summaryrefslogtreecommitdiff
path: root/mathemathica_fwm/CounterPropFWM.nb
diff options
context:
space:
mode:
Diffstat (limited to 'mathemathica_fwm/CounterPropFWM.nb')
-rwxr-xr-xmathemathica_fwm/CounterPropFWM.nb6357
1 files changed, 6357 insertions, 0 deletions
diff --git a/mathemathica_fwm/CounterPropFWM.nb b/mathemathica_fwm/CounterPropFWM.nb
new file mode 100755
index 0000000..66b4d75
--- /dev/null
+++ b/mathemathica_fwm/CounterPropFWM.nb
@@ -0,0 +1,6357 @@
+(* Content-type: application/mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 7.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 145, 7]
+NotebookDataLength[ 251067, 6348]
+NotebookOptionsPosition[ 243537, 6132]
+NotebookOutlinePosition[ 243930, 6149]
+CellTagsIndexPosition[ 243887, 6146]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+
+Cell[CellGroupData[{
+Cell["setup ", "Section"],
+
+Cell[CellGroupData[{
+
+Cell["This loads the package.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258751485*^9},
+ CellID->836781195],
+
+Cell[BoxData[
+ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9},
+ 3.522586258751662*^9},
+ CellID->2058623809],
+
+Cell[TextData[{
+ "We define an atomic system consisting of two even-parity lower states and \
+two odd-parity upper states. We apply a light field with components at \
+frequencies ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "3"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "2"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition), and ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
+ " (near resonant with the ",
+ Cell[BoxData[
+ StyleBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"|", "1"}], "\[RightAngleBracket]"}], "\[Rule]",
+ RowBox[{"|", "4"}]}], "\[RightAngleBracket]"}], "InlineMath"]]],
+ " transition)"
+}], "Text",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.522532429821333*^9, 3.522532492302448*^9}, {
+ 3.522540911043191*^9, 3.522540911147507*^9}, 3.522586258751843*^9},
+ CellID->525777075],
+
+Cell["\<\
+Work with real and imaginary parts of the density matrix variables.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->145610755]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"DensityMatrix", ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}]}], "]"}],
+ ";"}]], "Input"],
+
+Cell[CellGroupData[{
+
+Cell["Define the atomic system.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258751924*^9},
+ CellID->429217524],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"system", "=",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]",
+ SubscriptBox["\[CapitalGamma]", "3"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"4", ",",
+ RowBox[{"NaturalWidth", "\[Rule]",
+ SubscriptBox["\[CapitalGamma]", "4"]}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}], "\[IndentingNewLine]",
+ "}"}]}], ";"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.522536311483895*^9, 3.52253631268178*^9},
+ 3.522586258752063*^9},
+ CellID->433132487],
+
+Cell[TextData[{
+ "Define the optical field with three frequencies, ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ ", ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ ", ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
+ ", and ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
+ "."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.522540939999547*^9, 3.522540967294499*^9}, {
+ 3.522541679413973*^9, 3.522541681294852*^9}, 3.522586258752202*^9},
+ CellID->133602844]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"SetOptions", "[",
+ RowBox[{"OpticalField", ",",
+ RowBox[{"CartesianCoordinates", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"PolarizationVector", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0"}], "}"}]}], ",",
+ RowBox[{"PropagationVector", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], ",",
+ RowBox[{"Parameterization", "\[Rule]", "AngleEllipticity"}], ",",
+ RowBox[{"CartesianCoordinates", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"x", ",", "y", ",", "z"}], "}"}]}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"field", "=",
+ RowBox[{
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["k", "1"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "1"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "1"]}], "}"}]}], "]"}], "+",
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "2"], ",",
+ SubscriptBox["k", "2"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "2"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "2"]}], "}"}]}], "]"}], "+",
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "3"], ",",
+ SubscriptBox["k", "3"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "3"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "3"]}], "}"}]}], "]"}], "+",
+ "\[IndentingNewLine]",
+ RowBox[{"OpticalField", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "4"], ",",
+ SubscriptBox["k", "4"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]", "4"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]}], ",",
+ SubscriptBox["\[Phi]", "4"]}], "}"}]}], "]"}]}]}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->534530029],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "4"}], "]"}]]}], ",", "0",
+ ",", "0"}], "}"}]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell["\<\
