pB7eg3W+dMi75eqApSrtbMjfJzx4nrLqcwoVbCgsV3Wmr0aj464Z11hq4HM
+CEO3u0OOePRGjNMeseWg6cPkuapnDng4pEO6Z3A54BrAK8ci7HH72zPLH02q
+gz8mdEtT0g6XeEr2P5DWBC88PnZfErDFgQ+rxbdZaoE129iu17mr8IsZ34Kq
+GyywLfn4S6cUiAskPrstCuuAk1XFmT9eW2NCYHri2hld0OIWsiYOWuGxsfV/
+eD30AYehtBjeuwJbVCqHPltqCOQLvtrmeJhh8YzaU794CSqf+oUra8xwaNDV
+jgxBAmh0P3p8dpUZnvx2o9BJlACE/Bm9aAMzLBJ8vPyqJAEck82lnQXNcPdp
+BX9tFQJEbU/tGSszxVfas1pGLQnQpm0bZyljijOeCTS2RBCgy87QkhAzxSsl
+G66aRxOgO2DZtAaPKVYRCI7OOEyAkStj2+kjJpgIydHxjyOAgOgN129VJnir
+p3j7kxQCGA9OqSRFmGD/hrXMpgICXCjM4757Z4wf+N3cNP6BABu5hfhAnTHe
+e8fEvvATAeRa776Uw8b49EWzFr+vBLg+X/rK554xzmntP/qklwA561FzT5Ix
+1jy+cfOKMQI8nu74MmFljOeimH/X8JPgsNjH7jQjY5yhnfGwXJAEVipfekx1
+jbG0/8tRRRESYKfevsNLjbHitc6bbTQS1F8fH+WbMMI/Zh1f8cuR4NMq0X9L
+8o3wcGeJ3QoWCTI9abyPMoyw6avmhzY6JNgaxuDflGaErwYWetvrkaAvTVb4
+epwR7uC3GTNhk2CsX42hvtkIX5/a/PyFKQlK5zWkatyNcEA+2HLBnAQHpLSl
+Q1cb4d6Du2N8LUjw28Jw6R1TI+y+Q6WpfSUJ+FIsVIykjHBs6BjvHjsSVGet
+VGsTNsJJOh/e8DiQIPExVI9e5ODauFbXU44kEP/mwHo2zMHdRD1fgjMJZIw3
+sG1fcbD693RzhisJ2p08yR+VHMx74GyprxsJrvp5GyU95GDJxqdCN91JoJy0
+xazhFgcXf45uFPUgAasrDGw4wsGp+py8Xd4k8NJ6tkV3Hwd/aonjO+5DguT9
+YrG8oRzswTibeNqXBANihfi+Ower9HnvPOxHAvlNv7sTnTjYtGbXkS3+JFid
+7cjrb83BfsWf5My3kKDIsm8VTZeDPxs4rakKIEFXkkngdxUODl+efCFyK5XP
++4TjT2U5+MeHu1ghkNJP9X1WqjgHz63tvlNK8a5d6lXbean56wd0Vm4jwY2K
+/d/BLImD+LUkn1LcJPCSf+lPErvtTjfSCSLBoquUxmgPiZ3nGrefotgwI8Cu
+ppPEdrSF+M8U+w/eD7rRTOLJM2Ney4NJcM7kX0JENYk3HBF+5kUxjluX6/yU
+xH0XYUwsxeNNGTVqJSRObjXcf5ViVYWfP37nkvi63mJYNsWuIVZCLddJPCe3
+3yqT4tjS01r5qSQ+v/pH2UmKHyx2ORxLInGZx+q8YIp7nHVDPWJIbLRF6xtJ
+8ZLLh5L0I0hMb7lmMkrFZ/O9Np9/B4n1RXwjrlG8ny1f2+VP4r/sBztMKc46
+EjrwYCOJf3Uf7X9B5d/6ulzkpDOJY/mMnllRLCAjpBMASbz9zOfSPKp+xgEe
+q81MSewUqHjjH1XvoLs5O+j6JG7WULVzpDj99+TJH2okHl5WFh1D6fPKzrao
+cimJw4WN+bMo/WbOX6i/KEHiVHZqaRmlr9bnb0M7+Ulcre/m9ojS31OHFLf5
+Q+BhgZSi7M0kePzizZrxXgKfYTeWO1H+GZBQ2fW6i8A2Z/sXFr0ov/iEn8ls
+IfBSsTJW1iYSHJygNa2tJPDGVbMOxRtJUGC9+ad6KYEv1hg0yW0gwYdTdyT+
+5hPYyC99UxjlZwt153WFFwkcsKcnvcOFBDv3XA2PPUngPnXjjtE1JLj+bCBl
+038EDpU9b/ZrNQnmNyS9EQyj1v9QEVZuTwL9W+1jnwIIPF9TWHfQlgSbRzQl
+yzwJnGI46qO5igTPE6pdA20I/FdpNcvKigSjLdL7VpgT2Mx97WDuCur8MLel
+ShpS8TXHjPymzvuxR7zvuMsIPM2YQN4kpX9jTJ5pDxsvPHeo/adBAh/PtdHg
+DRu/5Im06FMjgVG3gpNTJRsfKk7WeaxM9ZPJx4Pel9iUHwLuLpUngYvihH6M
+Mxvbv/wV3SRK1TsXL5wwY+P23X5CfEIk4GGfa07RYOPjTT9CVPhIUGajv/fW
+oiHm7detlp4jgMLOkIdVpYY4RxUNfxogwNSkcULjTUOsmscr6k7106YYfo+2
+M4ZYtG69dTHVb2NTb830hRjiyPsykortBOiv6FohpmiIq1ycVPALApQJr8eu
+8Qa4Rau8WzCNACmpzFTvvQbYqGl9w9uzBAhVHNka6GeAr9ommcclUfuzT/If
+MDPAP6trH5yk7os4zyqHy8P6uJC2kWuxhQA+3alLb3XqYz4DBT8lL+q+2Bkw
+UFCjjw+ebL3z1ZUAAzELJ5/e1Me9t6b3iNkQYF2uWdPnDfp4fb+r6dByAmiz
+hTL7oD5+x9s3+06BAHxP3oePGehjsVbW1etLCPCocZ8kr4g+HmltTmug7kul
+qTsbNCr18OHx/7bB52wwaKPatVNDD1fXxeW3qbNBpmVS/2eGHh4qX7+rXIIN
+NhqPTrn+1cVa04anbWcNAdasZJi908WTnrwvAuoMwRURL3v+WF18dKQcXdlh
+CByaz5Vc/6iDq216h1KvGoD5VzPP6a918Ey43dR8jAEoRX4NcaU62NDcDdMC
+DQDzgV5f6Elq/k0b/mU6BmDq4mtFYzMd3PTD7eiHUn2Q5f0vsfGCNjaM7Fcs
+LtMDXu4haeCYNs5uOv7e4qIeoK9pul26QxsnyM+ahu7TA4esrldegdo4Npdj
+mKmvB1xVzCaCRlnY/sEnm9hMXbDYG+63sJqFO7Mz2xb36ADfvV+MDHm1sOjP
+PQyHei3gmfBTjPenJhbofbHkcoYWcL0y/621UxNfiNbOTtmrBeywwvlDJZr4
+yUJtaISsFjCU3DRSvUUTQ6dPE8t9NQFfyZscX64GNterv3yvXR0UjGHZk0fU
+8dGltRFZaapgKjx79vu0KuYXuDofOL4EhB7o8Zf6roqbksWa7sYvAV2H1F5Z
+t6jiR7bvsv/KLQEvEm6mXS1SxZ2ysY8er5QCKdeuk+u3qGLnP1wHfXkGcD3D
+6jiQqoJzw8xa67eIgAoLEaRmxsQEp7Ei8cWMdaZ94tmjUkx8K+/ArtXEtPUJ
+V4HNHcNKeDzX9SHr9qS1ewjPnzO3lHDL0d1fok+OW4+k/ub8FqXGi1eGu430
+WqsODuQ1f1Kg+umeq1qsh1yhqZBInccUi/qF+ryv5v5c7LVNSFXAPLnVe+Ln
+33CfynzrXuGggLGo9N3LPB+5G+EHhdz7y/Be4cZ7g0YD3KTLdSlHjsvjbuG+
+V1EaM1yt2IPtRd7yuGReemJ3+Cy3ejtLuYuQx9vBmi1vH/7m8lmcuGf+dSnW
+fmgVlkP85R79BBunLZfi2PfmEny//nEVa8akNaWXYuOrw317TvGgp/cyfTcO
+yWE7LcFX3ct40eyx+aHSK3K4dsq/mST50H61CtG907J4oPVC6jwUQFJioW43
+G2Wxagb3XjBXAJVMyF5tzpbFU9uEHLRXCKKfVRHaBu6yOCE8zaVQSwhtD2E7
+DhXLYPOm6lDymzASXv8lZVmiDBWPeMVfJxGUZ3a23clPBgeF7dvOXyyCvosM
+B+eLU3zvwU28RxT538lLCNoujUU+dJ949FYMLVz0aLwIpPEne99z+uri6MZR
+AZkqOWmco9aZ8nafOPrgEpitVrME19Icj9wWoqGDplLDrjeWYCfdjqH6tTQk
+p4I5sRFLMGzV9VA5T0Mbx5kvv6gtwUcro4ATXQJNdjaK0v9I4YA3jo1KqyXQ
+hRdH3Fa2SOFKoneXUpwEIop0r+7Kl8IinM23HMsl0JsLH7qvH5PC2gKesjcH
+JFD4kWTtBg8pPOKeV6guT0e0ILO9c/pSOIfeu6Pdjo6cTdL/eX2UxNrJuUkN
+6XQ0yLRzTC6VxOZdMr2ST+koWWgy5fFJSTwX5rbj1Ec60hq73d4XIIkF7OqF
+LOboqKbDVVnOXBJrWDR2qMkxUBD+F2zPoNaT/rPcjs1Agu5+voONDBwFn3ln
+2zOQjfqzIccjDDxwtHypjTcDxU7JH87TYeB3u0yWq+9kIG5NlKhgJx3vj00L
+XX2Qgf5een9lWyIdWykULT6OZyDz7Rztl8Z07HpSX2v/GQaKWnH+sep3CWyV
+LWt35AIDPRQbdfgvVQIvcRP40Z7OQOMf17R/BhKY7n3jWfIlBjK8VxhsNUrD
+zTt6b6alMVDYMeHpazdoOPNxVsriOQY6I6tZs82Vhsf7orO8TzLQ3bs26foC
+NKzNw2u/N5aBmmwDgqcfi2Mls3YRh0gGGu2KMeGGieNEsbRrX0IZiLH/umCS
+iji+NrUNr/RiIEL0Sdv6VjGcXJbgHerAQG632nPlk8Swgv87vy0cBtpvNhX5
+zUIMXwLrPusoMdDFZimHolFRHIXy/tXzM1BZMFsuIksUH4WI33GQjtrm1/ZZ
+eopiVy1zkNVIRzMXd5YLiIniMvos89s9Olqql5zY9FwE14bcVxM5S0fmL3M9
+L+0TwXftwr4p7qSjQ+PdM6wPwnizGY+3kjIdXUtafDV+RhjPqEblLpmWQE+V
+lS4/gcK4fNa6XaReAs2v3WS2pkAIL4kv7REJl0DM3gPCMpuFcNHjzcNKKyWQ
+9ZELHZ8YQrjZOJK0F5NAsYVN0eHRgvi92ez5/kwaug2HHc30BLH801Nbd4XQ
+0MsOEXmerwJ4Jljws4I+DQkI2VWkOghg7fmlv8RKxVFS4NPfZbL8+MChxLNt
+BWKo4E9HbUwdHz5WecHePlAM1Z6fvuIQw4d7RH020hTEkBgiVnT28mKfPdKO
+FQmiKEUx/9Dfhzx48KN7NeEognQLWdPxOfNol+uzWslEQbSrIzBdljaPyMbx
++naWICoWzDTJj/iL6itc5L1qBRAZKBNVbzOH4n564zxBAWSuyDsr+W0WvSuP
+H9Pfz4ccznb9zmBOIptI34Wd5CL3brpnn0HyBNKFX9bybFrgSme+a30+8Qut
+XQTRk4fnud3F9cWfX4+j5erXFFncOe7Mrcg6i94RdOz7U1O20Sx3K8v09oqz
+31FmVfChra/GuDixT26o7zpab3ljv2xfHlcfGcqYDB0HUUtlty2Kn7OeyTqV
+fm57PlhM4Il9b/LQOs/OTtE5kAu2BB0WtP9Za41OSd6/ONYCEm9on16BPlpP
+c1//q2/+Bs6Y0kv2L4xYS3qrF4RYT4Di+qDBc0Pz1rUfvrcldE8Ahc7mMLfO
+Bes4nxz+7OOT4GXVhjZm9aL1hK/mlq+vpsBAl3NjvTMPaPVnyXmtnwV0zd4d
+igw+cOZrv23Ur1lw8vXJ2zYxfMAuoGBf2sXfoFK8R8FwiA+UbdVpaun4A2yu
+FD0kMT+4FKSXsDpgHshXfHenbRYE634MPwjlWwAy/xVaRyFBIBRy9+uJnAXw
+xEmWJ1hNCESHGli+HFgEprYr/zzoFgL6j5YeyqjggVKOKQ2ctSIgeXr23F1R
+XnjlBNIZyRIBvSadec98eGHUMr3tP2dFQEb5lfcf5nkhV0NvsvCGKKBXLCPk
+VvHDtbd1PUGLGNj5+4+D5gV+KKn0b1+YvDh4Zd7lZ/ydH5Zq/fcq118cHHty
+7bT7CQEo07E8SueHOOj6czhrazvFnU76wZo0YGrh+2QvSxDi96bvLm6jgbGn
+iv0pdYJwYHwu4v4HGlj79+9ChoIQrJb1Cz4nJQEKLD/J3AsTgu2cVxwnRwkQ
+UHnDpkFCGK4TjTTVuysBKuePenf5C8PqHivG6o8SQH6l397B+8JQu8VWjCVC
+By3PmZnC7iJwbl6sRNyXDvQXF8rkskVgSnzMc6E4Oki2/tKgOSUC0w6/fViU
+Qwe9x7g9xvaicEZ6q+BEDR2sQpl/bC+JwkrzAtDRSweZ/45JbugXhUoRfeIe
+vAwwB7awAs3F4LrAF+wQRQbwjAXW+06KwfD8/rOCRgxQilU8YrvE4Dv9Mi1D
+Jwag8/LsOqcnDg8nv5X/6MMAO1d1H888Kg6Loz/fFg5jgFdx+Oq9JnH43p+m
+cv8gAyx/eaukUpkGbzg0SjTFM8AxvrjXDXtoEDeH0vzOMECXzdYvXZgGzZ0K
+unwuMIBp/KrpQSkJGOsd7fMynQEuVqnR/gRKwOPZ/50/d4kBaNY2PRnFErBi
+y56iiTQGSKgIrLCZk4Cnjq3QFU9lgAVOfEq/PR2mLJhrt59igKh72UFnUulw
+hJjsdD3OAKOsagvyMx06jCWcPRjNAKFZvZLt2gyoeo1e5ryTAbqVBPsPH2BA
+ToNyZzWVn9dlzecqmAHzchSze6n8B0SyV/cISsJdJ4o+5RszgKbDw7IyPUlI
+XycXRlNmgMD4KpUkN0loePHhBklBBsjErae8oyVhi7/tsweDdNC18H1aL4N6
+/9yGvtEGOpCznApYfEmNx2eseHWHDs49kjHLpktB+ZHqlJVBdNA4oZEVaSwF
+NeLVFrus6ECEMJFw8pGCae8C90lI00Fskcf3kVwp2CkyWWJQQfmpP3gdapCC
+OXoVf5YlSYA/GlFPUn9JwVvrfoArGyTA/puXzpmuXALXxoisXP2DBoo/5c2J
+bFsCayPfJx8pooHhZY+DPyYvgefryHnr3TQQlNZhGft+CZyaXkI/PCwOPE7K
+D9SFSUN5ydmapnoxcOGV9oYbqdIwtnCfRfpRMdDMv4Ib/lgaJve/mJ3QEwMO
+x7zTpPll4EYBnoyoeFFgHnEN+l2TgS0rhycbZEXAgZKiO2wsA602vRHfXyYM
+Hvx8KsfXJwO9Tp3+WOkqDHS3fxzJI2Vht4FQtvNxIaDop3R1vFYWGmdU8abX
+CQCva/oCVaOy8MDFcJ5iDwGQ1mG1J11GDvJki8XGf+UHNHc/e4sAOdiyUy17
+/wgfWHTI/BU/KwcrO9ZUvxnmAd8IVeelWvKwxOFeVLvIH+uQ8/8sZdfLw4LU
