diff options
Diffstat (limited to 'mathemathica_fwm')
-rw-r--r-- | mathemathica_fwm/DoubleFanoResonance.nb | 4521 |
1 files changed, 4521 insertions, 0 deletions
diff --git a/mathemathica_fwm/DoubleFanoResonance.nb b/mathemathica_fwm/DoubleFanoResonance.nb new file mode 100644 index 0000000..71dd288 --- /dev/null +++ b/mathemathica_fwm/DoubleFanoResonance.nb @@ -0,0 +1,4521 @@ +(* Content-type: application/mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 7.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 145, 7]
+NotebookDataLength[ 153433, 4512]
+NotebookOptionsPosition[ 147044, 4319]
+NotebookOutlinePosition[ 147435, 4336]
+CellTagsIndexPosition[ 147392, 4333]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+
+Cell[CellGroupData[{
+Cell["General setup", "Section"],
+
+Cell[TextData[{
+ StyleBox["Mathematica",
+ FontSlant->"Italic"],
+ " 8 defines WignerD, so we need to unprotect it."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->94096541],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Unprotect", "[", "WignerD", "]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{", "\<\"WignerD\"\>", "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Load the package.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->123059143],
+
+Cell[BoxData[
+ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9},
+ 3.522586258751662*^9},
+ CellID->2058623809],
+
+Cell["Set options.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->184495045]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"DensityMatrix", ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",",
+ RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input",
+ CellChangeTimes->{{3.534553583703125*^9, 3.534553592359375*^9}, {
+ 3.534554968828125*^9, 3.534554970171875*^9}}],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"Plot", ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"ListLinePlot", ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"ListDensityPlot", ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"NDSolve", ",",
+ RowBox[{"PrecisionGoal", "\[Rule]", "3"}], ",",
+ RowBox[{"AccuracyGoal", "\[Rule]", "3"}], ",",
+ RowBox[{"MaxSteps", "\[Rule]",
+ SuperscriptBox["10", "6"]}]}], "]"}], ";"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"LevelDiagram", ",",
+ RowBox[{"JLabel", "\[Rule]", "True"}], ",",
+ RowBox[{"MLabel", "\[Rule]", "True"}], ",",
+ RowBox[{"Arrowheads", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", ".07"}], ",", ".07"}], "}"}]}], ",",
+ RowBox[{"MLabelPosition", "\[Rule]",
+ RowBox[{"{", "Top", "}"}]}]}], "]"}], ";"}]], "Input"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Atomic system setup", "Section"],
+
+Cell["Define the atomic system.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258751924*^9},
+ CellID->188360977],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"system", "=",
+ RowBox[{"Sublevels", "[",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]", "1"}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}],
+ "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{"TableForm", "[",
+ RowBox[{"system", "=",
+ RowBox[{"DeleteStates", "[",
+ RowBox[{"system", ",",
+ RowBox[{"Label", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}], "]"}]}], "Input",
+ CellChangeTimes->{{3.53455248065625*^9, 3.534552600640625*^9}, {
+ 3.534552682078125*^9, 3.534552741734375*^9}, {3.53455363609375*^9,
+ 3.534553678203125*^9}, {3.5345537420625*^9, 3.5345537629375*^9}, {
+ 3.534555252625*^9, 3.534555255046875*^9}}],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}]},
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]", "1"}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"M", "\[Rule]", "1"}]}], "]"}]},
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]", "1"}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "1"}]}]}], "]"}]},
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["Define the optical field.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->13161682],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"field", "=",
+ RowBox[{
+ RowBox[{"ToCartesian", "[",
+ RowBox[{"Transpose", "@",
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}]}], ")"}]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0",
+ ",",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}]}], ")"}]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]]}], "}"}],