+The Hamiltonian for the system subject to the optical field. Each field is \
+assumed to interact with only one transition\[LongDash]the other terms are \
+set to zero.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258752645*^9},
+ CellID->462076121],
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"H", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]", "field"}]}], "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Cos", "[", "_", "]"}], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"_", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "_"}], "]"}]}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258752779*^9},
+ CellID->494599775],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{"Energy", "[", "1", "]"}], "0",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}]},
+ {"0",
+ RowBox[{"Energy", "[", "2", "]"}],
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}]},
+ {
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["\[Phi]", "1"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "1"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "+",
+ SubscriptBox["\[Phi]", "2"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "2"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}], "0", "0"},
+ {
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "4"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Cos", "[",
+ RowBox[{
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ SubscriptBox["\[Phi]", "3"], "-",
+ RowBox[{"t", " ",
+ SubscriptBox["\[Omega]", "3"]}]}], "]"}]}], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}], "0",
+ RowBox[{"Energy", "[", "4", "]"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell["The level diagram for the system.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258753087*^9},
+ CellID->358620443],
+
+Cell[BoxData[
+ RowBox[{"LevelDiagram", "[",
+ RowBox[{"system", ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Energy", "[", "1", "]"}], "\[Rule]",
+ RowBox[{"-", "1.5"}]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "2", "]"}], "\[Rule]",
+ RowBox[{"-", "1"}]}], ",",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "\[Rule]", ".5"}]}], "}"}]}]}],
+ "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.52258625875322*^9},
+ CellID->167259034],
+
+Cell[BoxData[
+ GraphicsBox[{{{{},
+ LineBox[{{-0.9, -1.5}, {-0.09999999999999998, -1.5}}]}, {{},
+ LineBox[{{-0.9, -1}, {-0.09999999999999998, -1}}]}, {{},
+ LineBox[{{0.09999999999999998, 0}, {0.9, 0}}]}, {{},
+ LineBox[{{0.09999999999999998, 0.5}, {0.9, 0.5}}]}}, {{}, {}, {}},
+ {Arrowheads[{-0.07659574468085106, 0.07659574468085106}],
+ ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.}}],
+ ArrowBox[{{-0.45999999999999996`, -1.5}, {0.45999999999999996`, 0.5}}],
+ ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.}}],
+ ArrowBox[{{-0.45999999999999996`, -1}, {0.45999999999999996`, 0.5}}]},
+ {PointSize[0.0225]}},
+ ImagePadding->{{2, 2}, {2, 2}},
+ ImageSize->94.]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
+"MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258753521*^9},
+ CellID->577766068],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Hrwa", "=", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"RotatingWaveApproximation", "[",
+ RowBox[{"system", ",",
+ RowBox[{
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Omega]", "3"], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[Omega]", "2"], "+", "\[Omega]43"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "4"], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "+", "\[Omega]41"}]}]}],
+ "}"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["k", "3"], "\[Rule]",
+ RowBox[{
+ SubscriptBox["k", "2"], "+", "k43"}]}], ",",
+ RowBox[{
+ SubscriptBox["k", "4"], "\[Rule]",
+ RowBox[{
+ SubscriptBox["k", "1"], "+", "k41"}]}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "2"], ",", "\[Omega]43"}], "}"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"TransformMatrix", "\[Rule]",
+ RowBox[{"MatrixExp", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
+ RowBox[{"DiagonalMatrix", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["\[Omega]", "1"]}], ",",
+ RowBox[{"-",
+ SubscriptBox["\[Omega]", "2"]}], ",", "0", ",",
+ "\[Omega]43"}], "}"}], "]"}]}], "+",
+ RowBox[{"\[ImaginaryI]", " ", "z", " ",
+ RowBox[{"DiagonalMatrix", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["k", "1"]}], ",",
+ RowBox[{"-",
+ SubscriptBox["k", "2"]}], ",", "0", ",", "k43"}], "}"}],
+ "]"}]}]}], "]"}]}]}], "]"}], "/.", "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], "\[Rule]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Energy", "[", "1", "]"}]}], "+", "\[Delta]1"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[Omega]", "2"], "\[Rule]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"Energy", "[", "2", "]"}]}], "+", "\[Delta]2"}]}], ",",
+ RowBox[{"\[Omega]43", "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]3", "-",
+ "\[Delta]2"}]}], ",",
+ RowBox[{"\[Omega]41", "\[Rule]",
+ RowBox[{
+ RowBox[{"Energy", "[", "4", "]"}], "+", "\[Delta]4", "-",
+ "\[Delta]1"}]}]}], "}"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"k43", " ", "\[Rule]",
+ RowBox[{
+ SubscriptBox["k", "3"], "-",
+ SubscriptBox["k", "2"]}]}], ",",
+ RowBox[{"k41", " ", "\[Rule]",
+ RowBox[{
+ SubscriptBox["k", "4"], "-",