+t5dh1az10NgXA+mD8pCnapAhemjGeqI4Q4pRLw+9fvyeG2uftOYzUPwgFL4M
+wg+Jr5OfjVhr6Mhtn3mkAKFLgE8lu8Y6RI2W2GbPhDyPF3Pr/Ge5Q7HD0a3h
+TKi9mZn4Re4PN7y7fsfby0zolbBJzfbtHDfq5kmXpkEmdB3j3sxbu8hNYgrL
+1pxVhgEXI7/ie3yoYBlfTlmbCuQ5Gr5tx3dRNC0y313HUYN8i/3CUq4yaH+G
+reSggxoc32DURFbLoHHyNBDxVYPSJauerTKXRUM+CpkO8WpwoF5yN1NVDnXf
+NfetalWDFyRD3daMLkWNrpFtlQeWQ/ljjkE/YhVR9pXRuvvl6pBHitZ6iaOG
+VA1M/zTXq8MBl62VbaFqKPNFjPboF2r8yTXL1htq6MoQLUlfWAMWN1aNCAgt
+RylWenaFmzTg2WKeGLW25ehwdyg367cGZI9Wq7gEayA37W+l6RZaULtHX/aw
+Iwt5Nvx283HRgtxTzh11e1jIJ1zyl3KAFvw0qXqs/jILBZUBdsEJLWgzKRny
+uY+FomDmnactWvB9q5OCbZw2uublm/M1hAWD5XxuDOTpoMy/+21zDrEgfULl
+IbteB2VnnurZfoYF7c93BGj+1EF3e5+oTjxgwUWP1iNKHF2E9spnCCywIDDv
+3mBRoYt6k9vSdS5qw6HpznK7R3poQO+n8WiuNiyL2V56pFUP/WwWeF9aoQ3l
+Hm1+EPhLD83IGC+x+qINtQ5ZH12lr49Ebl9IWaejA+0YplpOmfrI4Mn6pAik
+A4WKDYJLIgwQZ3Oolvk7HVii8Hcd/1kDZPrvWM18rw4UC722XizPAEH7Yv5E
+MV2Yal7/xaTDALm/pcVe8dCFBcV552imhihqsO7g82FdKFNkXibcZ4gymas/
+LuXRg/NbWd+Pzxui1261K/fL6EGJlX237ixhI/mnr/hYK/Xg3C2XVmFrNnp6
+qurM+RQ9+KLb7caf82zUw7UZG8rSg/IqrBdjOWwkPvnCzf6xHvwuuzH3cgUb
+bfbFcnNf9eBPG8O2xS9stKj3/NY2Uh8uG7spwZQhkFaAFT/XXh96+9zn9ikR
+aH3as2B5H3343upP7GlNAt2af6LbdFwf6mTe9ww1JZBNU3mZ6Xt9KLpmDXOv
+J4FOhJfUikYbQJ6OOFnB8wQqzmLrBZ02gI/pQQm3LxGovb34LPemAUx+bx7P
+zKD2A/fcI2oNoJwqWv+okEC1jKJPn5YZQu8PHjNhLwg0bqsDzAwNIe9gzGPa
+awItO1hwO9XGEDZ6/LY510ignd15IQ5hhjDC/+U7iw4C0R5kj9+vNIQzk6uP
+GQ0TyPjH8g1ibw1hefxfy6ExAvkty3oU9MMQZh/P+5UwRcUXd+vwMjobZh9r
+8gxdIJCre4ZA/BY2LNwsHdkvQaKDiUqhnyPYkH7OYGuNFIluP71eZ5bMht63
+l289KUuiieXXUkZK2PBgRFhOtRKJ6g+toenxElDoeaovQ5dEyxUjpovECGgX
+J2v3S59EhyuvfdGVIaD/3zEPLptEOv8GS3RZBDybPvVSwYREsbekrhURBDwY
+LZZQZEaizlUr4nUtCOi20sVCy4JEyQnJHrouBBQ8P76ux5pE3Zol1kWeBKwL
+/ySpvopE5q87WLoBFNeInXO1JdGAKGtOJ4KA3NyR+P2OJHI8V5Opc5WAHRMF
+VzrWkSiT+JlUmEXAT4zipHhXEs28ldmnc5eAiXL+pUx3EuXJBNnqIAKGlRw5
+wPQg0eKj0/qFtQR09JoPjfckkeemh7I67wjYW+qyvnMTiYSu8Q1o/yDgeXGh
+4vU+JPK31H1bMErAXYO/ju33JVH5J7en2r+p9fgrZhI2k4h+7FB2AS8JhyJd
+ViX5kShY5fYZbXESLip6nDrkT6JKXBtZIEPCxlSVBd8tJJIJHPfXViahiMGd
+asMAElXnAFKbJKFC77b53K0kUnIIVSiwIKF6/AR2DiTRgf4Ufm07Eo6HCMZ3
+U9yYXD6S70JC76U8u0K3kUhd90sbaxMJBTSncr5SfLhBEOUHkLDM9bbn6iAS
+vdtlUMDaScLaO5GFORTr0j1S8yOo/R6frflF8fH7Rw+zYkj4NrXsHRFMoi7X
+nG35iSRcygz6vZVizkTDWtZ5Eraa1/idoPjUxUmT/KskpPXd17lOcY+xogor
+m4TPTt85nk2xRbuNSP5dEh5dPpaSSfGF6J2/tMpJOHBk64EzFA/JX+jKQ9T8
+g1e9dlO86umTKq06Em5Z9yVgFcVXfL/dzXtHwtxmVqkIxePzIpe0PpFwMEt5
+XxUVr1Mm8V/eDxLm31Z6uY/iW8Bru9YYCYvkDeqkKf7d/Z9b3m8SXpGSKCqk
+6uF6PN9Ci48DvQr1ko0oLlB/o54nzoFK24oSH1D15KmZoWnJcuCto3616hR7
+hSjP5Cpz4KBl455TlB4lwg5fNbU5UN+LvPmD0muLc/oDTUsOnE9eyzxM6Vk+
+XHkt144Dayzmix9SetPP9sZrruPAuRWX1vVQfuC+MfLU3MqBCya2FiqUXw5s
+S/KJ3MmBM43sLA7lJ53ZLv+aCA6slprgsaL8lqZ8PDQ4kQPf5bxdRnqRaOfu
+loO5dzjw4U63ofwNJFLl1YiZLuPA5z8UrcIpf7elRcfZczlQw6EkTM+NRLBS
++dSPFooT296dos6HnPju65ozHNhSGPGk24nyTya+GfmPA1/PPpoMoM5THEcm
+p0bECAasOt/TaU+iEe9nd4MVjWCP8Xu7EhsSvSwQ5eZCI7iiv/7zP0sShTvk
+dWueNoJjL7eUmBmQSKPrT29kmhEsfcmottYj0YfdLoM1GUYw0eMhDeiQyC59
+6ldwiRG8StdK19MkkUKvDX9emxH0m1T6Vk71m1dxXzW1VI0h/69NdwrESKT8
+XD5M65ExPBWxezi2h0Ahy1TdViFj2D7atPL6VwLdi2SZba4zhs1HhbeWfCKQ
+laEp/4XPxlD49GxYQzuBfG5uuL4gaAJnR99Xv6onUHpcSsN7TxM44dm34fsD
+qr86COjH/zaB/+5a3WPHEGiueWzkq6UZ/Pvta6OPOIGePajd7nh5BXS4caTd
+xN0Q/a646BaqaQW9mt/6vtmuj5alBhibJFtD+eWj/L8f66INPLK/EvZA+Cvi
+3OwFQx20qX7/sTVlq+AzpmpQcgELNR99K7Ljuw3sM16WxfXTQvGrCut69Ozg
+0X2GaaXymmjU7d/YlnB7uJKsOy35Wx01OHtKG193gGKdC64K/Oqoz0Nrd9A3
+R1ggHBawKLkcHVg9WzUstRrec9vlkWKjhiqSHWKjrJwhoT3EE5Osiiy66BF+
+sWvg3OX+g88yVKh/852B14vXwvMdYVtO+Csj56S5qe6Ha6EXk22p562MQuaU
+krSerIU6/YGD7zYoo5vdW+88qFoLCYH0J6zVykjy3vDk6861cMXec5L9Rsro
+l/2/hCk+F3j/wWjbM1FlVBatle+yyQXuMEp78biciVqGnFZc3OwCK2KLwaUH
+TDTiF9bQudUFWu75cyDqLhNp2pWMbdvlAj/u6uK1ymKiS5IW5ofjXKBP4NTZ
+j2eZ6GChS13eHRfokn/gaVgwE6Up7fUdKXGBhyXWOAcHMFHJuQs/yXIX+Mo8
+PCHAl4kGIzuknmMXOLZ5/5SvGxP52Gz1aW1zgRame++FrGSiqEfxI/IfXaBB
+e/6h3eZMdEE775h/twtcbtw/GGnERPX04azBIRf4123bw9M6TNQXJ2HCHneB
+HGcZ8asaTMQ3zX59YNoFhu1/xF+gwkTK2929n85R+Yocv1GhwET/+14D/u97
+DfR/StZwhg==
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-3, 10000],
+ Rational[3, 10000]}}, {{-60, 60}, {-0.0003, 0.0003}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Im", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3."}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "8"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"0", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw12nk0Vd/7OHAiU+Z55pqne81c492myzVEZGzUgCZ6Z2qgEhWShBChTEmo
+FFLcZxsilaFSCplShkwZiiLf+1nr9/vnnPWs9Zx9znn2Xuc8r7U2YV+I+8FN
+TExMIYzD/85m/WE/NjZccK53YYhT3iL9U92dOdpfF3ySWWAyqWiRHpHVuZj2
+ywW/Ks888LZskf7QU21NdcYFb1urOrS/dpGu1N3P7dbngo+HdI7e716kc7+w
+Jt1+4oJ3u5g7dbMs0Qcr+f9DhxjjpX6SCz+6RI+5UP7r/Dtn/GbtQlex/TI9
+QezI6+IrTjjvXE2+vudvumyLWmGonyPmskF2uvGr9HWlIBFLbRoeUFLxLWde
+o+eFkraVT9ljhWwiqpfboHd8XrzW/JyKdZObRKRtmUF6i0hUQQ0V50uGt0o5
+M8NRc6OgmEdUzHHviyBhOzNw559ElLtUXJO+nmZ+gBmcD6zPP0ulYrNPQh21
+cczwapbNveoQFYPf1YHmVmZoZZEUviNGxcaSzIO+rpuATkRZZ0PtcHPuU9fu
+UBYYOvg6IjzYDq9tgCI5mgWY8rw8jx6yw0fqw/pLLrGANe8xQb89dti+S1zg
+5k0WaJ29mWToZIddYuI93wILdDxYPD+tYIev17n5Z/KwwoDu3UN+72zxNdc/
+LuWVrLBqyGtmpGuLFwLz4x5wsMHJw8UNsVq2+OrKtXF7ITZYyTNHb1VtcfJj
+H9YJGTb4xX7E7qisLc6o+pBA0WeDhc9trgVbbHFZiG2O8242+BEdc4D3uw2+
+Zd9S8a2aDb68WLr6PdsGL33xcXY+wg6Nnv3DGaw2WLaw/lbPPAesFGctnN2w
+xuYxFO+qfxxA+uXJGvjHGjvRlFtzuDkhO6Nb1XjeGmt4hf66rsYJJ3pfBPf2
+W+Ovrc2SPP6coOT7cE3ssTXWr5Q479jDCZd2XhS/6W+NT6Y37KO2cIHTfm23
+HLoVJhVM6T3q4IbhByub++qscLOpbMSbL9wQttb4XLzaCtceuXt4eYYbbt3Y
+rppx3wqnnSksOc7LA7Ntp/6lZFlhDlqBKq8bD1zXaim/dMIKB5HOXlz8wAO9
+yz6cJ1SscCZ1/vjgNC/sj7/Q5JCMcGIFv/WdYn542V99OD8B4W0H/7iefMAP
+JO1JwV9xCNuvDZJ96vjhzwfX/YVnEP40WdWq18EPKYoyrP+CEF74N8iyfZkf
+6um1do9tEKb96G91sxcAtanP180WKDhPR13j4oIALKag0YkJCv5QY9h4dV0A
+6MZ39TKGKPhLxWLFbQ5B2H4x7P38Gwrms/xa/01WEM7L84mU3KVg/+ctirNO
+gvDJyzaLfxcFT0d1L7OUCkJCc2XetzZL/FSw2eVukBA03fHnedlgiXVGH5Ur
+RQjB2jnhqLLHlhi/rfR+GCsEweanfUPyLXHak96vC3lC4F5tJ7waYYldZLSk
+VD8KgeTdgQRuFUss5PWwere9MJQncoXrx1lgxwtf9pYaisC3oIavIqctsHiO
+wpiEnQjI2h93XwmxwH4+SSm3totACstH7YYdFthJnu3Nh1ARCI+6M0XVt8Bf
+3/aXST4WActg8l6/UXMsSFLO2mwoCt3bApxikDnemki9q2ovBq1qupsEjM2x
+/evt2U3eYvB84+/T20RzzNO4WBgSJAYlFddVsKQ5vjwZfZApUQyiOBuYN5bM
+sFzF+4yNDjFQaxR6GnXPDDvs3r3pqq84xOg0Kp0UNMOdP4cuPTonARHsSf3s
+nGZ4d2BjZ2uqBBwd9ErN3DDFpn25Ez+LJcAnaXqjZtoU77pNlEh8IwGkCbH+
+5VZTfMZ0m1arpCT05QdfDz1jigWuvZ+58lwS9Pik/wWPmWCC0jMlDz5pyJDR
+f6/fZ4LLKuol7FSlYVXTsXSlywRX/ihy9KJIA3Y46X7huQmmq5PNe0OkwfVC
+T8mNVBPcRbsS7ftOGo4uJ7nWIxMsyzvHm5orA8X967c5c8m4S86kIHarHHBM
+CUd0ppIxZ5y149vDcnB0RdMpLZ6Mr7RF8lIvy4GBiN+ydBgZ70y6w1uC5aBp
+aw1Nx4mMS+fesRZJysNgY/CC16oxFou8H6uZJg/ipUM2RZ7G+PTvA2bz6QSQ
+bXm1nuVkjG9EldVfKiaA0nB17VUrYxw9f03JsIYAOuJJmpFEYyzRz+/f10sA
++3iykONmYzxQxvTYSVoBIoKuj849McJcJYf2L91TgA9qNjFmwkZ4mF1o35vP
+itBnSzLT4TLC1dJym5tmFGF4r8SyEpMRrhclUD4yK8F01lwQ77QhdpniPbFD
+QwlYOW+5jTQb4sc5a6+HopTAYHJJ7nKoIXY1SFbhUlOG1Hsl9HfvDHAMh2FV
+b5YKbKffw2HtBtgi+5tKzAMVEH1f3iSKDfD85hhpl1YVyFmravWrMMCPHzzK
+d1lSgSJX6By9bIDfK22ClW2qULvcO7hgboA1P+7abSysBgNWnBuCd/VxyRHn
+9DM16pDnxc1cnauPXdXPXeN4pw7+R/hYvNP18T8nUcGmGXX4ni7CnhOjj42P
+7VCsV9aAuXECn+JOfXyty33kY6YGbEo2ldMX0MftCuMK63GaoNp3hOJxRg/P
+thVqL1wkgo/K8z0a/+nh/jNu9bVlRIg/wXWeOVAP+63fzm/sIsIE1z38wF0P
+8/punSmSJEGZ2Xcrbg09rA6p6c8fk4CUu9f2xSddfNTv9mLDojbsnnxw4Fan
+Lmb+0t1zhVcHrhluxIW26OLmxQ20V1EH5jtyXxAe6mI5MsU2xkUHHv3ro569
+rIsFy6yPVBbqgMFeT5qxESPWk/q4xUcXDpQXHeLV0sX8H3Ky94Towo2VxYRv