+ "}"}]}], "]"}], "//", "FullSimplify"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]], "-",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}], ")"}]}],
+ RowBox[{
+ SqrtBox["2"], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}], ")"}]}]}], ")"}]}],
+ RowBox[{
+ SqrtBox["2"], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", "0"}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+The Hamiltonian for the system subject to the optical field.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->337337829],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"Ho", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]", "field"}], ",",
+ RowBox[{"MagneticField", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",",
+ RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}],
+ "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0",
+ RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], "0"},
+ {"0", "0", "0", "\[Omega]3"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["\<\
+The Hamiltonian for the system subject to the coupling field\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->327463138],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"HE", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Ec",
+ RowBox[{
+ SqrtBox["6"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}]}],
+ ",", "0", ",", "0"}], "}"}]}], ",",
+ RowBox[{"Interaction", "\[Rule]",
+ RowBox[{"{", "E1", "}"}]}]}], "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.53455311584375*^9, 3.534553169015625*^9}, {
+ 3.534553199875*^9, 3.534553204765625*^9}, {3.5345532359375*^9,
+ 3.534553278921875*^9}, 3.534553331125*^9}],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "Ec"},
+ {"0", "0", "0",
+ RowBox[{"-", "Ec"}]},
+ {"0", "Ec",
+ RowBox[{"-", "Ec"}], "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["The total Hamiltonian", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->737742553],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"H", "=",
+ RowBox[{
+ RowBox[{"Ho", "+", "HE"}], "//", "TrigToExp"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "Ec"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0",
+ RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}],
+ RowBox[{"-", "Ec"}]},
+ {"0", "Ec",
+ RowBox[{"-", "Ec"}], "\[Omega]3"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["\<\
+The level diagram showing field detunings.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->944896957],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LevelDiagram", "[",
+ RowBox[{
+ RowBox[{"system", "/.",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Parity", "\[Rule]", "_"}], ")"}], "\[Rule]",
+ RowBox[{"Sequence", "[", "]"}]}]}], ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Omega]2", "\[Rule]", "3"}], ",",
+ RowBox[{"\[Omega]3", "\[Rule]", "2."}], ",",
+ RowBox[{"\[CapitalOmega]L", "\[Rule]", ".2"}], ",",
+ RowBox[{"\[Omega]", "\[Rule]", "2.3"}]}], "}"}]}]}], "]"}]], "Input",
+ Evaluatable->False],
+
+Cell[BoxData[
+ GraphicsBox[{{{{}, LineBox[{{-0.4, 0.}, {0.4, 0.}}]}, {{},
+ LineBox[{{0.6, 3.2}, {1.4, 3.2}}]}, {{},
+ LineBox[{{-1.4, 2.8}, {-0.6, 2.8}}]}, {{},
+ LineBox[{{-0.4, 2.}, {0.4, 2.}}]}}, {{InsetBox[
+ RowBox[{"M", "\[LongEqual]",
+ RowBox[{"-", "1"}]}], {-1., 3.2}, {0, -1.2}], InsetBox[
+ RowBox[{"M", "\[LongEqual]", "0"}], {0., 3.2}, {0, -1.2}], InsetBox[
+ RowBox[{"M", "\[LongEqual]", "1"}], {1., 3.2}, {0, -1.2}]}, {}, {
+ InsetBox[
+ RowBox[{
+ SubscriptBox["J", "1"], "\[LongEqual]", "0"}],
+ Offset[{-6.6000000000000005`, 0}, {-1.4, 0}], {1, 0}], InsetBox[
+ RowBox[{
+ SubscriptBox["J", "3"], "\[LongEqual]", "0"}],
+ Offset[{-6.6000000000000005`, 0}, {-1.4, 2.}], {1, 0}], InsetBox[
+ RowBox[{
+ SubscriptBox["J", "2"], "\[LongEqual]", "1"}],
+ Offset[{-6.6000000000000005`, 0}, {-1.4, 3.}], {1, 0}]}},
+ {Arrowheads[{-0.07, 0.07}],
+ ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}],
+ ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}],
+ ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}],
+ ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}],
+ ArrowBox[{{-0.04000000000000001, 2.}, {-0.96, 2.8}}],
+ ArrowBox[{{0.04000000000000001, 2.}, {0.96, 3.2}}]},
+ {PointSize[0.0225]}},
+ ImagePadding->{{38.300000000000004`, 2}, {2., 13.700000000000001`}},