+ SubscriptBox["k", "1"]}]}]}], "}"}]}]}], ")"}], "//",
+ "MatrixForm"}], " ", "//", "Simplify"}], " ",
+ "\[IndentingNewLine]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Delta]1", "0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"t", " ", "\[Delta]1"}], "-",
+ RowBox[{"t", " ", "\[Delta]2"}], "+",
+ RowBox[{"t", " ", "\[Delta]3"}], "-",
+ RowBox[{"t", " ", "\[Delta]4"}], "-",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "-",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}]},
+ {"0", "\[Delta]2",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}]},
+ {
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "1"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "1"]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "2"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "2"]}], "0", "0"},
+ {
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"t", " ", "\[Delta]1"}], "-",
+ RowBox[{"t", " ", "\[Delta]2"}], "+",
+ RowBox[{"t", " ", "\[Delta]3"}], "-",
+ RowBox[{"t", " ", "\[Delta]4"}], "-",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "1"]}], "+",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "2"]}], "-",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "3"]}], "+",
+ RowBox[{"z", " ",
+ SubscriptBox["k", "4"]}], "+",
+ SubscriptBox["\[Phi]", "4"]}], ")"}]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "4"]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "3"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "3"]}], "0",
+ RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell[TextData[{
+ "Set ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "1"], "InlineMath"], TraditionalForm]]],
+ "-",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "2"], "InlineMath"], TraditionalForm]]],
+ " = ",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "4"], "InlineMath"], TraditionalForm]]],
+ "-",
+ Cell[BoxData[
+ FormBox[
+ StyleBox[
+ SubscriptBox["\[Omega]", "3"], "InlineMath"], TraditionalForm]]],
+ ", and phase-matching: ",
+ Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ SubscriptBox["k", "1"]}], "+",
+ SubscriptBox["k", "2"], "-",
+ SubscriptBox["k", "3"], "+",
+ SubscriptBox["k", "4"]}], "=", "0"}]],
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->525228576],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Hrwa", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Hrwa", "/.", " ",
+ RowBox[{"\[Delta]4", "\[Rule]",
+ RowBox[{"\[Delta]1", "-", "\[Delta]2", "+", "\[Delta]3"}]}]}], "/.",
+ " ",
+ RowBox[{
+ SubscriptBox["k", "4"], "\[Rule]",
+ RowBox[{
+ SubscriptBox["k", "1"], "-",
+ SubscriptBox["k", "2"], "+",
+ SubscriptBox["k", "3"]}]}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[Phi]", "j_"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "j_"]}], "\[Rule]",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}]}]}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[Phi]", "j_"]}]], " ",
+ SubscriptBox["\[CapitalOmega]", "j_"]}], "\[Rule]",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}]}]}]}]}],
+ ")"}], "//", "MatrixForm"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Delta]1", "0",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}]},
+ {"0", "\[Delta]2",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}]},
+ {
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "0", "0"},
+ {
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "0",
+ RowBox[{"\[Delta]2", "-", "\[Delta]3"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["IntrinsicRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
+ " supply the relaxation matrices."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.52258625875446*^9},
+ CellID->610306692],
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"relax", "=",
+ RowBox[{
+ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRelaxation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258754587*^9},
+ CellID->645617687],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Gamma]t", "0", "0", "0"},
+ {"0", "\[Gamma]t", "0", "0"},
+ {"0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ SubscriptBox["\[CapitalGamma]", "3"]}], "0"},
+ {"0", "0", "0",
+ RowBox[{"\[Gamma]t", "+",
+ SubscriptBox["\[CapitalGamma]", "4"]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["OpticalRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
+ " supply the repopulation matrices."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804159*^9},
+ CellID->854192725],
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"repop", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}], "/.",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[",
+ RowBox[{"a_", ",", "b_"}], "]"}], "\[Rule]",
+ SubscriptBox["R",
+ RowBox[{"a", ",", "b"}]]}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804293*^9},
+ CellID->465762594],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]], "[", "t", "]"}]}]}], "0", "0",
+ "0"},
+ {"0",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3"}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4"}]], "[", "t", "]"}]}]}], "0", "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+
+Cell["Density-matrix and field variables for one point", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->314466782]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"vars", "=",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}],