+BF3c6fDXcOSSLvxKSX2VxqOLmZKeFITU6EJtY5fT/JgOzsoT9X8hpgemio5b
+76Xp4Llt5z7VftWD82+iS4xGtbF8qq7ypiID8PNyjqR0aeMTtn0zC2AA+sOS
+Dg712rjAvaNffMAAvi/WTvpmaGMBg4T+zSKG4CK1oBXtqI1Fwy2OHE8wBMnD
+AY+bq0jYj+fyq4koI3jC7ordYolYX6to48R1MiRfl7nue5yI439fnxp8QoZA
+qWn/fbuIuE/3dt3VT2SQ1E5gCTMm4qzfgnnV8iYQ49VMzfyhhX8p3A82eWIC
+W4uNO754aGG6hX/A/glTmLSW7zuspIlx6jN278sWkGd2efwLnyaelQ86fqrW
+ArYbzC65/dXAz+V6eZbGLQAr1/MZv9PAIrK7e37SLCGLw8eO5bwG1nhlwcEj
+SAFq57WHOf3qeDuJct7OF0GB78alN6lq2Dx4JIBP3Bp83APSKWfVcHz6M0tN
+Q2vgdeq4U3VIDZ8Wnm466G4Np8xz6rOQGpY5VBKjd9Ua3OSMFw7MqmJZ4oVU
+TlYb+DcWvGudpopNtA7+OL5sAzuOD+qTmFXw18MLj9M+24FX3AwX84wyPpi6
+wVL2yw7cstZG3n9SxpdqWQJuCVHBFkumnHqojHkrtEw4XKhA4veebtmjjLtI
+zzNyGqigphTQnOmkjFfaiHF6n6mMJig8+7CxMu6TidBIWKKC+N40B34+ZRxk
+8pY1QMMeNj3sKtpBV8KD7u87jqbaw1rz4BlSmRJePuE1nnLfHn73zrgzZyjh
+sdcD7R4t9jC9sYX57jElzJ7R71W0ZA8fXB12LUgrYfHbl6UWXR2ge7+3wQsO
+JawoMHws5aADvIoM2JK1pIh7BK8eKD3tAPT8uDqLN4q4sqG9yrDQAUrnsEjC
+GUVcZZU8bjPjAAUs3dM7AhXxcRFipsE/B8gVG2omeShipp32f0/z0iCVsv5f
+j4Yidr7HNPJLiwZJHty0u6KKGD3aFqtoRoNLgVLypzcp4v7ZNLl0BxqcuWbS
+KdengBu6dtro+NMgotCheOGFAl5LEjnncZQGx2u9o148UsC5Y8cJZRE0OPw6
+wCMrVwHL91Tb6JynwYGhcI0jCQpY7IKf9Gg8DXYvxjFbhitgQX9d5voUGviy
+p3/i91fANNv0Q88yabBdqvDBV2cFXHHtyvznXBps1a66VENWwAt5c15ihTRw
+sGnclaCkgGPDLlwMuUsDG+9ug538CjisdiN5qIwGlkeGtmivEXApE6HqQAUN
+yOdmR5knCDglLH3HWiUN9NLW63reE3Bu4VfVogc00LrLff0uEPC+SodvvoxY
+5blU0On7BKxSGXJDipFP6NKguGQSsPthhZDx+zSQ/moiKh9LwBzHBoael9JA
+9LfDzEIwActl2V3NLKIB/xaflhd+BDx4+LrXqXwacMkF5mRRCXiLZaPn3ps0
+YNWPOHFEj4B73rYNO6XSYIN6kWYpS8BPC5MSzRJp8McvXV6Ai4BX8zoUtWNo
+sBRc+PvrsjzW+vzluUokDQLDRncLfJXHB6vcascZ9e87RWi17JbHRap0kU7G
+/Gw9t5d4tEEe3za3PtXnSYPGuPz0m2XymMnl8hMeGg0MEgf/tmbK4/Da16+C
+GPNdek1m/1KcPH5zqGNumrEekrNzdF33yGPmCCeVCB4aMN/uy4pylseb3W9e
+O7vmAGHFEkxlJvLY9FFATc2UA+x4mNnJKiyP7+9Rnqe3OIBbkmpv2HU5vEEq
+7Q0PcQCjzOLiriNy2G1byR0rHweQKVAM06DK4V38e9g8kANM1coJDP+RxWeF
+mm5u53WAuK9iTk4HZPH50PlY8wJ7ODx7Q6LEUhav5XQW5160h22rQhNMErL4
+i7NM8/4ge5Dl479Y0yGDW/r0O3S07OGpKQcQjGWw80LBimsFFfLsLl2NEpDB
+nVtO8folUeGiG+vO3h/SeFI6fWD2MBXcA5hWk25L43Cjxsw3KlSYvr6it8Ip
+jcXfvW37dtMO5CcnSjoHJLHdl8Tetf9s4XJme/KZC+I46nkvd/AWa1A5f/Jj
+ma84tlYQFWIetYKWIFXZPh1x/Cy1S73mqRVsMr1YQR4Sw6DTZp8ZYAVRA+jN
+spkY3nq3N6ygBcEJwlPO48si+FPt2s4cCQoIcAVuy38jgu2I0gU+nZbwcEHk
+ZmehCJ4KJPFDrCXMNIeqEd1FsEXsuFrmvAUEBWjbT1UK46bOhqWed+aw+35J
+3IEgITzsxfG487kprKd5vkmjCDH6uVv/RUeZwq0oVuFmUSEsPJJb9sfCFD67
+7CskvBDEEfwHzPY3m8D2eZmmQYIg/sg07vq7lwyLn95w8q4KYBHuhFjlfDKk
+Np7ZZtEtgMtmmwYVA8nQlfp5OOesAKY7UE5dWzUGR8MbGz79/PjE/Lc9AmrG
+MCljax9fxY9XVARePlw2gni2xeTaBH6838HytmSLEbzodZMVJfPjcJEwBdp+
+Izi/JH66RJ0PvxPr05stM4QjZ9mXs29x4+YnAh78uw0gSUT5xX43bvyse5ea
+sakBlJdb39Bi5cbRy79iVkUNYLYv2pB+ZAseEA796PhOH04YL4WPmHLhHnJk
+/7KrPqR1ClDLZjlxbE5Fe6eOPjw5qC0aWsCJx/LbpIwF9eFX2uEaVi5G3JVb
+9+CjHpyaH/6l+pkd+ziLHRYJ0IPsy/9a55PYMSVrL6+lkx48k5XOrEPsWOCG
+SdWkjh6sOXsbO5Wy4e6ugz3N67pw/l5HZHDkZnzK5+q4T64uXN73bOWJCAv+
+Y9bkVLegA6WrvS+j2zfhSTdn2u4hHXiZspxFjd6EY7NYPgS/0QEu0DH5NMaM
+jw42aXfc1YFkqbun/j5mwtk5Q9x++3XgQVULrSWQCaPo3NNGHjrQTRuVuCrF
+hM+mzYqH2eiA4rxpmAXbBlxwjObjVdYBjXuqy7FFa5DBrCNP/qwNR3v33RDh
+XoP0liTJJro2VG7OM7wb+hdq+Y5JrBVpg+4+4YhX1n9g5y3PushQbTiR4iq6
+s2wVnCQsKdU7tOEJPbFmRmAV3CMy07JttYEsxfybf+Q3cB2Xmtgurg2naeaZ
+BQ6/Qf73d0UVFm2oj4w0Nnj4C0wICcWZsySg9MxEep9bhoO3Lh3Z3kYC6tW+
+lVyZRYjuzeRnO0+C8hte34nxC1AucoX7bwgJhPLevW9Y+AlP34kWRu8lwXDl
+q8ovbfPAXG3kqmJDAvta6q1jevMgOqPWSzMkwY5zF4X+mswBG9f5wWVVEvy6
+Hd5uOjYN3meOt47ykqDl0bEiv7of0MOTG0JgIcH1poPnTidPwRXsrz72mwha
+Y56Gz8gToDHs2ftzlAirSy78fTzjEBks+cP0MxFaN1N/rI5+g/Pm97eydhPB
+X9XojsnVrxCY/6xeGIhAIpOifPeNQtudYEu/WiKsOah4nzIegVZD/3/SD4nQ
+7iurd5N7GNxcKz123mPc74OW5InmL6BEPHlbrJAIbb+kux8d64dHpKltW3OJ
+sE+c59JPsc/QfMxseCOTMZ7Juplu00fwkH3UqZlGhMwdMz+PH+2Bmerb998m
+E0Ev+svdh6Lv4N/Af/w/E4mQZZHzfDimC7o0bt9JuEyEzvNnVPd+fAXOlfW8
+OXFEYGnZkTak0Qr+tiGCyheIQGY339h9rhFG6yNPqJ4nQn86+WP93ToI66rc
+uHOWCFSp1Yrnbg/h+jBbRno0EfCl76JT33MgOzNJeiOK8T5AEjacukDJoAZe
+HGHEvwoSb1wLuks5pPi5w4yRz/+addFhSzXF2oPyj4cxXomtrZTjPjrlT5uA
+hs85IsgONd4pHmimWM+NhkjGMPyQM2KoEv+SUqq/Z3V7LBEe+zC/KtHvoBRv
+df7LfokIkMj/IG2um5J6JL5aP4EISofkVz3s3lMCJTlDPyURIdFex0Y45wNF
+WLAv4VcKEeaU0dWe+V5KBpbakXyDCNtZ3XrTqX2UvFJmj9vZRHg2uofgeWuA
+kp/YPaF1mwhyjSFHRBYGKY4+A3kGJURYprdtvOocodQUkctrHxNBrbJL6f7q
+KOV4VCDF4DkR/HJ7aVeUxihPbBMPk5oZ9TkznuZ0+jvFlXTtVF4PERYOzz3V
+LB6nNKX7/RQZJIKy3+8vW7onKKa1Y2q8E4znJbOrvVH+QXkdcSUybp0IDap8
+LuVu05SnX+ROs3KSYF5U7ETSmRlKkb+PEKcICTyXVeqd385Rzu3a5lNEIgG/
+r2JpgOUChZu656FNEAlefv76IW54gXIw07bq4CkSxPgVsRReWKSc9UJu2ldI
+sLBDec9Q6xLlJGU8Dz9k+GzgW9J60DLFjGOfUFILCfbtKnkmteUXJcjyxH22
+zyR4v1tV1Mf1N+Wve/oxAVZtSBoat4n4+Zuy3Uqnq1hSG2z3lv6XnrZCGY1z
+bv6py/he+Kt3dPeuUvJo24Lr9mlDxgHNONreNUr0oc+ajh3asPXbj0eBm9Yp
++8Q/SHyZ1Aa2gPKhi0XrFC8tpaRcFh2IDCSaNU38o1Rv2hSrq6ADWtVip3Kf
+MiFKSKuvzwEdiF/+fa2ckxk1WW/+sRSuA2OGn0qe+zEjv4s8hzbF60BuTVbP
+5zVmdCsmcVtEhQ7wPpXQEbViQYP//ZCYXdeBwyurVOVUFpS+NKdlKaQLreS+
+XQZfWVDCTVl2bnVdOFuXfcX9Iiv6LyxlUNVLF+aeSY0nt29Gk3J8FSkMLzr/
+/bueK8mGDkYNHNro0oVSswHhiiNs6Bq/1NLqpC7srb9l/ZqHHSVf/lZzU04P
+uhtk8tjdORDpWVZQ7XU90Pq3/kS0kAO1s3lP1z7Qg3jLwdfKSxyIW653w71T
+D6wgb9UmgxN5IcWte3n0oQrLeZ7v40JXZFjrt6Qx/m/NBO7VfTxIdvePSCu6
+AXBbWo/mVvKgvN/31HjGDCDu6b6n1n940AXWwuiTXIYQUVF4IOk6LzqruLFH
+39cQfDKVG+QwH3Luk4va9c8QrlULGxfyCqAx+pD9+SBjeLOgVBBuIIAUAvLa
+32UZA4eOIY+DnwCi3txa9aHdGM6XeX6dLhZASktegnNEMpzIz7hmZCGIfrhN
+7o/6RwbPBPGJ9iNCqOCOf7l0oymktqp53LouhPSbVeNT1kyhk8WEHlwrhC6N
+8nE/IZsB9axvuhCLMJKuyBFme2wG5NBstCtbGJk0CLRXPTAHqV3SN+dfiqAP
+f8PTM9osYURH3lFMRRxxso54fK6wgoCUDTMRV3F04iSTt0OvFUzNDRKFToqj
+lG8xPX1M1rBQmSvA90ocGZZbpfhst4ZNRKnPbMESSHf0oJf+mjUoqYsG/aqW
+RFMXRYs+OdpCafyy79KgJHp2ReyMcpgtaE30OC2wS6GcQRM+lGsLBnfTtGd9
+pVAvHHB/MWsLdsoCv7+tSyGt7kHpXcl2EEDgvvTBTgbZn5QN531GhanzPyLf
+B8sgDvuEd7pfqBA8/OrQ20wZpGPQVvN8gwoR+QkuHZMyaGeGxJ4pa3u4LMMu
+8uKqLFLalWzC3WgP3NHf2ZprZBF5mrq9ftAeUgZerOAhWdR+8dfdor/2kJUT
+N1CvK4f8pOSLOfUZXpTYVPTkgxxSLjxDvZPpAFqnRm5U/ZND8rs8PJIrHcDn
+6LDNJyF55JAmT0hh9PMDr8Hwo7k8sqb2RLQwfJl35gHJc5s8Au5/H+eZaLBX
+M1+156A8Im8l3lcWosFY4lmJd8nySKTwr0a+AQ1KTIMFtxXKI9H/PJ8P2dAg
+aGrXlu5aeeR6ZE+ivDsNNLJdWF3fyKM8xRn9vXtoME2zWO8YlkcuXOJZuUdo
+ULmq9ct5mXH9MOrvZfjy+D3pudecBBQ//+0gL8NHer7cE46yBNT9cOsYYvhp
+mWNtuF2PgKySeaghDF+dyLXhn6QSUC+9PO00w1/zulcoHDsIyMJE5fUVhs+O
+tb4LVg0hoK4DzBmFDL9N+UnmUWMJqFaL93MTw3dBc/4dBzMJaIHZ7vEUw3/f
+Yu+txd0noOiq+Chphg/3if/ULAICSnrk1PI/Pw6Xk3c0vyeg07GSbv/z5W6r
+84mj4wSkIswj+Y+R3/+hrY55jYDqO+RdDzF86nOYb1KeXwGd3h7tMsHw68d/
+XuJISQF96SkuiGb4dntanv0esgLK7cvi1GL4963q94izzgoo6N5w0K//+bie
+WJK7VwEFCmV0DzH8/MYt/EN9mAJ62up98gfD147f6lkH4hWQDge5QTqBBm2n
+WA3+3lJA068K5CIZPrfldd4v+UgBZXFZWv1j1LepIC3V5IUCsrRtHa1m+BIZ
+9zf6fFZAYf0TI3cYvmx4rfAzckYBCWvKGrcyfPl06ZFrjYgici/Fli8ZnjRK
+WD37QV0RlYUNbK8k0uCxjFXlkoUievJdP+6LLGM+qd3c+gGKyDyPUqu24QCF
+WbPtD2oUUftIw+e5WgeQJxqtdr5SRNkvzpfkFDHWW2O02uygIuo+51/4JMUB
+sqa4L2uxKyGd2KPZKNABks01be95KyFxAUsBK4YfTw8H0gtWlNDNyT8aPfb2
+sBL2YKaRWxmFD+TJ/0e0h3DO39Ij8sro34DXWKOgPRzXu3RGjqaMrpUvtyQP
+UCEgroh866YyYhUnJlodo8I2tZGqG6YqqOu9uq/6JTvwer2yzc9FBf257fa7
++rAd+AXz/5Tdq4J8Sp5y6LjawYEnFO3Siyoo3IMYvSxmBxEo7/6zbhVU+tJG
+hvmeLWT77CgaClBFQtqD/168soGx+A831NPUkGlI4NAVMWuY0JwxmC1WQ4PE
+DymC61Yw08naU/VUDfVbBgc/Yfjyl7CBoPmgGqqP1A5xrrQCjjupyVvV1VFn
+tuTvQaoVEOtcL4eCOtJ2hYNMZxFETLafbPihgSLHR7fNcFtCngytX4xJE51W
+2/C7O2ABbdteWpwQ1kQ5sR/Ha8stQPxZ6yZVC020wyvu0oCLBTxLbE5KSdZE
+s2fRmm66OfzTbLi9X1cLSTdKrUzomIHKXnMWup0W2mY5Kbe22Qxc058fFPfT
+QrN7DOr39ZvC7bU6jY4LWuhO89EvapdNwbqj5olRjxYiGyp3XR01gYvBD19y
+RhKRVvyrYN9SMlQWaGseuEJE/Mq1c/9dIMPHj5VX6flE1MXH2fVxJxlUKBXu