+ ImageSize->180.3]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
+"MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258753521*^9},
+ CellID->471402495],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Hrwa", "=", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"RotatingWaveApproximation", "[",
+ RowBox[{"system", ",", "H", ",",
+ RowBox[{"{", "\[Omega]", "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{"TransformMatrix", "\[Rule]",
+ RowBox[{"MatrixExp", "[",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
+ RowBox[{"DiagonalMatrix", "[",
+ RowBox[{"{",
+ RowBox[{
+ "0", ",", "\[Omega]", ",", "\[Omega]", ",", "\[Omega]"}],
+ "}"}], "]"}]}], "]"}]}]}], "]"}], "/.",
+ RowBox[{"\[Omega]", "\[Rule]",
+ RowBox[{"\[Omega]2", "+", "\[CapitalDelta]"}]}]}], "/.",
+ RowBox[{"\[Omega]3", "\[Rule]",
+ RowBox[{"\[Omega]2", "+", "\[CapitalDelta]23"}]}]}]}], ")"}], "//",
+ "MatrixForm"}], " ", "//", "Simplify"}], " ",
+ "\[IndentingNewLine]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.534553435828125*^9, 3.534553480625*^9}, {
+ 3.534553524203125*^9, 3.53455353465625*^9}, {3.534553920421875*^9,
+ 3.534554035921875*^9}, {3.534555327859375*^9, 3.534555328671875*^9}}],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]],
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "0"},
+ {
+ FractionBox[
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]],
+ RowBox[{
+ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L"}], "0", "Ec"},
+ {
+ FractionBox[
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "0",
+ RowBox[{
+ RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L"}],
+ RowBox[{"-", "Ec"}]},
+ {"0", "Ec",
+ RowBox[{"-", "Ec"}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]23"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["IntrinsicRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
+ " supply the relaxation matrices."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.52258625875446*^9},
+ CellID->448215320],
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"relax", "=",
+ RowBox[{
+ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRelaxation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258754587*^9},
+ CellID->150217419],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Gamma]t", "0", "0", "0"},
+ {"0",
+ RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0", "0"},
+ {"0", "0",
+ RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0"},
+ {"0", "0", "0",
+ RowBox[{"\[CapitalGamma]3", "+", "\[Gamma]t"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["OpticalRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
+ " supply the repopulation matrices."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804159*^9},
+ CellID->78071612],
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"repop", "=",
+ RowBox[{
+ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804293*^9, 3.53455357284375*^9},
+ CellID->109972911],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0",
+ "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+
+Cell[TextData[{
+ "Density-matrix and field variables at one point ",
+ Cell[BoxData[
+ FormBox["i", TraditionalForm]],
+ FormatType->"TraditionalForm"]
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->24518771]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"vars", "=",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}],
+ ",",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "q", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "q", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"q", ",",
+ RowBox[{"-", "1"}], ",", "1", ",", "2"}], "}"}]}], "]"}]}], "]"}], "//",
+ "Flatten"}]}]], "Input",
+ CellChangeTimes->{{3.5346077411875*^9, 3.534607771078125*^9}, {
+ 3.534636125296875*^9, 3.534636133625*^9}, {3.534637152109375*^9,
+ 3.53463715240625*^9}}],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[{
+ "Density matrix evolution equations at one point ",
+ Cell[BoxData[
+ FormBox["i", TraditionalForm]],
+ FormatType->"TraditionalForm"]
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->112084045],
+
+Cell[BoxData[
+ RowBox[{"TableForm", "[",
+ RowBox[{"eqs", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"LiouvilleEquation", "[",
+ RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}],