+ ",",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "j", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "j", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"j", ",", "4"}], "}"}]}], "]"}]}], "]"}], "//",
+ "Flatten"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Density matrix evolution equations:", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->398692331],
+
+Cell[BoxData[
+ RowBox[{"TableForm", "[",
+ RowBox[{"eqs", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"LiouvilleEquation", "[",
+ RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Rule]",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->298399236]
+}, Open ]],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Delta]1", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Gamma]t"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]1", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox["\[Gamma]t", "2"], "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]1", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]1", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]1", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]1", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "3"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[Delta]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Delta]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]]], "Output"],
+
+Cell["Initial conditions for density matrix:", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->8183146],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"inits", "=",
+ RowBox[{
+ RowBox[{"InitialConditions", "[",
+ RowBox[{"system", ",",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "1", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "2", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "2", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "2", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]",
+ FractionBox["1", "2"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "3", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "3", ",", "4", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "3", ",", "4", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "4", ",", "4", ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[TextData[{
+ "Field evolution equations with finite difference approximation (first-order \
+upwind scheme) for co-propagating beams. ",
+ StyleBox["h",
+ FontSlant->"Italic"],
+ " is the the grid spacing in the spatial dimension."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->142706944],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"fieldeqs", "=",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}]}], "}"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+Field evolution equations with finite difference approximation (first-order \
+upwind scheme) for fields 1 and 2 forward propagating, fields 3 and 4 \
+backward propagating. \
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->97303873],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"counterfieldeqs", "=",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",",
+ RowBox[{"i", "-", "1"}]}]], "[", "t", "]"}]}], ")"}], "/",
+ "h"}]}]}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "+",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",",
+ RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}],
+ "/", "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",",
+ RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], ")"}],
+ "/", "h"}]}]}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}],
+ ")"}]}], "+",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",",
+ RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}],
+ "/", "h"}]}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[Eta]", " ", "c", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"c",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",",
+ RowBox[{"i", "+", "1"}]}]], "[", "t", "]"}], "-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], ")"}],
+ "/", "h"}]}]}]}]}], "}"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
+ "h"]}], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "3", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",",
+ RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",",
+ RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "2", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",",
+ RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",", "1", ",", "4", ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{"c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t", "]"}]}], "+",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",",
+ RowBox[{"1", "+", "i"}]}]], "[", "t", "]"}]}], ")"}]}], "h"], "+",
+ RowBox[{"c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",", "1", ",", "4", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+Initial conditions for fields (assume uniform in space).\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->138519002],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"initfields", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "2"], " ",
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"t0", "/", "tp"}], ")"}], "2"]}], "]"}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "4"], " ",