+oS+J6JTkr7xYQTK85CsbGJAgIbjkt2lHjDFwPyqcf1BPQk0n/qMmHjWCV6ec
+uDWZdRDpbqS+argBKEiFLpdx6aC5CBJ3ra8BnK7PHtQQ1kF83LfLTlsagPrG
+5EMNVR20j3XlSg6HAcTHxXtquOig4MkRW3K+Pthfe5GnfpMRcy1dv/BBD1qK
+KLpqurroVNIrKNyvC9LUQMlSU11E57g/Pe6iC2HjySxqtrookPK2xIOsC4oa
+gx9UvXXRkdfeh27z6MKFB1GnVaN10fTU8f7Nz3TA6llds0q7LtKcNN7NaE2A
+3qXvpeyvh1jJjzZbfiNC2P7LfuGH9VDKoZePFBn9pPrvvt0vQvUQf3QaweYO
+EdJlLwQevKSHBD417yXuJsLhY90ni+/roSeDQxoFfVoguuVYjvIvPaRdnD1a
+8kUTgqklw8pX9JGF/MVQBU4NUOpbHQtP10db/C/7B8yow+djLpMvcvXRufFj
+FR/fqoPtjaWfBx/qo4s3LH6a5qiD5Jg1S8kHfaRkFurDoaMOrTFDyiryBohJ
+uKf7sL8ayDaIH1GpNkALP/2dxUdUIEBCfpsVGKD/7jtSvF6qQEW4qvHOdgNU
+qGz3qP6BCpiTjFhSvxggXo/JWuZzKuCX75GzvtkQtdSps+2XU4EbMcmve7wM
+0YXlq7xmgcrATWXVil0xRPJKnKVaAkqwvWCLYN4mI5SwFNowsqYIOf8EV55y
+GyGWTd0r1ROKoFFLaJmVN0J3XNLGnmFFcFCj7PSjGSGbbzkvtU8oQizX6STd
+bCNULucbcr1PAf50zk0PmRmj6b7vNpVAgIt6Q4kudsbIqm3ScuUBAfgzOtWe
+bzVGN98X7vO+TQCVXRUHMvyN0X+ES0nbYwjg/uPwgPNlY8QpTfSi2hKgjP37
+67p3xujRmz0aEx3y4IcGytIOkVH7GtE9ZFAOvhW+dmAOJaNNM3HMrc1ycJz9
++ffgKDIaIL4otbwnB5c6byo4XiOjogP3fqeHyUHVTu9spmoyuqEvu7uLWw64
+Tr1LOMZkguLuXORwspGF549eBtlnmiCv9fsBC63S8OnLkYlzd0wQV82hIqNK
+aVji5At6et8EaaodtMm5IQ2kfZ6B6tgEGUkvNbYckIYCwdGDWyZNkOGncyWp
+rNKQGPp3X5epKXrsuL1hiiYFfoakXd6Dpmg5Jq5EbUoCIv3fDlybMEVfh1au
+C32QgPSrYTtfLpiiqZLzt8SxBHR+e7bDhN0MuRrz+x/PkADrDHs/KR0zlN1Z
+93ebrQRjPe/1HooxQ7T/pHTrisRh5WnatkBlcyT02oTCFikGPtOyCQskc4Sb
+jldLBIhBnVwZjiabo4r2gEaKpxicvoS1053M0QWfQa1mfTFY85jhafzPHDlc
+Vd9V9FMUmOaoryTp5khmR7VM3XFR4FD+Y93pZYFaSt+fiz4jAkE+F0/77rVA
+F9zGBKuOikD7Ff6qsUMW6GGBueqvXSKQuKBC+BtlgTgu+EeVIxHgxh4bqoUW
+qCxEL7qLTQT4d1Q8j5mzQBR6wqmBG8IgcX2vgWG8JQpedX5wiS4En2rELqdc
+t0THma4utTwSgoyBzs8/si3R3389TXzFQiCoZnGuoMIStbSYPH11RQi4QOIV
+33tLdOzyWfMeXyFYm363Z0qGgp6IjTxWXRGEYQe7K/mPKYh35/TgQQtB8GAS
++RkXgtBVVz5P43F+iIp03JIVhpDOUtRXxwF+KJo9p3z/FEKlVnc1Dr3lh6WB
+Kd+3sQjdPHmz7MVzfkivw00yWQhlRY9PrqXwQ8+Jo+k1GCG/ityTPhb84Pmt
+2XhCwAo9zfoEb035wPvVibNOT6zQj09XqA/nuUHe7tYSe50VsqlNP3hjmBum
+4MXhlgYr9I82Ih3fzQ1nq8W9LdqsUGjHddGMh9xQcpuurd1nhYbM9a+4/8cN
+SxFcI4JM1mhImCcQLW+BVMUCmz4na/Qzn5ByhW0LdEa95Tj01Rp9yXex++vE
+CSP9PXOJE9aoePQCxhacsGT66WP5jDVqz7m7I1WbEyRWB4vmf1sjMXmLZ75C
+nHAgfBqd5LZB1qH7syL7OeDvMfZTlw1t0D7iuOjYMQ5Q22MxWXzZBpklXx9T
+zmGHWKt77aOatojl7WTiY2E2aLlpTZ/WsUWPRhd4PTnZgG2hv+qXoS3a198f
+vLG+GRILeG9xIVsUaGKRGzy+GVJYwoL1ttuiXpOwx9XPNkPeC0uhC1G2iDZw
+7vvgvs3wlNazk9BhizrrbrXtrWOF2W0bc3uC7ZDvUl3g3mgWeFeRhIRC7RAt
++mdiVhgLVHNKXm+NtGN47vi9j0dYIKrRQI8YY4d0sw81HfBjAS7dw2F/0uwQ
+Cr36ps2YBZT5P6yk19mhsSL9rKLFTbCzs4z5FSsVHa7Y+Sc9ZBO8dvQSMsih
+olvcCkXWkczw3VPl2IERe+TZ7JZ1jrxBD6P9bv4hQEMeTK3pj2zX6E/jqecj
+zB2Rl+yc7+vmVbppH2/orvNOiHPsRsPDoN90kvCnfTmVzqj0627P0ehluuPl
+P0vDj52R9xA7ZTB8mR7wR/qySp0zCkjqujd4bJmeP+x//1GzM5Kt0F6e3rVM
+56/4sdj2yRnV+Yhuplgu03/abcQtbXJB9lnfFWo2luhPIlXuuni7IOsR76bP
+F5fo3VMOJmk7XdCW1ZHTe84u0ad3HXn9yd8FndZl2zoZsURXtn04t/+oC+pV
+4idzBi3RM/hNyadjXFD+n8NtpxyX6CfvubSX3HdBT8vIllL8S/R06eM7ph+6
+IMftyeYjHEv0h9dSZ3RrXNCfiEsq95mX6JPhvQIN2AVN7Fx/5Li4SPez9vd7
+/8EFfWmb9376cZEeUR07Ld7vgqrZ9A/kdi3SU9VKzu4edkFr61l2l14u0l/x
+/iiYnHJBs2s4av+zRfr3GB5D7XkX9LGOucP78SJ907J2W9iyC5JI3z/uWr5I
+lw1y9332xwU1SGm1OxUv0v/f/jb0//e3/R+fTfKC
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-1, 1250], 0}}, {{-60, 60}, {-0.0008, 0}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Im", "[",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"1", ",", "3"}]], "/.",
+ RowBox[{
+ RowBox[{"NSolve", "[",
+ RowBox[{
+ RowBox[{"eqs", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Phi]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Phi]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".01"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "2.7"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", " ", "2", "\[Pi]", " ", "3."}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], "\[Rule]", "0"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], "\[Rule]", "1"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "_"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "0"}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "6."}]}], ",",
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", ".005"}]}], ",",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "5."}]}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]",
+ RowBox[{"2", " ", "d"}]}]}], "}"}]}], ",",
+ RowBox[{"DMVariables", "[", "system", "]"}]}], "]"}], "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"d", ",",
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"PlotRange", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "60"}], ",", "60"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "6"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"0", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}]}], "}"}]}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJw1mnk0VV/Yx83zPM9T7nXN83y5+5oyNkgUkaTI1EAqUimkkspQUmkyNCkN
+iuI+G6kImcpUhkJmMvMzvOdd633/uXd91zl7n+d8v3uf83nWOsoBB933sTAx
+MVUSP//7b9kVNbq+7oafCFi4/bs6w2gvvT/p9J8bVnGfvap/Y4YRndUwkz7v
+htdOSHZE3ZlhFG2nrKiNu+EynYhTbE9mGKqNXXxbOt0wWfuKh2PVDIOv2kbn
+3hs3XLyeOL53fobR/VzoMDrghlWHl5SW/GYZ8WefzZ9pdsU128orRC3mGBck
+Q7/mXXLB0SqTl55sXGAofKQ8jPR2xlqeXz9Jxy4xVlWDxa11nXDs+Mu8e3P/
+MXIidbY+G9mId7ZdOj4kvs6o75i5UvXBAf86+LWOm84McrziJx+8dcBCPY0N
+ok7MEEY1CY5/6YCl8PtzG7YyA9/d44hW4IBHOElyHnuYwTVwdep9mgN+uaz5
+YDmeGWonONxfHXDAviWmU3s+MsMnVhmx+5IO2Ew54EilGwswtFHWqUh7fH3h
+h6hmFCv07PsafTTCHj9muhieG8cKTDme28MO2OPJT5aNqudZwUYgXMR7tz0+
+YsRSb5HNCp8mbqYYu9hjstRIWBlmhfoXM2fGVOxxhJPjUzlBNvipX3DAu9kO
+G5ybdkx6yQZLxgKWJvp2+BjF+FWNAAccD8krP6dlh/3JOjVx0hywmENFTWp2
+uDO8otFclQPmOUPtwxTsMOVAU1ONOQdMd3ze/IDXDr+buX7KeR8HjMbFBwoM
+2uLPqqfLv5dzwK/q2cuD2bZ45UXo8OajnFCxvav3OpstPmv8tLtznQsW87Km
+T63b4G37egaH+blBZ347W9CyDZY+UCrALscN2dcb1UynbLCw38X53WbccKSt
+OqKtywafs0n58PgwN6juLFqRfG2DM/1VeLMHuSFpV6LUzT02uNlcl8W7kwdc
+9upuucWgY80Vi+9843zQ+2KRvbOUjj+OcTYcW+WDqJWKD1LFdOxjZKn4j58f
+bmd6qF1/SscfrG4LCuryw8TnE2tXs+i4yfei4PJhfrim9fFZ0hE6Tvzjqnh7
+mR/a5nZwHyHTMW1gZDxNUhDCbFSgSJmOmWNo7mPqgsB0ZTRqUo6OjyyEhHpS
+BYFCOdUbJkrHZ837BX33CEKM98N3QUx0nOUkcMTkmSDIw/g+306EuUo5na6r
+CMHe5LOVjqkIH2zf+TqgUgi+dBWH3L2AcKN8k8PJOiHQ0R0WmU8gjn/5ZHv3
+hxAsf9+892Eswt02MU+YR4Xg6gZ5trVghANlY+PNxYShjPHO/rUtwheDBl3P
+BAsDZaTjmuU0DZMvxMV+khKBmavo99AQDf/UPapPVhUBhmmBwfUeGj7zx2Pl
+qq4IeCRGtUzV0fCWcB++ZAcROKMkKJ5fQMOiLSJlq1Ei0O5plyXkS8M9DxMH
+xFpF4ELV85yBz9bY02Q2MvCWKFTe38P/pdwa37qrnej3WBRWToudfPLaGjsd
+jRQNficKEdSYnQfvWuNj3mvsT1pEwb3YXmwp2hovKNsPjPKJgUzBzwt8ZGt8
+veEiNe6sGDy7yHPUMMEK3210d02NEYeB4PI/4jFWOLr1yZ3HF8VBYeMh98WD
+VngqLeBjW7Y4XGX9oVvuY4VvDNXxhn8Qh6Mn7484GFrhpqpDA6dWxcE6wszf
++zcVH5JeeumTKAGNW/e7xCMqFoj0P/A3VxI+UfRZhE2p+ET/Zu1dbyXhw/p/
+Jfe0qXjq57rUwGdJyC+8RsYyVBz8+vCQ4agknOQuZ16ftcRzu/B/XwykgFIh
+WnLysSXeIZAQNVEtBfF6FarHRSwxZ/GfROVVaYjmTOni5LbETvZb2vyEZSCs
+2zPtxroFzhXHvW9IMrAjZWz97ZgF7v72pPLpJhnQGZLsmvtkgd1k9gfV3JeB
+zrsR1yJjLbDsJ5lLI66yYCAotxbRb44ntdzMeEvk4Lq8YYthpzkmYZmPxU1y
+sKTp/Gjxmzm2Ca3ZnTAqB9jxuPvZD+ZYVyuxO1VRHjafbc3PTDPHc6ZK1f4X
+5CFsLmVzGTLHj0txl1mgAuR1rd7jvmOGHaWRaaScEnCNiEU3pJnhPOU1nlZN
+JQhb1HRJTzbDoby0/1wslcBI3HtOLsoMb8ZTk/HeSlC56a2TnosZ7r8QHsub
+rQTdFRHTnkumeGfTpH2FvDJIPeqxzd1uiv949Q4ZmauAwsfa1SwXU1zeFFF6
+3kUFVHuL312mm2Imm+KkBV8V0JNK0TymbYodq+lCuudUYGOymagzuykeD7rV
+yPZNBaKDr/2efGOCc/TZixPCNsB3im28pZgJHhi4Lv0Fq0KnnY6lHo8J3vLz
+WCOtTRV6/aXnVJlMcApPfM6vcVUYy5oMFhgzxhKZ9m0psiRg4769pa/KGLPO