+ "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Rule]",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a_", ",", "b_"}]], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.",
+ RowBox[{"\[CapitalDelta]23", "\[Rule]",
+ SubscriptBox["\[CapitalDelta]23", "i"]}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{{3.53460253115625*^9, 3.53460255159375*^9}, {
+ 3.534607779234375*^9, 3.53460778478125*^9}, {3.53463614115625*^9,
+ 3.5346361436875*^9}, {3.53463617796875*^9, 3.53463618378125*^9}},
+ CellID->26920765]
+}, Open ]],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{"\[Gamma]t", "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"2", " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"2", " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]]], "Output"],
+
+Cell["Initial conditions for density matrix:", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->16777324],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"inits", "=",
+ RowBox[{
+ RowBox[{"InitialConditions", "[",
+ RowBox[{"system", ",",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "1"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[TextData[{
+ "Here we find the field evolution equations with finite difference \
+approximation (first-order upwind scheme) for co-propagating beams. ",
+ StyleBox["h",
+ FontSlant->"Italic"],
+ " is the the grid spacing in the spatial dimension."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->100512453],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"polarizationcomponents", "=",
+ RowBox[{"ExprToReIm", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ExpandDipoleRME", "[",
+ RowBox[{"system", ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]2", " ", "n0", " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}],
+ RowBox[{"Components", "@", " ",
+ RowBox[{"ECT", "@",
+ RowBox[{"Sum", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"DensityMatrix", "[", "system", "]"}], "[",
+ RowBox[{"[",
+ RowBox[{"j", ",", "i"}], "]"}], "]"}],
+ RowBox[{"WignerEckart", "[",
+ RowBox[{
+ RowBox[{"system", "[",
+ RowBox[{"[", "i", "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",",
+ RowBox[{"system", "[",
+ RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",",
+ RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}]}]}], "/.",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}],
+ "\[Rule]", "0"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
+ "]"}]}]}]}], "]"}], "/.",
+ RowBox[{"\[Omega]2", "\[Rule]",
+ RowBox[{"2",
+ RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "/.",
+ RowBox[{
+ RowBox[{"n0", " ",
+ SuperscriptBox["\[Lambda]", "2"], "\[CapitalGamma]2"}], "\[Rule]",
+ RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ",
+ RowBox[{"\[Eta]", "/", "3"}]}]}]}], "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"fieldcomponents", "=",
+ RowBox[{
+ RowBox[{"ExprToReIm", "[",
+ RowBox[{
+ RowBox[{"Expand", "[",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}],
+ RowBox[{"Components", "@",
+ RowBox[{"ToContravariant", "[", "field", "]"}]}]}], "]"}], "/.",
+ RowBox[{"t", "\[Rule]", "0"}]}], "]"}], "/.",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a_", ",", "b_"}]], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"fieldeqs", "=",
+ RowBox[{"Thread", "[",
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{"fieldcomponents", ",", "t"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"c", " ", "polarizationcomponents"}], "-",
+ RowBox[{"c", " ",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"fieldcomponents", "-",
+ RowBox[{"(",
+ RowBox[{"fieldcomponents", "/.",
+ RowBox[{"i", "\[Rule]",
+ RowBox[{"i", "-", "1"}]}]}], ")"}]}], ")"}], "/", "h"}]}]}]}],
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell["Initial conditions for fields (assume uniform in space).", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->135712718],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"initfields", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}]}], "}"}]}]], "Input",
+ CellChangeTimes->{{3.534636308703125*^9, 3.53463633696875*^9}}],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \
+fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->71091213],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"boundaryconds", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}],