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"t0", "/", "tp"}], ")"}], "2"]}], "]"}]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}]}], "}"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox[
+ SuperscriptBox["t0", "2"],
+ SuperscriptBox["tp", "2"]]}]], " ",
+ SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox[
+ SuperscriptBox["t0", "2"],
+ SuperscriptBox["tp", "2"]]}]], " ",
+ SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \
+fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->3468672],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"boundaryconds", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "2"], " ",
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "4"],
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}]}], "}"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox[
+ SuperscriptBox["t", "2"],
+ SuperscriptBox["tp", "2"]]}]], " ",
+ SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox[
+ SuperscriptBox["t", "2"],
+ SuperscriptBox["tp", "2"]]}]], " ",
+ SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+Boundary conditions for counter-propagating fields. Fields 1 and 3 are \
+constant, fields 2 and 4 are pulsed.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->102411945],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"counterboundaryconds", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "2"], " ",
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "4"],
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(", "t", ")"}], "/", "tp"}], ")"}], "2"]}], "]"}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}]}], "}"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox[
+ SuperscriptBox["t", "2"],
+ SuperscriptBox["tp", "2"]]}]], " ",
+ SubscriptBox["\[CapitalOmega]0", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "3"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"-",
+ FractionBox[
+ SuperscriptBox["t", "2"],
+ SuperscriptBox["tp", "2"]]}]], " ",
+ SubscriptBox["\[CapitalOmega]0", "4"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "2", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "3", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "4", ",", "n0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}]}], "}"}]], "Output"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Results", "Section"],
+
+Cell["\<\
+Choose number of spatial points.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->573833124],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"n", "=", "100"}], ";"}]], "Input"],
+
+Cell["\<\
+All system variables for all spatial points.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->289922153],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"allvars", "=",
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{"vars", ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"],
+
+Cell["\<\
+Equations for all points for the co-propagating case.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->605757010],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"TableForm", "[",
+ RowBox[{"alleqs", "=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"DeleteCases", "[",
+ RowBox[{
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{"eqs", ",", "inits", ",", "fieldeqs", ",", "initfields"}],
+ "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",",
+ RowBox[{"Alternatives", "@@",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"#", "[",
+ RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
+ "_"}], "&"}], "/@",
+ RowBox[{"(",
+ RowBox[{"boundaryconds", "/.",
+ RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",",
+ RowBox[{"(",
+ RowBox[{"boundaryconds", "/.",
+ RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}],
+ ";"}]], "Input"],
+
+Cell["\<\
+Equations for all points for the counter-propagating case.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->546154363],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"TableForm", "[",
+ RowBox[{"allcountereqs", "=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"DeleteCases", "[",
+ RowBox[{
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{
+ "eqs", ",", "inits", ",", "counterfieldeqs", ",", "initfields"}],
+ "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",",
+ RowBox[{"Alternatives", "@@",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"#", "[",
+ RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
+ "_"}], "&"}], "/@",
+ RowBox[{"(",
+ RowBox[{"counterboundaryconds", "/.",
+ RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",",
+ RowBox[{"(",
+ RowBox[{"counterboundaryconds", "/.",
+ RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}],
+ ";"}]], "Input"],
+
+Cell["Choose tolerance for NDSolve.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->53519095],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"NDSolve", ",",
+ RowBox[{"PrecisionGoal", "\[Rule]", "5"}], ",",
+ RowBox[{"AccuracyGoal", "\[Rule]", "5"}]}], "]"}], ";"}]], "Input"],
+
+Cell[TextData[{
+ "Here we choose parameters and integrate the equations for the co- and \
+counter-propagating cases. Black is ",
+ Cell[BoxData[
+ FormBox[
+ SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]],
+ FormatType->"TraditionalForm"],
+ " pulse before the medium, blue is ",
+ Cell[BoxData[
+ FormBox[
+ SubscriptBox["\[CapitalOmega]", "2"], TraditionalForm]],
+ FormatType->"TraditionalForm"],