+1W2qOk4Co+FZxfORxnhXvEF3jwUZ0h7nM5qbjfCqBNJP7FUDD8ZjHFVjhI18
+dV6kL6uBRMuzSglshO8kq2k0iFHg1sqrT96FRpj2aSDtixMFcjdDw+/zRnh4
+Ohp+FVPg3Vxb9zTVCJM6rCt6r6vDTzr3ukiBIRZmH3mqe1oTcjz5mIvvGOKF
+cNULiXc1YU+oIKtXhiG+3VfQKYY1YTBDnPNWvCEe2GlY0cesBZN/lQU37DLE
+cvsuSdgkawFLqoWiobAhvhr4csOle9qg1hlK2xZrgNcKxnYcYNaDHeQPuzUO
+G+Dn6uI8/pJ6kHyE5wxzkAHOPipvdFZbD4Z4HuMX7gZ4u+nprc7eevDEcpDO
+p2GAd3AetJsp1gOdO/521e36+Aar5eTMUX0w8t/uZGqij+9vetbyT8YQAp/l
+HhDQ0sfJ/319sWRiCJmLMxcGlPXx8WjeNpNthjB/Na02nV8fBwgd79uaYgjv
+Kr65TPXr4S9n9jgIMRuBxQbnTY/T9XDl76V3DbNGcKYuLt/kty5+c2JfzCF2
+U/D2dD1G+6aLNZ6Ia06STMGwV8bRsUwXC+WpTmQ7mMLgzLvhndd1sSXNXuR4
+sim4yU5rxTnr4tRmi1lLATOQCdn/uuqVDvYL9jkcpGwObzg34y3ntPGlp1+k
+Nf0tIfWa/LWdh7SxX9DLvh8JlhAkO7YnwFcbm32+u3rlsSXI6F5gjTLVxh21
+R6dUZiwh3rPK4caoFk4vl3ucmUSFTXmm9b+2aeE7qPd+7TMrGLZR6gxR1cQx
+myLrlPppkGN5/u8vQU2cLPUTb2JD4GE0MbvlPw2c9ubwyz0SCDCpTNC0WQO/
+vfrTZMUcQRbXDnvWMxo43yNupvIUgk3M4B4dqoG17mzYtO8KArZlkv+wpwZW
+WJK9WXMXwcHRmZhv2hr4xNX4cw2AwKHhStGtLnXMIT185vwKgpVP8+UCn9Xx
+lzvLtAUeOrwC36/xr9SxQ+9FHQlpOsi/1BwMuqCOTx/uTtthRIfmx2kznVHq
+uDkt+eYxOh2SHywxbfJXx2ZXMmaom+gwm/5Z1shUHZddzDV6tZ8OT1J01AtU
+1HFurDqb3xE6+CdmmsgIqOOryHi5II4OX6P3bmUaoOBUjYpagXQ6nDlY6xfZ
+SMEhN8I4KXfoYBKsHzb4gYLfveTVb8+nw4Od60l1aRS8nevYr/kSOuxw359B
+O0XB+/N3+AZU0EHApf7+qwMUfLbd7pNfDR0+2hq9IG2n4KHjiw0jjXQ4Qb1V
+loUoOGyzkwN7Ox10jFlqebUoeOuhVdHCbjr0ax9oOyVJwbrlN8z7+umQTW7s
+/8dCwZwFUi33RuiwRdF0OnBCDSvufCU5OkkHDqmc9bYONXwk7qA3zNKhTIid
+36VaDev9+Mojv0SHI9xhMowiNfx8xqqYdZUOaiwtavq31fAjn5eskUw28HPZ
+3Dj3vBoeSpgqD2G1gbSZezaSkWrYR2atZoTdBhzHOLdc9FPDzNy+WjOcNrDW
+H+G76qSGW8cduBK4beDNr+8hh4zVsOelxrt3eGwg5Af1+B8lNbybeWUb4rUB
+pW8PEz351PDDzJLcMEJ//8yTXrNAxoOT3/Q2EPoiPnyP+oeMhzAuDiTGo9L2
+whcNZDzckyRoQMw//5L2QeU9GbevbzFLIa7/7En+l8w8MjbVV3WMIuoLeMj/
+g4t4RZbHhEeNstiA1O2oP7EnyfjgYLzgzDodGjK6piaCyDg4ij85ZYUOCZdt
+1vZsI2P7Y4eDSxfpYJH0mPe7NRlXT4l4xhL+TZ0SknbUIOPfGTeFWgl/fQ51
+G+owkzG7hNeBrQN08EwY52EeJ+GWrQty13uIPLJW+lraSXgrWZcnroMOdljm
+6okiEq5jlmOyqKODdat6kOttEt64ZHVQrJoO5kNm1orJJNwU3Pj7ZjmRv5DX
+2MfdhE509n1RSAeK6v6qGy4kHF0/6GKXR4cNZkezQ0xJ2C1Hhy/1Nh2k/NMd
+hQRJ2O/pjLfzRTqwFH3L9WGoYsOXV98XBdBhpao7VueJKs7co7fPZAcdFtrG
+3Zmvq+LU0wWhSW50GFvnZS4IV8WmxiFvr5rS4ftmR99pOVW87UfF7dvcdHg0
+icUvxG7APNccjFcLEDxgbRzzCdqAMQc5O+oWgjuSPVU62zbgMInOhr5UBGm0
+1cOtGhswV+be1IKjCGKvmDcodqrg4Gh3ww22xPNB91XSWzMVHBCafuMK0MDR
+tsL3gqoKLth5y8KrgAa2Xo1Gu4RUsEyblMKmKzQwOz3xm3lIGUesNpb82E0D
+5W8aNLcbyvi0iLD3I1YazEY8XPgzp4SHau0Us3ZYQ1DUbz/hP0r43p/dL2ft
+raHzhPIn60YlPJuSkn3b0BoqEu5m3HyihNt/pSS2CFpDavYt/c27lfAbt8Zt
+q1+tgPleZ9ZJVyW8aK/4vvWDFUTlSTM9MVfCYttcWtefWoFP0Y0GNjElHO66
+LOFx2Qq2pKi1RV1TxMfJabocHlZgciMv71uoIj5wa2g9xcEK5B9siNJwUMSH
+nE9PhJpbwcg7ReHeZQWcHSTmbahkBY2Vd3osvitgbwMfdzkxK3hXL/s884UC
+tljQ9vfjsoKEP5IuLoEKWIo7xmjiHxVCJjKl860VcCXTuiz1LxW2LokOMUkr
+4I8v2nz+/KSCgqBQ4tt6eSwSvuudVQ0VSiy4QNlUHifyPr6lkE+FHPukyyeF
+5bEdFnYxyqFC4ha2XW2jcnile6vwg+tUcN/PtJRyTw7f6+B8lJBMBbPDpz7/
+jZHDu04/qlmMp4LiyZVMm+1ymCy7mlsVS4Wxa4sGi9xy2ENk8rfPISo0345m
+3tYvi5lET++lhFKhtGD2WyFDFls8U+p02k+Fe6+O5HDdlMVF7MWfYQ8Vksqn
+wvZGyuLz3L0FF3ypEPYlwpLhJotb3a3/5e+kwraWMW5piiye8rspLulJBYvu
+kPZIFln8g1PmbIc7FZSGh/IbfsrgTrcTd8c3U4Fjdv9R9Xcy+Pkx3WZ3NyqM
+r/XbJlyTwfjK/RguFyq0cu8V6QmVwd0ObnP8TlR4L9bXa+4ggx/azmQHbCTq
+U9z9IkOJ0IOA2R2ocF7jV9zksjQ+mnKkZN6OChHGPq7O36Vxt8e5RiNCe6AO
+mbwX0lj7xEYPsCXqc/EaXr8gjb3NxVIyCa3s+f2dd6A0fn3Av/wtobn2bEsq
+tpbGuY/7NVSI8ROhTR5C0tK43fW9WBuhW6M3bwidkcJv1o+XtNoT9cXX/6uu
+l8Khetu2yvxvfSkuWOmRFG6z15cqcCTqu1GTGntWCtc8+2ob40wF8pnjP57s
+lMJlMV0BVa5U+BisptCpJ4UZzidcfQl/9m79sY+bSwo3XtdedCD8Y7FILDTr
+kcRc/Uw+p7cT86sYzQW9lcS/M7OD2An/abx/qDcuS+Iv5n4C7buocPInqpuz
+lMR2g7Z9fvuoIFs9KUoSlcSFtvV/hEKIegtzfDxGJPBF/jPavAepsHBqZeRV
+lgQedOfRbT1BhetBTw1+H5TAZb2CL+6dpoLRFu8Y4Y0S2MS9kuNlIhWOKJdw
+H5oTx/k5A2VZaVQQ5gnaerdOHC9cqmwLv0mFomnxmw0PxfE9djvbs/eIfKsi
+Kdru4nh/utmxwBdUCN6vu3HkuRie8j7MPPGNCpybu1Olk8Tw+T81O+60UyHf
+9PIPR18xLDKh/OFsHxX+cI3uK+AVwyfNZkdHZqjg9zQ/ITBYFJNi7vQIylrB
+avr2unSaKK59UxC9iWQFt0+yiVVJiOLBHtqtUl0r6HALeKhcLYIDsmMrhOyt
+wGNKvrJbWQS/eavQdO+wFTgbZ67v6BLCjulCv8yarCD0FOdc9m0+HDKzKYFx
+3xpSxEnVe7fwYWHqUvPm59bw7JlNphYbHz7GQxUcfG8NE51xxoxQXhyv4rFT
+vtUajpjOHu2z4MHC/5wSb3HQ4MRU77xaByf27171Wg6hQfb5tU9TKZy48OCl
+o4HHaPBeQe5GKeLE79m2dFedo8GKq5epyyMOfHvYvdLvNg3OPK4/FnGMHW/2
+2B04UkeD8wHvF9+Is+KA+PEqO3EEj5bavsTVsODpsAzrMRkEX67OZTnEseCq
+kjyu80oIeEDPvL2fGYc5hjVmaCJIlS048d9rJmyskOLMTkfw4tVHp49BTDji
+bqCnpQOCRqff0pdlmXCdTornHhcEG6Ysoqw41iFsa2927HYEGo/V5s7lroCu
+qKdTdzCCsLaATHG+FRC7m8h+IRzBc/Yc44LI/2DvfHmu0hEE+gFi0bU2yzB6
+l1VePBaBmSzzglDfAiRITlhypyCIcaLeeOC4AB4LLW7CVxGUHTtmalQ0D+xk
+zUusGQhorePHvE7PAX3VzzmPeJ85XO5cvCM/A0PY78L3xwieZXoOaidPQ+Dj
+DopEIQLRnOaW8ul/cMCt9DqtCEHv89rnvz5PwYv6yL8ubxFsfOdwO9xgCgJR
+5jadUgQ+pxNF/zOfBP3+1/cWPyCYv3e0xqJ/DD7f0GGzq0Dw8WV4rnfpKEgp
+2736WIXgWuW+0zGpI8Ay3XJI6xMCrf7txu/NhiBkw+G9RbUIlmbdhDr5/8LZ
+v67WdXUIPrE7jC79HoCP1xyPNTQg2KNmct/88h8Ip97dn9iMQMdM5+TOgN/Q
+0hrSYt5K8LUj2euEaR9IjVnztn5HULNTweAmXy+gUY+JbW3E9b5ryRyp+gVv
+Csf8StsRfJ6Xa3wZ3gXKFzbT2ToRBEjxJ/2T7AAmlZZYoy5iPvNVS/3KHxDA
+93Pe6SeCGz7j/w6FtYKRWe9tu18IDOJ+FRRJNMMZygFv1W6iX7C69aE3/hvU
+z4orDBO64Uysmv+PWogSu9Oe1oOA9aNPeo/GJ6DN1J9U7iXy5KSu+52ugIVN
+aesZhO7KMPtRVlAKH3wnvcYJ7SC7VPhhSxE4l3Gc1ugj+pOkQYmRwVtQoSp5
+yJXQWqAjZjxylvZn7CRlG6HnH1zMvBJcQItzfVVgTWihr2wzjrzFNK3QzZMC
+hM63s5N1DmDQeEx4WD8S8yv0VNzP+1lF614pHvIl9NCtPmNy8heaX5vNo59E
+va93MNfmG9bTVJrLXBCh4aLQi/TJRhp/v3NPMnF/qgeUlrbZt9B+PdU+/Jbw
+4+JGPVuxW99pXfPlwjWEX5MkdLl1qo22XSi0BRN+erBtactw6KQNd5bU3iH8
+fv97t/L22z9pla+tBPw7EChWHAwVn+6mXVC695aTyGeO8Xm9tqGPVmHW8YCT
+yJPy/Jvq06XftMV5YxX/FgTed9qcLqn208r8ouNymgh/Yv+mu8QM0uJzv3vU
+1yOYDpks0cz7SzM8nyjH+IqA5L3wi7dxiCaWYOiVWUPUa8ZJqSON0k4E6Dcv
+fERQribo9mzLGM2k9WH4uUoEUxKSR1Jix2mKcVsM5ol+bvscucy1aZI2/3EP
+S9p7wt+dGx7tt56mRRqfe/noOfH86PjzPaF3mnZP4gFD6ymCeO9c1odnZ2hS
+Ot1PMwm+nPYh7e75NEtrnvoRKXkPQYufmsSOzQu0zktynv1EP5nS89c2+t8C
+7eTUo8msSwjs/B8dzkhfpGX947E2Po/gzR71+sa2JdrF8/tTyEQ/ej1QM8HJ
+f4W2t3Vi70IIwZ8Doy+DWFZpR5f+cM/tQ8Cx/1lPYu4qLbBNrPyXP4JjQdqW
+lUNrNP5T/6SPeBLrp1jyxJ0SJiTMovvyNUIgUCKtJ0FnRdvJxfs5RRCELC45
+kNJY0VsJS7dJXmI/mnX6Gv1hRVq9ppRadgSnSrMvuSeyocoy3qriaRpMvpf9
+m1rDjqhbHewmCf5tLJfP4XTnQq0vnMNMvGiQXqXMtxTAj56ncnOqxVsDn7XN
+7zvP+dGrqZk7n6OsIaEkoMRmmR8FX1m5cjjYGqILHwamXBNAg28lQgc2W8OO
+G6RyRSyIriQJOgcrWsOVYjHThwLC6KBDskRxhRXUTas+OGokjAQuu+/wf2sF
+XHrG/I7ewohrIuKSKsG3Z55s/zOWJ4xqJaby/8uwgiN3r18xsRJBh3fqNawf
+sILtF6SGakJFkdZIxhtTGStI+0TZdvuaKPKd9mwbELKCBlZzRsQ7UUR+1+FS
+xmkFDqd2ZoiyiqHqjv6ZgTmCJyOzkW+2GGpf2Zvv0EqFqKInT3WxGIoa+oq3
+1lHh5fh7CZZBMdTE0v8y5SMVNIK7xvL1xZHK7eqGzGKCN3zlbk59EUcaa2Vf
+BLKpsCNbi61qgtBmV468SqdCRhv1YKaYBDLj8XO9fJkKfO6+9hb+EsjrmovW
+GMGvjlfCi/iSJFBQjNza4ZME/9bFyfY8lUCIzeyGwTEqrDnk/Du3IIFUGE1P
+gsIJnkt4vstTXhK9FVYY+hVMhWMVjM8UW0n0uN34SFogFd6sNRj8FyyJTva6
+qSX5U2HKsudOfaokerrPrL+U4CWtE5Nc995IIqZSjwQdgqeC365HHumURF7C
+p/r6Cd7KnRHssWOSQoPxSy2/CB7r01NyliRLodu8ew1ktlBh/9V1S/HNUmi9
+QsgnmODZkclubdHjUmgl+WsZJ8GzEZsZisL3pRAPz/k9SwQPTj+/IyxYK4WK
+tQ9vsSZ4MVogjpV/Rgq5rtVfbiN4cjl81xyPnDRSKmuS+UTw5ql6y79c9tJo
+VOTEHA+hWbRlOzgipJGK/26pAoJXk1KWa9luSCOrpbSYW4TmGesoY8HS6Oae
+IMFhQqe6lD5nGpZG2bvtP10lxos+zbq3JiyD2nuOX0wnrpfFczxtxUIGdV5f
+sZkmeFouxCthea8M2rvFtrmQqPdejUn0YooMOvBzTfwzwa+q6hLB88UySO9i
+/6A1cb+Pkud2znbLoGTlg1IShB9aQ60u05yyKMQl57jbNoIHN76xmtKTRSPe
+r78NEP2BUUG67sROWeQfPNrT4030PxyRymNnZVHQS5N91N1UoO53Fx15KosE
+9MbFVvZSwZ4kvDCwKosqxTXyCyKoUJswNfSHLIfSL2c1ZERRYVP/t86+zXLo
+144bz//GUMHzYSrj1305JEYdqsVEf9TJElHUVSuH+s5p8jleJfgxwO1Bx4wc