+ "}"}]}]], "Input",
+ CellChangeTimes->{{3.534636354140625*^9, 3.534636376*^9}}],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}],
+ "}"}]], "Output"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Results", "Section"],
+
+Cell["Choose number of spatial points.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->35853137],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"n", "=", "80"}], ";"}]], "Input"],
+
+Cell["All system variables for all spatial points.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->380000867],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"allvars", "=",
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{"vars", ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"],
+
+Cell["Equations for all points for the co-propagating case.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->129539961],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"TableForm", "[",
+ RowBox[{"alleqs", "=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"DeleteCases", "[",
+ RowBox[{
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{"eqs", ",", "inits", ",", "fieldeqs", ",", "initfields"}],
+ "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",",
+ RowBox[{"Alternatives", "@@",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"#", "[",
+ RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
+ "_"}], "&"}], "/@",
+ RowBox[{"(",
+ RowBox[{"boundaryconds", "/.",
+ RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",",
+ RowBox[{"(",
+ RowBox[{"boundaryconds", "/.",
+ RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}],
+ ";"}]], "Input",
+ CellChangeTimes->{3.53463640765625*^9, 3.534636603890625*^9}],
+
+Cell[TextData[{
+ "Here we choose parameters and integrate the equations. Blue is ",
+ Cell[BoxData[
+ FormBox[
+ SuperscriptBox["\[Sigma]", "-"], TraditionalForm]],
+ FormatType->"TraditionalForm"],
+ " field intensity, magenta is ",
+ Cell[BoxData[
+ FormBox[
+ SuperscriptBox["\[Sigma]", "+"], TraditionalForm]],
+ FormatType->"TraditionalForm"],
+ "field intensity."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->40567123],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]2", "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{".001", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"Ec", "\[Rule]",
+ RowBox[{"10.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalDelta]", "\[Rule]",
+ RowBox[{
+ RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalOmega]L", "\[Rule]",
+ RowBox[{"50.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"c", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox["10", "8"]}]}], ",",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"794.7", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "9"}]]}], ")"}], "2"],
+ RowBox[{"(",
+ SuperscriptBox["10", "15"], ")"}],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"2", " ", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}], ")"}], "/",
+ RowBox[{"(",
+ RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{"5.", "/", "n"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "105."}], "+",
+ RowBox[{"10",
+ RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n",
+ RowBox[{
+ RowBox[{"sol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",", "0", ",",
+ RowBox[{"4.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{"ListLinePlot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Transpose", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}],
+ "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.",
+ RowBox[{"sol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "/.",
+ RowBox[{"t", "\[Rule]",
+ RowBox[{"4.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}]}], ",",
+ RowBox[{"FrameLabel", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Position (m)\>\"", ",",
+ "\"\<Intensity \!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \
+\(2\)]\) (rad/s\!\(\*SuperscriptBox[\()\), \(2\)]\)\>\""}], "}"}]}]}],
+ "]"}]}], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJxt039M1HUcx/H7jfLzfhBUrlxQJpOAzMIm6/OGiMMOQkg2IX4deAwERTyE
+CEygOBCoKDOooaZpDMjzCDiF0zrZLVCWc4qI/PI8TqrjNNQy0IN+jBf/9d2+
+++6x5/f93Wf7fj7PpOfFqXgcDif23/u/5/9fOua/1Zrw0fxk6KKNbOJ1691m
+jSBs0f2sw3Rm92cOb/gSExWk9ttSn4MHWZ1I8WjE50V4mF1t666z1K2Hx1ju
+iU7/+HWhsJk1aHipG8MjYAv7Wa4SaMxRsJWNGrS3hFOx8BQ7YX16QLkQD//K