+ " pulse after the medium, red is ",
+ Cell[BoxData[
+ FormBox[
+ SubscriptBox["\[CapitalOmega]", "4"], TraditionalForm]],
+ FormatType->"TraditionalForm"],
+ " pulse after the medium. Solid lines are co-propagating, dashed lines are \
+fields 1 and 2 forward propagating, fields 3 and 4 backward propagating. "
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->434761194],
+
+Cell[CellGroupData[{
+
+Cell["case I", "Subsection"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3.0", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3.0", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",",
+ RowBox[{"c", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox["10", "8"]}]}], ",",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{"2", " ", "3.", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"794.7", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "9"}]]}], ")"}], "2"],
+ SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ",
+ RowBox[{
+ SuperscriptBox["10", "6"], "/",
+ RowBox[{"(",
+ RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",",
+ RowBox[{"t0", "\[Rule]",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], ",",
+ RowBox[{"tp", "\[Rule]",
+ RowBox[{"4.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
+ RowBox[{"3.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "3"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]",
+ RowBox[{"6.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]",
+ RowBox[{"0", " ", "1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "3"]}]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{"1.5", " ",
+ RowBox[{
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"alleqs1", "=",
+ RowBox[{"Expand", "@",
+ RowBox[{"Evaluate", "[",
+ RowBox[{"alleqs", "/.", "params"}], "]"}]}]}], ";"}], "\n",
+ RowBox[{
+ RowBox[{"sol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{"alleqs1", ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"15.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"TableForm", "[",
+ RowBox[{"allcountereqs1", "=",
+ RowBox[{"Expand", "@",
+ RowBox[{"Evaluate", "[",
+ RowBox[{"allcountereqs", "/.", "params"}], "]"}]}]}], "]"}],
+ ";"}], "\n",
+ RowBox[{
+ RowBox[{"countersol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{"allcountereqs1", ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"15.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "2"]}],
+ "}"}], "/.",
+ RowBox[{"sol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "2"]}],
+ "}"}], "/.",
+ RowBox[{"countersol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "5."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"5.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}], ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"PlotStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"Black", ",", "Blue", ",", "Red", ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Blue", ",", "Dashed"}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"FrameLabel", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Time (\[Mu]s)\>\"", ",",
+ "\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
+\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {GrayLevel[0], LineBox[CompressedData["
+1:eJwt2Gk4Vd/bB3AhIRQRKRkSQtIkDlbuZIg0KEqE0CBzpkw5Z5tCmTKT0MmY
+MSqllTmU8ZyUKPETKSFTGfvv57qeV/v6vNp77f29v2tdW9LGxfgyKwsLy4Y1
+LCz/dw1jCfOt/MvEdipeqtneFPAdMXW5PsfEio/kKnJiKeD8TsZOfJqJP83y
+5dQUUsA0ucko/CcT/8ofkDj4lQIyyhySF78w8ZncgCFJA3VosAp5w97AxK3J
+m3ZultKANa+DBM9GM3HYMcPYpiFN8AugFk/vZOJ8YG4Sfq8FUx6NVdZSTJw3
+V7T/zIgW2DlyN7ZvZ+Kgzn8j9/9owXHz+L4CYSZ2yOKXtxIF2KaWx2nLxcT8
+AQsb46wBqmc7bBjjDHxusnawZhJg2UFcuOIJA/N/sOQI3KINty7gQE9g4Gg5
+1dHL6TowfGJlqwRiYPEti293lOqAobbG81YKA2dGeelP1euAiOKLKfEDDHxk
+8K105U8deLJSealVhoFb2CyVJ9V14XtmkbY4DwMLXDKokx/QhTOj6etaerrx
+2+a0Z7+V9UHOwy96m2M3DjAWFtdjMwS9nhMr06lduFRG5PLanFPgmXyFc8Pz
+TlxVYd9/veAsxCstPcxo7sBfHA/aCXGagcV4mVvBShsWDXhepu9jCbzqCUuC
+6u/wwf6hb9f1bICXzZu1ObEVz1cp1RTfuAwKkYPaHB3NeJft3rAGdXtIumPA
+enfnG7zW8/7rIwJOML79q/+N4Ebsahik/yDCFazdVvf+97oeFz0wcb3NvAFS
+mlvt0rfU4bhcK++fXJ7A2lLT+fVkDf73SvnVH29vSHy7c2ad2CvcIuLhtNzj
+A41/mtBATxUONV9IPLjiB8p0n3/vjj3FScLTjfv23QJV7V0vDBfKcf/PlRWx
+9VSo1PvON/GjHL889vX4Pz4q7DueaxvTX44X87hTvwhQQdFkJ+/71+X42sVY
+2SRRKkhclbS2DC3HDeKDvZO7qMAVuYXDbVM5tmoumdTUp8Knbi7jxN1luO2K
+SdjhICosNjAZtfXFeDSAdb37NBXYkoTs7+QWY+Nbt75WzlGBx9501TSyGE91
+PjOd/0sFMd6PcuPGxTiOUr3d9R8VtEz6AjYPFeGejNgJXR4ahH4blHVgKcJ+
+m7QVqDtpwM8x6SeoWYgPjiuXbTalgejHPfwDEoW4tGRTOrcZDaQKXHPy2Qux
+o+/j+SVzGhw4Md2J3hVg3tHV2Z5LNDBNnNtpb16AtYVUxp2caJAus9zxyicf
+j3p2eG0PpoGcHpf01ae5OEqYezawhAZNLKKwOT0Xvzz8fvN0GQ1sX8hbNtJy
+8Yt31A+XKmiQsft48g6jXCw8vkuJUkUDIcFonq//5eDiilKB9joasA4Kzp3n
+z8G63w1aaO9p0O8r0WTgSMf6Dp63+Rdo4Htg738Lp+l4JaH+/MElGghPAEv+
+ITqWTTn6yHSFBsaXbCnr2Og4bpFeGruGgBa9nOL6lIf4+d1A/zEuAp4KKiZp
+vMnGvy4+ExMXJSC6+NA1JaksHN72US9dlQCl2SnVnLVZ+FOJulAChYB2tQKu
+7WOZeJnXoS1CgwDexm2FvKWZ2OIpY8FRi4DIvjUT45qZeGmHhzSPPgF8/Mmj
+pk8ycOqcUVeFKQFG6dzhur4ZuL/621u/8wTckQ2QV4EM/H35WNbhCwRwIxsn
+oY77mP/78MdXFwngcFCcYfxIx6ENETbxdgSsNtSsnpJKw5/PnNua70aA5qn9
+mVpjqZgTi5hpuhPg3/cIlEtTcSpvpW27BwGLvyOCN6BUHBEq1j/iTcD8dhPu
+drMU/L3gwJHfAQRM3BwTMoxNwqemz8g7hBMwoCiwW4clHmcqPhj6dZ8A/TDp
+Lyut97D4jl5LjgcElA6qRD9NuIfTOU2Xt2YSQCSa/5ZVuIdv/ZFNQdkEyLA8
+quQ2jcNKp6uPX8ohwJFxCHUWxuAdrsf3bSsm4P1ug8nbXjE4z7g/nKOEAHTb
+IhMgBlsGqy79Ir3dl3XtlaJoLHA4eldFGQF2Rgl3FdiicP8OpzyxSgKmZl5k