+sj6gIGCaReSnzJf03V4evQ/YMef2mMjvzOixlgh5lDUcdC36FZFfb+2Bphvy
+KCLopzdXGZHX3Qtu9cPyyHZhd3BwI5HXWjDtq4gC4nnhyWnaReTl56hfY6mA
+XpinJh8cJPhfnlO8+rICahtr8lJYI9Z73CBH1VsFNGRdlJnBYwVXf1Yv4h4F
+9MU6JCNK0gqybiX8LNNXRFTO7/yHDazgkTRL7pvvisi6JeuPe7gVsV77Ml+t
+KaKhgYPnBOKsYEdYr227qBKaKIAbekS/+/MrGP+gKqEAg0zRvOdW0H/xlHRz
+qhJq6gs8aDxvBXNcK701BsroOI9JV/t1glfv2AoNOyijrNNKFL5n1jClf4nG
+5aOMQnOztqZUWMOIt0yOwzlltOQadzRk3Bp6n5n5VLUoI6abTQ+8HWlQt+Xo
+97IoFTTLfDHeiQ2B80AZ289kFRT8b/rKYyGCT06wGf13WwVdHXirKCWPoPJB
+epp5tQpK2YFbpEwQlMy+3PxWfAOy4LvPFEHw5MOsiZoXbzcgeskw3wGCn5S0
+TZYaajegLNM2+0fE+zSnIo4y0b0BjbMm3WvsJ3hlhO+8FqcqCrHdyNG8QvAt
+VdPusZcqGhus2u+iSQe+piORX0JV0d/PnO/Pm9Dhwr73D/6eVkU3rb+63qDT
+ISHViZn8SBWpWmuKk7zoENMbxHiwqIpMvm1sLTxNh8WoF+MVfCQkXbL0zeQC
+HY5yL8j1KZGQ8i5Dlbg0OhwySIpVdCKh9fJWe9NcOkx8qn9i7UtCu+QTx/Oe
+0SHUR7zT9zAJteefy/78hg77E3LNbt8koSaTc0YyH+nQLzUW9KGQhFI4VnY5
+fKXDnkLDG50VJPSKqZlVrpkO3fTYT0vfSSjv7chEVjsddv2onJMaISFnf5H5
+99106AjhIZmtkZD4lnnWM/108Fzf6uElQkYtrpKSg8N02Erpe5VpQUakwIcv
+Ls8Qx78ubvV2I6Nh58nyxAU6eEcI/VPwJyPvFlE20n902C1MufrnCBkJ8TtY
+hKzRIfANTfdRIpnI30PTg9kGgr28GsKyyGinhWxxH6sNhC9HhOs/JSMO+PdF
+mMOGWE9JfPPlZBScxBv2h9MGolHO0/eNZJQFTe+2c9tAzJ9i59N/yIipV78z
+iMcGTifVD9vOkxHS+i0uzWsDCeoDyVzcauhF263KYEIn162o1cuqoYvpzm6e
+hE45KPb5mo4aOnpY36yPGH9NRGu/J12N8I9dlpvQ14tt2WU91FDop+UH9Vw2
+kL3DJ7dnvxrKvVGfpkPUk/PfEdvcE2pIqfBdpSa7DTzMufg7OEUNvSrdo1TN
+YgOP6A/ite+qoce3Pz9fXqfDs/5SpemXaki9SCSpboUOL883wduPaujGyIEW
+iyU6vNUY9ottI+bnL2m3n6PD+3qmNdqIGponBY+NT9EBDkndYVtVQ+b5UicM
+x+jwUVSPWiNIQWaH7Fcl/tLhy9uNXZdVKOgaaZjnZh8dmleipSUdKWjz8fMH
+Yr/T4cfd1JIubwrCCRrUXw106LLJ97oXTkFjtvezez8T6yf5e6Z6OgUJ3F9i
+fCuhw5DmuNFEHgVlGP++Ul5Eh/EGttZXJRSkJ32eeesjOsyLGYlQuynodxw5
+Mfw6Hbjup6VuUldHVx1qqPcjiP1i90RblKqOXIJOfu/ZSwfhvxV1bZvUUe3+
+wM6GHXSQ0f7HsydKHUWLF+35SOwf7dLN5yNBHa1kJldbCNHBYFcQ2axZHb3m
+/PtDnZUOJuunqlf61dHCO7GLP+YQIPvnrEk8Guj12uSvgwQ/uzfxncnaroG2
+TfsrtxI8GT1cc7x8VAPtM/zsPr+B2O/yTl2STJqo4lEnxYDguc9bv1gdEdNE
+Fq71r+lMCKTef2JRs9JENjs+76t5R/TTF6tSrqZqosDrntNjKjRY0yy/t1df
+C4mtNFcqT1pBYkTRF+5j2ijiCuXm4DFLeP5AVzPwkjY6D29k0rZYwo8fzy8z
+7mojkwZa3WZ1SyDTCt0jv2ij/v8afnF3WcAXwSc/f0rrIO6M1qhCmgXwvXw4
+9aJMBwVaqDEpCJpD7QkXPk1mPTS4/eHVhgYTUJGNnHvCo4daWJJjy56bQExZ
+dreGmB7SkODoaE81AfX14SINNT10ls1/8c5mE0hOSN6u4aaHGkb563e3GMPG
+K9U56jf1UPeqqUzvHyP4mEvTp+jro8EtdL9eiiHIOQTJPLLQR7G3aCyVAoYQ
+9TeVlWKnjwYkVeaaZg1gg0b3dzUvfdQ9e3wttsIAzr44GaMWp4+0qAufp3cZ
+AP19aRW5Rh8dC83TMLutD4xvhp6kPQZo0/VlN28LPYjae977aIgBYuKv+7RA
+0gP1hU6/6kgDRFt9Nl8qrAcZCmeD9iUZoD0X2Ls8W3QhJLzxeN5TA8SctqMw
+2kQXJHjDb5HmDVClR/3nR9w6EOGQ30u6ZIgCiqlXUK8mqHYu9R/NMETxuzlV
+H4MmdIS7DVffMUScSc8Wne9qgl3m7L99RYYIJP4mmO3WBJl+G9b874bISjTf
+9XmfBnyK7yGRlYxQs4uz170pdVAolwolFxuhXlnPkAJDCuyXVtpKByP0Vfvr
+HEmSAoVH1Ux31Rghc8c4jfZlNaDqmLCm/TJCAZf73nyvVAPvu9turbIboyCr
+4KuU7WqQGZ/6tdXTGIndcuX4epYMfA5sWucWjdGUQeVz8roqeDzgFclhMUEF
+EnzHHYdU4daayGIJnwny+ZkpdK1JFTTeKX+cUDJBrwfiPTJzVcGRQtvl7WSC
+nHB1l7+rKpzjiUnRzzZBK0W8jmUPNsByw+RYj6Upyia9YDkcrAKJBj0X3exN
+USZbiYOIlwoIXW+gfNhkimQXrpnW26sA2bcw8PoeU3TKOXvblQ0q4D4a8tP1
+vCnyz36ybN2rDE84B7+WNpuiw2dTXyv7KYM3+vkk/YAZUuhbGS4JUYKBh18d
+mSPN0E9y9GbjXUpwiPPDYMRJM2R/nr+12k0JkhpuqjhfMUO/zg09UNFXgle7
+vLKZis3QOVLwhdR/isBzovlCOJM5+hP/wtBCUhE+vPwSvPGGOQJugzqFOHlo
+/xU6dPq+Obovv9fhYoA8zHILBpc8NUcCUgsbZR3lQSdge5A6Nkdffc7AM1F5
+eCDyex/vMHH+rsLSxGdycDHyv4BvFhaogsTd0NIvC97GOr5e3RYosevARqUI
+GTi2p+nnlSELJH72gmuZlwxkXI7a9WXaAk3VZSwcpctAw8B7H3NOS1R3jSuY
+Li4DNtc3esvqWSIV2bhhA4Y0sZ79vXriLZHBRcnCbeLSsFiSvjWIREUXFCvW
+qW2SsGNM4cK0DhXt3fHB9VC1JJQqPsFxZlT0uc5va8lrSYhJwroZLlR0MFJ1
+NfGqJKxsG+evOExF32DQTcxFEpgmHWplGFRknuC9oa9KArhIyzYNnlboykf/
+xyFV4hC8IzFmp78VaugQDlp6LQ41l4Re9R+wQgrlndo3c8Xh4jRZ+b+TVihB
+KPogb5I48OFt62oPrdD9e6vL75zEQcin8EP8pBUSrOpKk20VA+lr/kbGydao
+qzpH7sCsKLS/lTx/9Zo1Gg8v59D5KwrXfzZ0jGZbozwf3ktMnaIgQrE6/aDQ
+GuV2HhJvAFHgAelawRZrZGmcqsidIgorY827R+Rp6LBJxNAEWRR6He0v3X1N
+Q+yr7A1r+0QgJ2Ll13IZDbW8rDP18BaBXRmv9Tw/0VAEPU6keJMIdPQo/+Dr
+oKGXHJK/skxFoDl6TSlmjYbOqLkp/OUWgYBmH58nqgjpb5zwvVYkDNuYxP8l
+HCRwwDSC+p5dGE4ec+bNikJo8pDEVPyyEOROnCY9PYHQv7/hfNsnhWD258jO
+pnMIcbE9ocl3CEFGKa6Uz0LozM7lDsNCIWg9EpbxFiMU6juaEOYlBNsHqkyH
+hOmIvQWfcQ0SBK/aI6dc3tBRfMfmrFIhflCyvz3LWUpHubH4yiYmfhiB6pCP
+5XT0qutI9b9JPjhVLOVl9ZmOhHl1HwV844P8ewxd3U46Kh9MOz6Wygez0Tx9
+Ikw2iPZ1kCVNiA/SNjyw7XSxQcn54ZfeyfNCw8kmrgN/bNBdUs5W513c0NfV
+OnlxyAadeLDG6HLjhlmL9h/Pxm1Q0Whe+QkaN0gvdedOLdigzd+QYZcKNwQe
+HUPH+WyR2b7vew1GuOC/cM4T541t0avgYltSLBdQdlsN5523RZkl6elleZxw
+jv645remHfpW+480LsMBH2/aMMb07JDwgYCxQ4IcwDHd9Wre2A6xMNPrV1k5
+4OIDgds8yA6dvKL6zmCcHa6yRkUYeNihQJdjclyYHXKqrUXPnrRDU33ve3YE
+sUOJU+su5Xo7pDhlc9C9jA0mtq5P7o6wR9I2ZSt1cazQXJiCRCPtUUKRWtVs
+FCsUc8tc+3TMHvUvKuephLHCyQojA+14e7Rp/2TuVW9W4NEPiVpOt0eGnDlz
+b0xZgST0fTGj1B6FrFxZk55hgV0NT5hr2RzQ0b/20noRLPDV2VPU6JYDkW9s
+cGQUMwxuJ4cH9m1EkiUVdRU664wop4WqUWEnNBnEvO+r2QqjJNnhTDTVGZks
+i17+9HaJYdEpEOl7xgVl39wK6j4LDB2x9oBbz11RMSlMxu3QHMP5/PJs72tX
+9Hv6SLhT8Bxj/7LceXKpKxJOP+3g7D/HuNu75+nLKlcUxjF/cueWOYZQ4ejM
+53ZXFBCqdLtQb47xz349YZbFDcWUU9+oT88y3hwjF7h5uaHH4jbR3sdnGY0j
+jubpu9zQGHeqSt+hWcaYb+jX9j1uaDHJeDz0wCyDZFc0uTfMDV1oPdB02XuW
+cV3Iwiwm3g39k6g5w2I1yzj+2K0m/6kbohim9TxjmWVkyB3yGStyQ5N3RHii
+/pthFF1JG9d/64aG/sZuoM3OMIaPtgmXYzd0//glyb6BGYa3zR7vlu9u6FdJ
+5ZttNTOM6OJzY1Jdbsjm5i0Oi8oZRhol/5RfrxtSt83XU/0ww6gVGH0wPOKG
+6vLILGyFM4zBeH5j3SlifBZ/7lLeDINlTvdz1JwbOvSRS3QmZ4ahEOy+8/2y
+G1KS8XKdujHD+L/vgdH/fw/8P5ata74=
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ PlotRange->NCache[{{-60, 60}, {
+ Rational[-3, 5000], 0}}, {{-60, 60}, {-0.0006, 0}}],
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"eqs", "[",
+ RowBox[{"[",
+ RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", " ", "E1"}]}], ",", " ",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "E2"}]}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "Ec"}]}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}], ",",
+ RowBox[{
+ RowBox[{"Complex", "[",
+ RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
+ RowBox[{"a", " ", "i"}]}], ",",
+ RowBox[{"\[Rho]", "\[Rule]", "r"}], ",",
+ RowBox[{"Cos", "\[Rule]", "cos"}], ",",
+ RowBox[{"Sin", "\[Rule]", "sin"}]}], "}"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ FractionBox["gt", "2"], "+",
+ RowBox[{"2", " ", "E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
+ RowBox[{"2", " ", "E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ",",
+ RowBox[{
+ FractionBox["gt", "2"], "+",
+ RowBox[{"2", " ", "E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
+ RowBox[{"2", " ", "E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E2"}], " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G3", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1"}], " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G3", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"2", " ", "E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"2", " ", "E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"2", " ", "E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"G3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}]}], ",",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G4", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "Ec"}], " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G4", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G4", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "G4", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "-",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1"}], " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G4", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1"}], " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G3", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "G4", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"G4", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{"MapThread", "[",