+NrR39zklJMI2Nt43Gv1EQSpsZxtXn4zYFJ8O32HWw0ECabEKnmGmX95Wu+7P
+gu+y38YP5ZyMzIXvsVXXnt/2HWcnfJ9d/N7TfPGFXfAfrP+Sb+7xLQXwnyyp
+un4g0V4IP2CXO08JTDnF8F9srv2lH4q3l8Kz7HawUl2yeS88x+JLInvfUZXD
+D9mVzyMDVnp+AD9izhphxEppJexg1T57OEm8Knie+SoeRuVH74MX2Io990IC
+amrhv1nsBm0A3+9jmEMjfoLqTcr6RZdx6FmTIuNd86foXDpvmcg5mrEfnUuF
+12+4ZT15AJ1HC3Gj+dk3vkDn0eo0haFlqBGdT9PJk8br9q/Q+fTqwM2YosCD
+6AL61vFl+FOth9EFJD/7yi2h7xF0Ic1UWSouHDqKLqT1P35Y6utzDF1ER242
++L0/fRxdRDXeO5Mbtc3oTnRuvEn11rUWdCeKkXt0BU21oS+jAVu5cnavFn0Z
+qWWPu+/epUNfTkHyrLBZRzv6cvrJm1s/ktCB7kzn8qRSh1cXujO1JNROhFfp
+0V0oNPOTyomXT6O7kMiFm9kb143uSpLhYV42pwfdlRobxrZqYpa6Gxla174X
+Ob30fTcK5lx5My4R6+W4U6BmjbZtEP+rzJ0qJY81maIy0T1I37zWs0KG/Vjm
+QQcnx3aUDy3tXzEVrvjG4G9XL5rE1GcvKjGsysf7YiqqDfx6iwQ2iqlzfiil
+1bYd8xI6c/aBIplgkpB8c7CYL9iGeQmdz9N3NIVkY15CDQF3ii/3LK1PSjon
+H93p33EeSUqW+y2ZrzkyMC+lGY831uxYBxulVHPKluGlU2JeRqX6Xr7+dhrm
+ZdSjrp9LqcD5L5NRdFftVaNzCuZlxE03e42EJGHek45FX0g7MJgY9g98xGyh
+
+ "]]},
+ {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
+1:eJw1zgtMU3cUx/FrgVaE0tJqWCYpuo3geOiqTgSEc4LEDXVxVYgKRgUlisYJ
+qIzGV0UUCRAEESxhLqDAECYVsICVCaLRoKJiFTYfPAQllQw3EC2+jefc5Obm
+k+//98+dGr11aYxIEATNx/fTl5+65DWpfcPNwZ9lgOLN+miry0VyE6SuPrDY
+8Jj7VSjvT6vR9rJvQa+bedHJdrYZ/p6bebCrgd0JN2K3ty8/z34Ad+s9UVHN
+7objmfKnC4vZveCEIcqOCnYfuF4yr/vyBPsJ5LYq1Huy2QNQIt3l653HtkDn
+ynj/U0nsQdgbsOLKnTj2v+CeukydtYr9HDb1tc1zDGH/BymDD69UeLH/hzeu
+SWEiFXsYakeTZWXWJvIIZAdrbSMG2S/Ad5kkoes2exTWTAs3JhnZLyH03rN8
+fTH7FZTGaqb4p7CtkB9wplG6kT0G9UXuBSOh7NdQqFFv8vNgv4FIL9Vv6wT2
+W3hZtbZoqukC+R08jNB/c2cV+z38nvYocKKYLaC++9X1hWV/fbZOwIYQF7Up
+iCyMw623ftyR0N5IfRyK/Gc050aRBRHW/fRVZGTveeoiDBsS9q1dTxZssMOo
+Tw+6baJugx6+F9+OAlmwRaXTZY1f7jnqtlj0dFifaGmgboctbQvQw42ss8Pv
+q2ts+8LrqYuxQ9YzeeWGOupiTJj1z+UbCUbqEnSMaL1+NPIsdQnmnT60aNvs
+WurjcbUpHGWWaurjUTKywui6/wx1ezQF747601pF3R6/NujGDAWV1CfgkbiN
+ge9tyqlPQB9tfKJZVULdAUOXlIslnkXUHdBXPXTYJ6aAuiP+GnVT/0PjEeqO
+OFM7lpMzPYu6FB+Y7ecmRmdTl2Lb/u/uBy0opO6Equ6MxGuGUupOKD5bJU/N
+KqMuw5175tW2NNP/6GTY83O394wv6LwgRwg0y94NUEc5qt0mnf5jDt8nx+c+
+Xq79nuQmOVZs36L9JYb3zuh3YVdAWBQZnVEl3Tc0ksF7Z0zPDAs4mM57Z/Se
+5WJnreC9Apt005XqSt4rMC//UVxlC+8VWDK/s3XoEu8VaMk5OeeumfdK3FZl
++DbtHu+VOBYvybV08V6JsapjDvd7eK/EuuQUzbN+3k/EGofkaSEDpcEfAHau
+f0Y=
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ FrameLabel->{
+ FormBox["\"Position (m)\"", TraditionalForm],
+ FormBox[
+ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
+\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"",
+ TraditionalForm]},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+Same plot with flipped magnetic field\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->264338212],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]2", "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{".001", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"Ec", "\[Rule]",
+ RowBox[{"10.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalDelta]", "\[Rule]",
+ RowBox[{
+ RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalOmega]L", "\[Rule]",
+ RowBox[{
+ RowBox[{"-", "50."}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"c", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox["10", "8"]}]}], ",",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"794.7", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "9"}]]}], ")"}], "2"],
+ RowBox[{"(",
+ SuperscriptBox["10", "15"], ")"}],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"2", " ", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}], ")"}], "/",
+ RowBox[{"(",
+ RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{"5.", "/", "n"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "105."}], "+",
+ RowBox[{"10",
+ RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n",
+ RowBox[{
+ RowBox[{"sol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",", "0", ",",
+ RowBox[{"4.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{"ListLinePlot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Transpose", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}],
+ "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.",
+ RowBox[{"sol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "/.",
+ RowBox[{"t", "\[Rule]",
+ RowBox[{"4.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}]}], ",",
+ RowBox[{"FrameLabel", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Position (m)\>\"", ",",
+ "\"\<Intensity \!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \
+\(2\)]\) (rad/s\!\(\*SuperscriptBox[\()\), \(2\)]\)\>\""}], "}"}]}]}],
+ "]"}]}], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJxtzn9MzHEcx/Fvv0R31V0hP1rkx8atNrXlV3i/T0k4UVSE8qOk/GiF4nak
+kBYn3xaG/EjtnJbunFDKOuoIiwoX7SQ5lVh+xMnl93p///Pdvvvusefn9dnX
+fW1CSIwlwzDBf99/3/8/ang9RfP96iijuN9a2CtXL453sZnd71rYXBn+Gxtd
+yPWQDqNLDIpx5CdQVdrS3nlkEvkZ4PQIPWueQjaA7qRpSa4Gya0QWWVs8Pkx
+h9wGt9rBQ5IlIRth9Q538YcbweR2MAebErTvQ8mdsD5/swcTGEHugkMHAtJT
+1kWR38Pbui/e/svWkrtBfPmoS0xsDPkjbOSXZCfJN5A/wc8zhrxur03kz1Cf
+NnRWyJsEcg90xQdJmWFJ5C9gkr1ShfptI38Fj64F843aZLIJZsWsOS8P3En+
+BiNK5QVJ42TkXpiH++9vEaSSv4PUMUfkKkojm0H0rry6Wp9O7oPewvBco2Yf
++QcYFGNWRZzOIP8Edv3quT4VmeRfYBquzlrSnUX+DbrwZFtZmJzM4K5qfa+4
+NbvfexhMjXOfpwtiqVugcmr0sbN3cqhbYDdv8u2J4bnULVEkLfc9aXeMuiVO
+jbS3EuqPU7dCVhprnlt/groVHuyYHqZ6dYq6Nfadel7l5nWGujWysqjUsAXn
+qNugf1wB+1iRT90Gh9vX6er4BdQHYPClSVVLLxRSH4DNfPkGgURB3RZbjvD8
+lN5K6raYKPGc1jO2iPpAdOuJq10ZXUx9IOrUNw73qkqoD0KReGHUyiI19UFo
++La9M4zRULdDw72bsCbtCnU7/Nx+1vWAuZQ6D683P/WoybhGnYdsdXGo6cV1
+6nzcZXUtJK+jjDofMy9FODS4lVO3x9CnNXdHvKTze+yxrjXZUpLC3e+AOb7Z
+mdadKuoO6Fp/Md7Ti8w4Ik/d8MhvN/f/jih9Pb6yIpHMCFC5z7c58jQZBfjA
+Z4YykOXOC3CRlsmfqCRrBcj67k5py+f2QhyV8lCRdJnbC7HkydIyvYrbCzFa
+dmjOsApuL8SA0ibvl5Xc3gm3Nl5IbKvh9k44fgV/Wl8tt3fCRdEWRcsecnsn
+DCgcktjymNs7Y/HItx2Dm7i9M97+1eQGL7i9M04IzNA8aOH2zrjc38vQZeT2
+g9Fh28xNAW/Us/8Agkd76w==
+ "]]},
+ {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
+1:eJw1ywtQzGsYx/F/m63VtteU0sokSRdDQsJ4H5t1GQ1tjJG0kVvbJvYccU4c
+rRAToyZFmmKnIZdBamOLytaKzLhXWorOpOl0myK0VlqO6XnfmWfe+cx3fp6x
+uyK2sRiGkf9/v3/69Kkxxzo+10hHdYt0uM7zaDJRG4h299rATXrqehIeXV9d
+VUj9gkgfjLQtPEzdSFRd/vddVdQmkubsPmsojLqVDEz65hI4i/pfMuwYvPfE
+OOp2stHFfWOX2YDuIFs/Rtq6vaXuJM4FCXJxJXUXaZ8yWZZbQN1Drm9Wpxw4
+SN1HlL2PV3YrqPuJxD+ytmcR9UeSnPbK+81E6k/k0rnpPj7f76MHiSzzmQTK
+qD+TAN+nbSFq6i8kyMPYaZxK/ZVE89X9Ie3V6CHSGv+iPjaL2kz63mdc9g2j
+/kYGxmdbeUNVaAuRcatmvLxB/Z3smtmQkBJOPUycb65rLGZT/yAeA817Jmsr
+0SPkZFxd/39yaiuxhpULbD7cQ/8kthOMfpJMagYUTcsuFLigNQz4tsxZL6+6
+i90G5CrR0YZgtMYG/t6QuK6yqQI7C9KVdYp8KVrDAp/iFk5qYzl2WyhyuNv0
+MBCtsYUZZ2IgRqfHPgb4/ziHZlvvYB8D5udRS6TxaIYNh4KWpM/X3sbOhtxY
+r8Ly/jLsdqB6XWFewEVr7CDFsyUvIkiH3R6sH/xzqmeWYreHwanN6VN8SrBz
+4DTPs2TRj2LsHCjSunYKE25gHwuKpW4BDfeuYR8LE1qODJeevYzdAQor3MPe
+7b+I3QG8htzWFBi12LlwONDwODw/DzsX+tKj4tT6LOyOkB39l9L75HHsjuAm
+6bbMNu/HzoO8yA3xyhV7sfOg6OWyucneR7HzId+QydUZM7DzQXe+TWHJoF0A
+OfzMNL/VydgFYH91vmCVAs0IwbtnpNZGtm/UIITGkcRUyxa0RginuNNa7XKT
+Rm0Qgqy5j12zDc2IoPCqvGQeZw/uRcCae0bXlfMn7kXQfTDfdC7pD9yLIO6m
+XZ3ApMa9GEKz1aGcjt24FwPDLYoKDkBrxPBkTl5bkj4R92KIWPq+dHD6Ttw7
+QdTWhis7Hqlw7wTgx4tmh8Tj3gnaHSUmhqXEvRMs98paEZCyA/fjoLdssaV3
+53bpL+2TdNk=
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ FrameLabel->{
+ FormBox["\"Position (m)\"", TraditionalForm],
+ FormBox[
+ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
+\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"",
+ TraditionalForm]},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]]
+}, Open ]]
+},
+AutoGeneratedPackage->None,
+WindowSize->{1084, 904},
+WindowMargins->{{3, Automatic}, {Automatic, 9}},
+ShowSelection->True,
+FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)",
+StyleDefinitions->"Default.nb"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[CellGroupData[{
+Cell[567, 22, 32, 0, 71, "Section"],
+Cell[602, 24, 206, 6, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->94096541],
+Cell[CellGroupData[{
+Cell[833, 34, 68, 1, 31, "Input"],
+Cell[904, 37, 64, 1, 30, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[1005, 43, 113, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->123059143],
+Cell[1121, 47, 230, 5, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->2058623809],
+Cell[1354, 54, 108, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->184495045]
+}, Open ]],
+Cell[1477, 59, 349, 7, 31, "Input"],
+Cell[1829, 68, 572, 16, 72, "Input"],
+Cell[2404, 86, 282, 7, 33, "Input"],
+Cell[2689, 95, 416, 11, 31, "Input"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[3142, 111, 38, 0, 71, "Section"],
+Cell[3183, 113, 163, 3, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->188360977],
+Cell[CellGroupData[{
+Cell[3371, 120, 2251, 50, 132, "Input"],
+Cell[5625, 172, 2828, 69, 86, "Output"]
+}, Open ]],
+Cell[8468, 244, 120, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->13161682],
+Cell[CellGroupData[{