+PC2OwGUD3e12LwmoyxtgkTsagW2+H4mWqCbg3kV225TecFyhUW7TS1rljZGs
+P3s4Hl2d1jqCCQhI/VoCF8JwcYRe91QNASdOrhV4MhmK2Sn8Ugm1BEiwy3tI
+h4Rixt5GQqWOgAYnd9V1pSFY12nY07We/D7AUftubTBWyv+9tbaRgP45+R0o
+LQgrXV78adREQFHByZAS5SD8WWGq9QPpU4Ipx+LMCdx1vKxi6A0BiaMK3efK
+qDgwS2jv+xYCrqWfOtCiS8WFj3hvGLQScCP7h6Ln80A8EyFZU026yjOgksJ3
+C2cG1RLJbwnQ3fawqbHKF8+/4ExXbCPAsp117MN3HxxaHe56m7Qn1Wb9D2Ef
+7HpzwmmQNH1Y8hSflzcu3Jk/FNFOQHUi7YbEIy/cUPHQrI80U38wfh/TE8+q
+vf0r10EAW1Fmr+k+D5x143fxS9KiVizL1y654/DRlEaWTgL28Vtv94u5gSPe
+17Fpk7bxFLd9MOGK459MzWHSvrKBIWVirnh3JD3/L2mpJ69OhqU4412FKsF7
+ugig+mn0dpg4YFxwoSiedMnAktjsE3scnZq5VEf6i/ZLGxGBa9h0RtF1gjRf
+nm+uhusVzGnfxy3cTeadhzJu3W6HdRKq3mqQdnRdUA5RtMV+Q8PlVqTTmc89
+8yMuYc6ICzWBpBPdpjzSuqywkoPIbDrpWTWX1f/uWuCN68VOPCNtzDoRpmhg
+hh/HX21vJ13W6sjvyWGKP3784/Ef6Y33fqa+qjPGGifaYY50/1OmPs/qCXyW
+f/wAO4OAFL1u8/te+th22PjERtKmHzuclSYB39yzNmoLaZnuVLbADhVsx8Ix
+K05aa1ThzBHaDlzNbUbdQVr5nHfQNzdu1J7Lul+atGOLe4ToRWX0sGcdjxTp
+6dybdn8dNNGMuvN6MdIa9UjcQVMHKUtp7BUiHbgPeD41GCJ3n5sB3KQHO7P8
+pWVOo4AP8lPL5PMSnDtm+uzPoufe5uHjpKW16Pb3is6h3eqbjvWSbvLe+dXg
+9wUUnGe+p5701ZIcU9aDlmjxJ9IoIB08c2/EotoaXf3wxiWKtEk0M0vV0gbt
+G1rT6kJaRkHooiCLHTqxa8HgBOn5JhORqazLiOLyYnoX6eTVnqjcb9eQqGbX
+04/k97RPFTYICruOkkK0GYWkKSrn11rtckRzRlWb/Un3OfX6bXZyQTFLkwKC
+pHvY7271CXNF3G3db/vIPGHj3QtXzruhj/PLhZmkoyecKo4s3kB2ejeGJEnf
+1OCLU37rjhJDhlW/kPm1jih22Z7ugeYNxp8mkVaWmZRf1PRCLJX88qykuy+6
+ZpXRfFDD/t2TFeS8FBq+GzSz80UhZhrPjEkHq8lJser5ofnsXzK/3hFwSOhr
+tjFPANJKM1oVJn1iRLbbx5CK1tNlEnTIeaV8Npluq6aitj3HspvJ+ZZlBglI
+KdFQ1c4rZvqkWeoGjFs3EmhOsb1Js5mA8vtJDNGeIMTcoJXLQvZFRnzjjLNe
+MGJIb+G1J/slMnJmU/3zYPRPmybe3kD2oc/Jsw5pIaiBbmYYRfaRsMm69y+t
+w9BRyd7mEbLP/Hm8eyx+RiCzg7aFf1+Q/cL2aL7UIhLtlstlVyRtsti9eW17
+JGpMN9xoUUXub9+VzhWV3kGpw/pa5c/I/NSPfFjxjEIj9sf4DlUQ8FCz0PEk
+Syz6NGlUl/2Y7AO1Ov8F1VikbMHhmVVIQMyB3jsP3WJRtPGLwfQC8v4K64r+
+DMUizrMeP8PzyHnYYvvrQWMcUu1d6tSgE8A5J+o8FRGPHge7OHGkEXBWMs65
+63U8EglubfuWQkCWEZdL+Ww80oses6hLJt9nzh8XD8sEtOvCHS73RHI+zjHd
+/u5NREEJ+wvLYwnorLrrydKbhEbmwm4XhpF5u8USsFE2DfX/UEwJI/fH4QLv
+gN/maUjieuc3XlcC9n6YCOiOSUMQRvGIdSagdc/nW/GLaYgmcdQsxoGA5a9V
+VJH2dCRX4n3e6TKZH233YAnPDLQ3L6mDTu7XguwzOsmDmeiNovhXPk0CVPlC
+BbRWM1HAMZ5uYXUCLopsGRgVzUJmsiG5YmoE5CgevnnobBbSS5BYI3GQzI9J
+ZEFPUxY6z3kx/J8iARdydmwQepyNVk6HDstvIyBT/+zHWC86cvqsLqj+lwYN
+xqN0tXt09Cm1IntojgZjFr5ugyV09Mrmi1rYDA32uWVy7x2jI9E+lbA3EzSo
+TxnX6DR/hHK3VtdIf6PByI/gLD7IQePPXzQZd9FA4W7l9cj1eehS8juF0Fwa
+aLWHGBbJ5iH9ctHFz3TyfLfBVLFDOw/FSOYK7c+mARE7/0vAPw89p0yqvU+n
+waeEQ26p43nIvTHk4kIsDW5nVHnnt+UjI+EnR+v8aDBc8ir4TXQhigyjHrU2
+Is933Y0ZbIIl6KLuIwvxMSo4bXGefNxVjra8MJp/J0SFEy1XU8H6KbLaPbKp
+TvoWxIXaGeqUV6GrkiWu5YL+wC7FGRw5U41iRG81lEz7wP3tbQ8/a9agux1d
+HV4x3vCjPImz6L9alFdk9HTW2BNEwnr3/X5cjzgEH8rH/7oBfwe3fR0/14is
+Kp2r+etdYbJwf1f4YhNiWpVl2fs4QXNlbVhaTTPKb9ifOWRuD8a6p2vtrrUi
+K7qa9M6uy4A3n6/J3v8OPTp+eNdmExsA031sxHwbkpxIK4mIsQSvbXwtImkd
+6BH3ilBpuBnoxirLx5V1Ivreo+usWs9CwYcLZe6hXSgrRhTxLZ+C1PfOn3ae
+60b0zwa7u5INQUAw407JhW70jM71/mqgIYQbtyE1y260kV+Llf+KIdzsUHh4
+/HI3clh41Za63xBMW747uLt3I+urUUaRHQYg8MpmpSa6G9Hm3mzq5TaACLqp
+hEVzN1pj3Vc1FaUPvu7oSpwaA61tcN+k+lYH/lW4hw1oMFD8qXLjpGc6EDyf
+l6eoxUDHHEuH2Ok6EOWz6WeTLgOVm1j0cgfoQFbgd5elMwy0rN5qXbtHB5oj
+43zsnBkogIvo6U46CpvpI3dUHjLQ0R+jUeduaMMTZtSTTzxM9P3JldeuJwFs
+Kgu2R2xkIhvtIw8MNQEEEpvC1QSZ6LxOnYqKAoDruVWr5K1MlLzZ6jJlHYDS
+JyceU3kmYj2QVrzyWgvyBo5f7tJjIgofu/3VA1pw/we3cDPBRNeVBkbWnUZw
+/K0M4R3KRCln5FZClBEsFx75JRPBRGI8c6KSGxFccPKtD4llogSeacniDk0Q
+mRpz0c5kovcx46ckT2lC3FxzM37FRMoLB7+Zm2oA9Azvd65lIml3/ydZhzRg
+6inLA7FGJrLibbdi26IBJ2+qevq/YyIvFlku0X514FnKlaT0kevlO5IRZ6sO
+1X31d8a+MBGPlrZFpY46OFQP/EkeYqJIDcUrM7Lq0Bog3P5njFyvpaxQ7TgF
+fCz3q+X+YiLVMrbEUx0UkDt8km76m4nq5SxEl8oo8FHcYQPHHBNJSMvG1MRT
+4P//b6D4az+/ZXpT4H/bFEqw
+ "]]},
+ {RGBColor[0, 0, 1], LineBox[CompressedData["
+1:eJwt2Hk0Ff//B/AbUmSpkOVTyF6WRAvJO69k+RCiUJSEimQne4R7J5Q9e7Kv
+WbJF8o64tuz3JqVItJBPlEgb3/md8/trzuOcmTNz5v18vt5zZqedm9lFFgqF
+wruOQvm/I0EhAupWmNh40f/Iu4daEPDBwu3KEhMPRYZqm3dpgWuvjIPYNyaW
+jo1/83xUCyxSO4wiPzNxug/f0tpPLZBRZt95bpyJqwc2ZqwcBmg/T+1ka2fi
+T4rhQuF0gHVPwvlPxTKxUL8c/eDkUQgMDq34Jk16v4vmj2M6sOBNb7SVYGK/
+Su+aNisdcLjKSe8XZWK3kEv3ct114Lh10lipIBPLnddkS83Uge3qxRvtOZiY
+qr9rr92SDjz+PmDHmGNgrT3Sd4NLdeGPs5hgbQ0DV6idDN0hqQ/XrXCIDzBw
+3EDGH5cThjBt/PcfccTAd7qbVi47GYKh9uGGnkMMvGip5OkdZghCCo8WxPYx
+8FTNOwq91hBq/tZd6JFh4IMWTTd1RI7Dp+xybTEuBt5+2VS899NxOPkxc0P3
+yDDWuHlsSCnJGOS8A2O3Xx3Gx/TYBUX5TEFvxPjvt/QhHHzGwVeF2xx8Ui9t
+5G0YxA0L73N2SVpBktLvvKyuAdzQ15QdU3oezs498Cj924ezZQXrqvTsgVvj
+zm9+jV7cMu0Yc13iMnCz+rJ0JffgoGuWn5/JOIN89KQ2+0AXnuQXsg9cdIOU
+WwYst6U7Mb3RrrXX0RPmRN8GeUbQseydz68MvnuDrcfq3qknbXjNV/7n1Jgv
+SGj+45Ap/BSHrdBuNJcEAEt3y+BbkxasUujf/vxJMCQ/k17csKMZV3235E27
+EAr0Hx1oYqQR3z3mmmTz5AYo5/uv9f5bj8PUJzseyYSDmvauR4Y/q/HOWavR
+QasIqNP7xPNlthrPrlgwW89HgMrxIvu419X4+wW6bpVDBCiYS3M/f1KNO4Y1
+qFTXCBC/vNPWhlaNpf67JLUlLAI4ooXZPfiqcc7N5z2lxRHwapjDLFnxAV60
+9WoYWYyAX+1MRmtbBc7QuMMWd4MKrCkCTreKKnDUe7VTDVQqcDlZrFpEV+AU
+x++5byKpsIN7VG7OrAKrTx3cL5ZABS3zseBt78rx4j/FX4NzqUB7PynrTCnH
+AorsHMVPqbCFfT6QX7MMm9a+CMuh0EBkdM+WCfEynJL35t1FNhpIlLoXlrCV
+Yc3aLFbZjTTYZ/xtEPWW4vnPxSH3eGlgkbwk7WRdim+ZWyk4idIgU+bPQLN/
+CWb/+br8nAYN5PQ4pC7XF+HcNZ5Q7EmDDooIbMsswtNmUpRxHxrYP9ptQ79R
+hJ8c2RD4y48GWYrHUyWNivBT0Qbr3SE0EOCP5Xo7VYjn1jxyL0bTgGWSf+n0
+lkL8tN6S/988GrwOEO8wuJqPI83lRR8N0iBg396pn6b5uJdz6vQ1Bg0EvwCl
+5GA+bvIMtN8zQgOzC/aHNrDmYxkV1fcpYzTo1iusaEvLw7fmxkOOfqBBPb9C
+yuHOXBwjWs3z9xcNYisOOipJ5GCBwwLJazsJUPq+oFa4Pgcfv6nZTJUioF+9
+lEN0JhvzqTn+3iBLADd9exl3VTbuO7v3IUWBgOixdV/mNLOxbn3z+rb9BPBs