+ RowBox[{"Equal", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], "/.",
+ RowBox[{"\[Rho]", "\[Rule]", "dr"}]}], ",",
+ RowBox[{"Collect", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqs", "[",
+ RowBox[{"[",
+ RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[CapitalOmega]1", "\[Rule]",
+ RowBox[{"2", " ", "E1"}]}], ",", " ",
+ RowBox[{"\[CapitalOmega]2", "\[Rule]",
+ RowBox[{"2", "E2"}]}], ",",
+ RowBox[{"\[CapitalOmega]c", "\[Rule]",
+ RowBox[{"2", "Ec"}]}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "d1"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "d2"}], ",",
+ RowBox[{"\[Delta]c", "\[Rule]", "d3"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]", "gt"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]", "G3"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]", "G4"}], ",",
+ RowBox[{
+ RowBox[{"Complex", "[",
+ RowBox[{"0", ",", "a_"}], "]"}], "\[Rule]",
+ RowBox[{"a", " ", "i"}]}], ",",
+ RowBox[{"\[Rho]", "\[Rule]", "r"}], ",",
+ RowBox[{"Cos", "\[Rule]", "cos"}], ",",
+ RowBox[{"Sin", "\[Rule]", "sin"}]}], "}"}]}], ",", "i", ",",
+ "FullSimplify"}], "]"}]}], "}"}]}], "]"}], "\[IndentingNewLine]",
+ RowBox[{"StringJoin", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"StringReplace", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ToString", "@",
+ RowBox[{"CForm", "[", "#", "]"}]}], "<>", "\"\<;\\n\>\""}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\"\<==\>\"", "\[Rule]", "\"\<=\>\""}], ",",
+ RowBox[{
+ RowBox[{
+ "\"\<Subscript(dr,\>\"", "~~", "f1_", "~~", "f2_", "~~", "\"\<,\>\"",
+ "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>",
+ RowBox[{
+ "\"\<d\>\"", "<>", "f1", "<>", "f2", "<>", "\"\<r\>\"", "<>", "a", "<>",
+ "b", "<>", "\"\<_dt\>\""}]}], ",",
+ RowBox[{
+ RowBox[{
+ "\"\<Subscript(r,\>\"", "~~", "f1_", "~~", "f2_", "~~", "\"\<,\>\"",
+ "~~", "a_", "~~", "\"\<,\>\"", "~~", "b_", "~~", "\"\<)\>\""}], ":>",
+ RowBox[{
+ "f1", "<>", "f2", "<>", "\"\<r\>\"", "<>", "a", "<>", "b"}]}]}],
+ "}"}]}], "]"}], "&"}], "/@", "%"}], "]"}], "\[IndentingNewLine]",
+ RowBox[{"Export", "[",
+ RowBox[{
+ RowBox[{"ToFileName", "[",
+ RowBox[{
+ RowBox[{"NotebookDirectory", "[", "]"}], ",", "\"\<code.txt\>\""}],
+ "]"}], ",", "%"}], "]"}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "1", ",", "1"}]], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "2"], "+",
+ RowBox[{"2", " ", "E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
+ RowBox[{"2", " ", "E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "1", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d1", "-", "d2"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Im", ",", "1", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "gt"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "d1"}], "+", "d2"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "2", ",", "2"}]], "\[Equal]",
+ RowBox[{
+ FractionBox["gt", "2"], "+",
+ RowBox[{"2", " ", "E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"gt", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
+ RowBox[{"2", " ", "E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"G3", " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], "+",
+ RowBox[{"G4", " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "1", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Im", ",", "1", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-",
+ RowBox[{"d1", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "1"}]]}], "+",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "2", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Im", ",", "2", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{"d2", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}], ")"}]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "3", ",", "3"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"G3", "+", "gt"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "3"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "1", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Im", ",", "1", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "2"}]]}], "+",
+ RowBox[{
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "2"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d1", "-", "d2", "+", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "2", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Im", ",", "2", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{"(",
+ RowBox[{"G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"d3", " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "2"}]]}], "+",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}], ")"}]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "3", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "d2"}], "+", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "-",
+ RowBox[{"E1", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}]}], ")"}]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}]}], ")"}]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+", "G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Im", ",", "3", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "E1"}], " ",
+ RowBox[{"sin", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "1", ",", "4"}]]}], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "3"}]]}], "-",
+ RowBox[{"E2", " ",
+ RowBox[{"sin", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"G3", "+", "G4", "+",
+ RowBox[{"2", " ", "gt"}]}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "3", ",", "4"}]]}], "+",
+ RowBox[{"E1", " ",
+ RowBox[{"cos", "[", "\[Phi]1", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "1", ",", "4"}]]}], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "3"}]]}], "+",
+ RowBox[{"E2", " ",
+ RowBox[{"cos", "[", "\[Phi]2", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"d2", "-", "d3"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "3", ",", "4"}]]}]}]}], ",",
+ RowBox[{
+ SubscriptBox["dr",
+ RowBox[{"Re", ",", "4", ",", "4"}]], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "Ec", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"cos", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Im", ",", "2", ",", "4"}]]}], "+",
+ RowBox[{
+ RowBox[{"sin", "[", "\[Phi]c", "]"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "2", ",", "4"}]]}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"G4", "+", "gt"}], ")"}], " ",
+ SubscriptBox["r",
+ RowBox[{"Re", ",", "4", ",", "4"}]]}]}]}]}], "}"}]], "Output"],
+
+Cell[BoxData["\<\"dRer11_dt = gt/2. + 2*E1*cos(\[Phi]1)*Imr13 - gt*Rer11 + \
+2*E1*sin(\[Phi]1)*Rer13 + G3*Subscript(R,3,1)*Rer33 + \
+G4*Subscript(R,4,1)*Rer44;\\ndRer12_dt = (d1 - d2)*Imr12 + \
+E2*cos(\[Phi]2)*Imr13 + Ec*cos(\[Phi]c)*Imr14 + E1*cos(\[Phi]1)*Imr23 - \
+gt*Rer12 + E2*sin(\[Phi]2)*Rer13 + Ec*sin(\[Phi]c)*Rer14 + \