+Cell[8613, 250, 1677, 47, 53, "Input"],
+Cell[10293, 299, 1779, 54, 55, "Output"]
+}, Open ]],
+Cell[12087, 356, 164, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->337337829],
+Cell[CellGroupData[{
+Cell[12276, 364, 634, 18, 52, "Input"],
+Cell[12913, 384, 10059, 299, 146, "Output"]
+}, Open ]],
+Cell[22987, 686, 164, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->327463138],
+Cell[CellGroupData[{
+Cell[23176, 694, 1031, 28, 67, "Input"],
+Cell[24210, 724, 707, 21, 86, "Output"]
+}, Open ]],
+Cell[24932, 748, 117, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->737742553],
+Cell[CellGroupData[{
+Cell[25074, 754, 146, 4, 31, "Input"],
+Cell[25223, 760, 6204, 173, 158, "Output"]
+}, Open ]],
+Cell[31442, 936, 146, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->944896957],
+Cell[CellGroupData[{
+Cell[31613, 944, 537, 15, 31, "Input",
+ Evaluatable->False],
+Cell[32153, 961, 1411, 28, 190, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[33601, 994, 197, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->471402495],
+Cell[33801, 1000, 1277, 29, 92, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[35081, 1031, 2306, 70, 146, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[37390, 1103, 478, 14, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->448215320],
+Cell[37871, 1119, 367, 9, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->150217419],
+Cell[38241, 1130, 870, 23, 86, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[39148, 1158, 484, 14, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->78071612],
+Cell[39635, 1174, 390, 9, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->109972911],
+Cell[40028, 1185, 1388, 40, 88, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[41419, 1227, 241, 7, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->24518771]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[41697, 1239, 1104, 31, 33, "Input"],
+Cell[42804, 1272, 4345, 136, 72, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[47186, 1413, 242, 7, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->112084045],
+Cell[47431, 1422, 1706, 44, 77, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->26920765]
+}, Open ]],
+Cell[49152, 1469, 60487, 1739, 568, "Output"],
+Cell[109642, 3210, 133, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->16777324],
+Cell[CellGroupData[{
+Cell[109800, 3216, 493, 14, 33, "Input"],
+Cell[110296, 3232, 4557, 154, 72, "Output"]
+}, Open ]],
+Cell[114868, 3389, 341, 8, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->100512453],
+Cell[CellGroupData[{
+Cell[115234, 3401, 2265, 58, 139, "Input"],
+Cell[117502, 3461, 1330, 45, 37, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[118869, 3511, 678, 19, 33, "Input"],
+Cell[119550, 3532, 553, 16, 30, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[120140, 3553, 537, 16, 31, "Input"],
+Cell[120680, 3571, 4404, 138, 83, "Output"]
+}, Open ]],
+Cell[125099, 3712, 152, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->135712718],
+Cell[CellGroupData[{
+Cell[125276, 3718, 924, 27, 31, "Input"],
+Cell[126203, 3747, 802, 25, 30, "Output"]
+}, Open ]],
+Cell[127020, 3775, 255, 5, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->71091213],
+Cell[CellGroupData[{
+Cell[127300, 3784, 916, 27, 31, "Input"],
+Cell[128219, 3813, 797, 25, 30, "Output"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[129065, 3844, 26, 0, 71, "Section"],
+Cell[129094, 3846, 127, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->35853137],
+Cell[129224, 3850, 68, 2, 31, "Input"],
+Cell[129295, 3854, 140, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->380000867],
+Cell[129438, 3858, 231, 7, 31, "Input"],
+Cell[129672, 3867, 149, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->129539961],
+Cell[129824, 3871, 1171, 33, 72, "Input"],
+Cell[130998, 3906, 458, 14, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->40567123],
+Cell[CellGroupData[{
+Cell[131481, 3924, 4644, 129, 143, "Input"],
+Cell[136128, 4055, 3033, 59, 234, "Output"]
+}, Open ]],
+Cell[139176, 4117, 141, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->264338212],
+Cell[CellGroupData[{
+Cell[139342, 4125, 4667, 130, 143, "Input"],
+Cell[144012, 4257, 3004, 58, 235, "Output"]
+}, Open ]]
+}, Open ]]
+}
+]
+*)
+
+(* End of internal cache information *)
|