+E1*sin(\[Phi]1)*Rer23;\\ndImr12_dt = -(gt*Imr12) + E2*sin(\[Phi]2)*Imr13 + \
+Ec*sin(\[Phi]c)*Imr14 - E1*sin(\[Phi]1)*Imr23 + (-d1 + d2)*Rer12 - E2*cos(\
+\[Phi]2)*Rer13 - Ec*cos(\[Phi]c)*Rer14 + E1*cos(\[Phi]1)*Rer23;\\ndRer22_dt = \
+gt/2. + 2*E2*cos(\[Phi]2)*Imr23 + 2*Ec*cos(\[Phi]c)*Imr24 - gt*Rer22 + \
+2*E2*sin(\[Phi]2)*Rer23 + 2*Ec*sin(\[Phi]c)*Rer24 + G3*Subscript(R,3,2)*Rer33 \
++ G4*Subscript(R,4,2)*Rer44;\\ndRer13_dt = E2*cos(\[Phi]2)*Imr12 + d1*Imr13 - \
+E2*sin(\[Phi]2)*Rer12 - ((G3 + 2*gt)*Rer13)/2. + E1*sin(\[Phi]1)*(-Rer11 + \
+Rer33);\\ndImr13_dt = -((G3 + 2*gt)*Imr13)/2. - E2*(sin(\[Phi]2)*Imr12 + cos(\
+\[Phi]2)*Rer12) - d1*Rer13 + E1*cos(\[Phi]1)*(-Rer11 + Rer33);\\ndRer23_dt = \
+d2*Imr23 + Ec*cos(\[Phi]c)*Imr34 - E1*(cos(\[Phi]1)*Imr12 + \
+sin(\[Phi]1)*Rer12) - ((G3 + 2*gt)*Rer23)/2. + E2*sin(\[Phi]2)*(-Rer22 + \
+Rer33) + Ec*sin(\[Phi]c)*Rer34;\\ndImr23_dt = E1*sin(\[Phi]1)*Imr12 - ((G3 + \
+2*gt)*Imr23)/2. - Ec*sin(\[Phi]c)*Imr34 - E1*cos(\[Phi]1)*Rer12 - d2*Rer23 + \
+E2*cos(\[Phi]2)*(-Rer22 + Rer33) + Ec*cos(\[Phi]c)*Rer34;\\ndRer33_dt = \
+-2*(E1*cos(\[Phi]1)*Imr13 + E2*cos(\[Phi]2)*Imr23 + E1*sin(\[Phi]1)*Rer13 + \
+E2*sin(\[Phi]2)*Rer23) - (G3 + gt)*Rer33;\\ndRer14_dt = Ec*cos(\[Phi]c)*Imr12 \
++ (d1 - d2 + d3)*Imr14 - E1*cos(\[Phi]1)*Imr34 - Ec*sin(\[Phi]c)*Rer12 - ((G4 \
++ 2*gt)*Rer14)/2. + E1*sin(\[Phi]1)*Rer34;\\ndImr14_dt = -((G4 + \
+2*gt)*Imr14)/2. + E1*sin(\[Phi]1)*Imr34 - Ec*(sin(\[Phi]c)*Imr12 + \
+cos(\[Phi]c)*Rer12) - (d1 - d2 + d3)*Rer14 + \
+E1*cos(\[Phi]1)*Rer34;\\ndRer24_dt = d3*Imr24 - E2*cos(\[Phi]2)*Imr34 - ((G4 \
++ 2*gt)*Rer24)/2. + E2*sin(\[Phi]2)*Rer34 + Ec*sin(\[Phi]c)*(-Rer22 + Rer44);\
+\\ndImr24_dt = -((G4 + 2*gt)*Imr24)/2. + E2*sin(\[Phi]2)*Imr34 - d3*Rer24 + \
+E2*cos(\[Phi]2)*Rer34 + Ec*cos(\[Phi]c)*(-Rer22 + Rer44);\\ndRer34_dt = (-d2 \
++ d3)*Imr34 - E1*(cos(\[Phi]1)*Imr14 + sin(\[Phi]1)*Rer14) - \
+Ec*(cos(\[Phi]c)*Imr23 + sin(\[Phi]c)*Rer23) - E2*(cos(\[Phi]2)*Imr24 + sin(\
+\[Phi]2)*Rer24) - ((G3 + G4 + 2*gt)*Rer34)/2.;\\ndImr34_dt = \
+-(E1*sin(\[Phi]1)*Imr14) + Ec*sin(\[Phi]c)*Imr23 - E2*sin(\[Phi]2)*Imr24 - \
+((G3 + G4 + 2*gt)*Imr34)/2. + E1*cos(\[Phi]1)*Rer14 - Ec*cos(\[Phi]c)*Rer23 + \
+E2*cos(\[Phi]2)*Rer24 + (d2 - d3)*Rer34;\\ndRer44_dt = \
+-2*Ec*(cos(\[Phi]c)*Imr24 + sin(\[Phi]c)*Rer24) - (G4 + gt)*Rer44;\\n\"\>"], \
+"Output"],
+
+Cell[BoxData["\<\"C:\\\\Users\\\\Simon\\\\WorkLaptop\\\\Home\\\\RocSci\\\\\
+NavySTTR2011\\\\mathematica\\\\code.txt\"\>"], "Output"]
+}, Open ]]
+}, Open ]]
+},
+WindowSize->{815, 873},
+WindowMargins->{{10, Automatic}, {Automatic, 18}},
+ShowSelection->True,
+FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)",
+StyleDefinitions->"Default.nb"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[CellGroupData[{
+Cell[567, 22, 32, 0, 71, "Section"],
+Cell[602, 24, 66, 1, 43, "MathCaption",
+ CellID->836781195],
+Cell[671, 27, 85, 2, 31, "Input",
+ CellID->2058623809],
+Cell[759, 31, 1290, 44, 65, "Text",
+ CellID->525777075],
+Cell[2052, 77, 68, 1, 43, "MathCaption",
+ CellID->429217524],
+Cell[2123, 80, 1090, 28, 132, "Input",
+ CellID->433132487],
+Cell[3216, 110, 458, 18, 43, "MathCaption",
+ CellID->133602844],
+Cell[CellGroupData[{
+Cell[3699, 132, 1105, 33, 72, "Input",
+ CellID->534530029],
+Cell[4807, 167, 1306, 40, 53, "Output"]
+}, Open ]],
+Cell[6128, 210, 217, 5, 59, "MathCaption",
+ CellID->462076121],
+Cell[CellGroupData[{
+Cell[6370, 219, 528, 16, 52, "Input",
+ CellID->494599775],
+Cell[6901, 237, 1808, 52, 86, "Output"]
+}, Open ]],
+Cell[8724, 292, 76, 1, 43, "MathCaption",
+ CellID->358620443],
+Cell[CellGroupData[{
+Cell[8825, 297, 464, 15, 31, "Input",
+ CellID->167259034],
+Cell[9292, 314, 673, 12, 118, "Output"]
+}, Open ]],
+Cell[9980, 329, 102, 2, 43, "MathCaption",
+ CellID->577766068],
+Cell[CellGroupData[{
+Cell[10107, 335, 1347, 35, 72, "Input"],
+Cell[11457, 372, 1983, 58, 126, "Output"]
+}, Open ]],
+Cell[13455, 433, 384, 12, 43, "MathCaption",
+ CellID->610306692],
+Cell[CellGroupData[{
+Cell[13864, 449, 272, 7, 31, "Input",
+ CellID->645617687],
+Cell[14139, 458, 827, 23, 86, "Output"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[15015, 487, 53, 0, 71, "Section"],
+Cell[15071, 489, 98, 1, 43, "MathCaption",
+ CellID->690131918],
+Cell[CellGroupData[{
+Cell[15194, 494, 230, 5, 31, "Input",
+ CellID->718931880],
+Cell[15427, 501, 471, 11, 50, "Output"]
+}, Open ]],
+Cell[15913, 515, 390, 12, 43, "MathCaption",
+ CellID->854192725],
+Cell[CellGroupData[{
+Cell[16328, 531, 459, 13, 72, "Input",
+ CellID->465762594],
+Cell[16790, 546, 1605, 47, 104, "Output"]
+}, Open ]],
+Cell[18410, 596, 76, 1, 43, "MathCaption",
+ CellID->314466782],
+Cell[CellGroupData[{
+Cell[18511, 601, 424, 13, 52, "Input",
+ CellID->298399236],
+Cell[18938, 616, 27043, 716, 426, "Output"]
+}, Open ]],
+Cell[45996, 1335, 38, 0, 29, "Text"],
+Cell[CellGroupData[{
+Cell[46059, 1339, 2423, 63, 164, "Input"],
+Cell[48485, 1404, 11401, 193, 226, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[59923, 1602, 2423, 63, 164, "Input"],
+Cell[62349, 1667, 11716, 198, 232, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[74102, 1870, 2422, 63, 164, "Input"],
+Cell[76527, 1935, 13483, 226, 232, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[90047, 2166, 2422, 63, 164, "Input"],
+Cell[92472, 2231, 15122, 253, 232, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[107631, 2489, 3941, 105, 243, "Input"],
+Cell[111575, 2596, 13117, 440, 524, "Output"],
+Cell[124695, 3038, 8187, 275, 325, "Output"],
+Cell[132885, 3315, 851, 11, 221, "Output"],
+Cell[133739, 3328, 132, 1, 30, "Output"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[133920, 3335, 50, 0, 71, "Section"],
+Cell[133973, 3337, 98, 1, 43, "MathCaption",
+ CellID->540592006],
+Cell[CellGroupData[{
+Cell[134096, 3342, 237, 6, 31, "Input",
+ CellID->227015699],
+Cell[134336, 3350, 475, 11, 50, "Output"]
+}, Open ]],
+Cell[134826, 3364, 390, 12, 43, "MathCaption",
+ CellID->164472800],
+Cell[CellGroupData[{
+Cell[135241, 3380, 459, 13, 72, "Input",
+ CellID->358732873],
+Cell[135703, 3395, 1649, 47, 104, "Output"]
+}, Open ]],
+Cell[137367, 3445, 74, 1, 43, "MathCaption",
+ CellID->2682843],
+Cell[CellGroupData[{
+Cell[137466, 3450, 424, 13, 52, "Input",
+ CellID->161699191],
+Cell[137893, 3465, 28257, 707, 406, "Output"]
+}, Open ]],
+Cell[166165, 4175, 38, 0, 29, "Text"],
+Cell[CellGroupData[{
+Cell[166228, 4179, 2363, 62, 120, "Input"],
+Cell[168594, 4243, 11401, 193, 226, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[180032, 4441, 2423, 63, 164, "Input"],
+Cell[182458, 4506, 11716, 198, 232, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[194211, 4709, 2422, 63, 164, "Input"],
+Cell[196636, 4774, 13483, 226, 232, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[210156, 5005, 2422, 63, 164, "Input"],
+Cell[212581, 5070, 15122, 253, 232, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[227740, 5328, 1032, 27, 52, "Input"],
+Cell[228775, 5357, 17313, 499, 678, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[246125, 5861, 2747, 68, 192, "Input"],
+Cell[248875, 5931, 18931, 555, 695, "Output"],
+Cell[267809, 6488, 2641, 36, 620, "Output"],
+Cell[270453, 6526, 132, 1, 30, "Output"]
+}, Open ]]
+}, Open ]]
+}
+]
+*)
+
+(* End of internal cache information *)
|