+Sf1oUZOFR8dUeyP1CTDK5IzUDcjCuUU3WwYNCLglG7z7AGRh8emoh3xGBHAi
+OxeBgbt4hGWt+LYpAezOCouM2UzM+FLpb2pFwGp7y+oJiQw85dvyXNCZAM0T
+qtlaM+lYWWeLi6gLAUFjBaBclY5v7BVbEncj4NfXqAhelI5LlYUZwl4ELIua
+c/afScMrA0bFrwII+OI3I2AYn4LXNRl3p0QSMKGwVVGHkoT9U/u7V/II0Cek
+xv/2JOIPMaI/LhQQUDV5ILb+TiK+x74W0llIQFiy9VdZ+URcXvQthyghQIZS
+UMdpkYDnj1kLvK4g4CrjIBosi8Psv++pPG8g4LmiwfzNa3HYdxNjgPURAejm
+2WyAOCxd+xsrNREgGsCy/lJ5LK46OR3n30yAg9Gd2/KsMZhIObL4rpWAhcVH
+WfUVUTjlkMEBth4CnhZPUOSORWGJFz8rf5BOPMdmn/YyEm9QHfP8+IyAA51G
+skFskRiWxIab+ggITn9bCVYE3n2xb/bgEAHGJuu31szT8Iarx3O5hwkQZ9vt
+LUWl4d7HwtkTpNtdvNQ2VFFx42YDFz8muT7A3tq7PgIbSI0fC35BwOul3ZIo
+Ixy3shVK7x8loLzUhFqpHI6P0OQMZkif4E/7N8E6DCsrS53TfUVA8kf5YcsH
+objwenIu4zUBjpkn9nXrhuLXRX2pLm8I8MydVfBpCMFt2H6QdZyARp/gukM8
+17EMNZZFeoIA3e15HfTGAPza3MD50CQBNv0sMy8++WM+1tHVGtI+oXabZgX9
+semVteVd7wjIn955gueaL2YR2cW/aYqAx8k3PMULrmFbnVq1a6SZ+pNJKkwf
+/GxhtuUNadby7JcWKt6YTvX5nTNNgMh5yh/HC174/ujp8lXSKltsRQPjPHH4
+dfanlu8JsPMRs7/3xR1rJ3zaukY6QDaE+mCHO961WG1s9IEAiZpmEyLNFSve
+9ppLIR0aePjlgLkzpp7kMpL4SEDlxO8d32uccM1aKK8d6XHtJjuhrY7407SU
+ahZpnuKAosPul/DPc10PR0hrch2as+13wEUvXe5u+kTmy/2nMlXBHjf1K0wf
+Jp3JbPApibqAjb+uRl8hneyx4J0xdB6rdY0nJZH+ru62OnX7LOYq71x9RNqM
+5QuhYHAGc/fWdb8h/aDn6hYfdgu8X6pw6Q/pzYmf05ufmmFZIjlMaIZc73qm
+PteqMVZNo7ork07TG7a+e00fmw55PjlG2mJ0wFVpHrCwv42bOWmZ4XTWkIED
+uP3+v6F2pLU+yp88ekMSS1kf+OZMWtnSN/y9ByfK15Gle5C+2u0VJXJOGR2j
+iP/0Iv2tyM9hxVkTJX2VivEkfbgNiTlr6qBKM40IF9IhKsD1qt0Qqe1xGnMg
+PTmYEyQlY4rOXqxLPE06bKPk4pjTKdReIFuuT1pKK98psdwSpXt1ye4n3eEr
+/dbgqxW6LpXDKkr6cmWhBct+GxTztkmLlXTEYuKHs49t0clcyYlp8n2YxzJz
+1GzsUPuB6fGnpGXkBc7xUxyQkSan1l3Syx3mQgs5F1GDbB6LN+nU1ZGYoveO
+yDL68v1tpJ3SBQ3CiSuIg6068R25nocOnF5/ftdVFH++/HUp6TGXl4HbXNzQ
+u86/icqkR9hu/+NPuKO+S34sX8j8YDPFn5dOe6AhrvnhItKxX1xqj/7yRLcy
+pNI3k/Y7zJOg/MwLJRfzxj8h82gbVeEmmumNrNebzF4hrSwzv/uX5jWE1uTb
+68k8D59zz3lwwx91yRwQkiTzX2bYO3nGIQBFJ+YUlJH9iVCXk2DRC0Tynwe/
+7SF9UOBtrhlXMDq/T7Jfnuyb8QfZYX/DULS0KyxhgezroTfm3/oehyKNc0ly
+lqRlmeFbJZRuoLYOuxuNZL8pTyfMejaHIT2+R0EeZP+r76YwREbC0Q+1QwUV
+LwnISqIvuupFIJFP3GcXyfkRHb3I19YQgSQzOkZVSTv4m5xyzqAienWcdPEI
+AYLmG5432RIoL89JyIZBzn8u35Gzn6MQp9B7+ho5/xxZC5arzkYj+TA13nWk
+zX8Nb1vfH41sb6dKr3aT+9snJcvyqlsoWM2t6XMnmZ+2Dy/++sSgbeH/piW1
+EZCnWXbVhBKPErb439lBzmsR9adBP9Xi0QMl+vwYOc/j9r28lecRj14GVYon
+PyTvL7+h/Me7eBSMrDhWa8k+CNv/d4+egDz5pDdlVhKwcUnEdSEqCV1S/ha0
+JZ+AUzsTXIeeJKH8AyxFRbkE5BhxuFV/T0KtMpyHD+WQ77Pwh5u3zR3E8SG/
+5FQW2Q9LpsfK3mR0Qq64wCaVgMHG2z6UlylohR7T0BlN5u06JXizbAayMfm9
+b5Hc/6ZLfYO/Wmegb9euCAq5ErD3xZfg4bgMlPgnPkj9KgE9e95cT/qVgfxy
+yoc9HAn487YxVKg/EzlNNHQ22JL50faKEPfJQgYtsfnZJwjgZ1vUSZ3MRmfO
+x/aMKxKgxkPbqrWajZw5iEIHeQLOCQlPfBTJQTHDIrc/yBFQqHDE7+CpHJRw
+RDFkXJLMj3l06UhHDvrD1SV4T5gAq0JJXoH7uUi1n2biwEZAtv6p0fhr+Whc
+KfEExwsatJt9zFdPzEebnrqr8zFpMHM2wGOyMh8VLhZaCw/RQMUjm3PvTD7a
+v3baTOQZDdrS5g4PWhcgtYz8ffOYBh9mI3J4oBC90W1Q/FBAA/nbdVeiNxWj
+F3cehvB70ECrn2pYLluMbo+WtTS4kN93vBYKA9rFaP9nSsKZKzQIi1/+b2tQ
+MdIQqZqLs6fBqzsHPdLnilF6hF/1iDkNbmY1+pb0lSBhR3e2FnUaTFc2R3TG
+lqHlgvF129aokDVMz2Llr0QDIz6DB0Op4CLsOn9/qBrZ269fjveOAOPuy+lg
+W49o8xqrdfLhkEBzMNSpbkStr0c9Ol/fADaJjRHRi4/RHtHnGrphoXBXtC/v
+jWYLul4lUFbyNxhmq1M2lk+1ovVT3kvbpANBiHip8vV+G1oOEs2JE/aDlcnt
+b+cs6cj8bFtk2mkfmC9THYr81YEMA1QDLtA9oauulcho6UKGPXyxOrLuYKZr
+2urg2IPksqplG3qdAW873ZKr2ouWtW5Kw7nLABYqrGHLfShRR+jmP4H2cG07
+T7dQxgCStwtbvK9nC7rxyrsTHgyiCzd5WA6EW0HpC6sHXrQhJPbdJ7qtxBzS
+n7u+krYcRsGOvi1H0k1hK3/WrUqrYXTSYfcL7ihTiDTrQ+o2w8jjZOrDj/6m
+4Dcgn3f84jCqfdbeis+YgkX3J2cvr2EkLbrH/acweX2z3d+W2GHUpTLzKjPz
+BETlW4if7RpGzUcSRb6dMoEAL3QpQZ2BjjW/qq3vN4S1Wi9i4jAD7ZGYiqmq
+M4SI5eJiBS0GuiN2P+9xpiHE+PN97tBloPNBIVabnA0hJ+ST2++TDBSg4b8x
+bKMhdEUn+Du4MlC/zrv2Xl0D2Jb/4daBPAbazfNkfcagPtQwY2pecTHRPp5A
+QlNQF+zqSkWjNjPRSk26kAhFF7Ymd0Sq8zPRUOPHCs4ZHXC3XD2f+g8TVQYI
+NMo26YDSKxcui91MVDXH/tHEVgeKJ45fHNJjImbd1JBRxTG4O8sp2BXGRBG1
+63hLT2vD8WcyYb40JhK+fubSvLY2/Ck7+p9MFBO1KaZp6O3RBiuXgDZqPBOF
+6HMrK7Frg9DCjJt2Nvl8zx0XX9QehYSlri7czESYfpyIEzgKMDKt6trKRHlV
+ZxRX1h2FhXrKvR108nxdlOTxBcDET80nqJeJ3nlP+aR1AnD9Ltp5aIyJBGrf
+H30cAPB4rO3WzDgTzSq+LKki4+L8eOJH6jsmSl964l1/CqAnWLD/xwwTXTqi
+v3FZCcDfRlW96D8mSuN/37hnO4DcEZN8i69MFP7GOSeAA2BUzJmXfYmJHihe
+rBlZ1oL//7+BGPSaae1pLfgfF8Rdkg==
+ "]]},
+ {RGBColor[1, 0, 0], LineBox[CompressedData["
+1:eJwt2Hk8Vc0fB/DbJSRbUtbs+5ZKlsrkm6SyJGXJ7p6rqJDsIooSKltZy3Pt
+HrKnp6SR5IaErhtJWSpkSYQWled3ntfr99d5vf84r5kzM9/PzBw5mp+NJ5VC
+oQitolD+e8ZR4sLrf7Dxco6nxaKFOISP2/mdXGJjnmDrP6bHxcG3U5ku85WN
+PR4d21gRJQ52mUzL+Gk2np6n//OwVhyUdbjkXIbY2EF+TPetuAQ8dbv0jPMp
+G4co62jqzUjAqqYYkaNJbIwr2m9W5knBucjoyq9KbOzqGq7trCYLc4GtD9zl
+2ZjDpGpMf4cs0E/ztnZJs7FUkbSxvLksWDjdGCwTZePvCUVUBR9ZkDIs5SHW
+sHFNinXDqxpZaFzspvXO9GKvM7vfcSM5+H1KRvRuXS/eEqfQNeQhD+cdcVQQ
+9OIVs04h1wFF+Gj1R1IW9eKPJsJn2mcUwdxk1/2OHb142iL4hglFCcQ0G+Zk
+dHtxUQ6POV1FCer+1Ht0KPdirPZkr0OwEnxiVJjI8PXi8FtIcp2oMhyZuMXd
+3sfCZVTpkV+ECqgGnkuSOs3CP6sEqE5a6lDdvHWy34uF81uWl432qoOh4NSe
+NE8WHqmr+q7jpA4Hyxy+rXFjYQ5iXMwsXh1Oj2x3+X6YhXNt4b7uOPm+xZw6
+S5+FqSe76JIFGmCg5MmM42Bh6TMn3fapaYFZn9Wfr9kvsRl/q/gBXR0IyjzO
+I3i/BzMj0A68XRduaP8qyG3rxmnipTbJ6QbgPFPjX/bnBX55svDK/HoE/Dtv
+/hLZ2YmflPmuPyu7B/g5Qqht6R14S1Dq8LSzKWgkjppwdbdhoYDdYu+MD0DG
+1YPUa0rP8Bq5BW9bQ0uYkR6JOBvbivc0Cvx9ts4a3P1XtnxoasHmqq71nBJH
+QN5Ikn5L/Al2brTQ/MfPFqjtj3tGDj3Gd1capvu4HCD9udIC96ZHmENP55bM
+DUdo/c5Ew30PsHJP7yP3KWfQKQz7t/PAPcz9l/o4h4MbGJioNZj/rMVZiesE
+pRvcYfkpu7e5pRIvtNz25Wr2AI6MDd5XSyqx71JJCvOpB/B5263YJVZi/4qf
+jrFtHrCJ/7XqjE0l7hT+9/WPbg8wth2M3Pi+As91+1i1DnnA5bFRlVOUCowf
+RV2b+uUB67i+nBMxKsdRBtWEoy4NVM3WKJ64V4KNMvQGfW/TgEmRgI23SnBb
+U0WSLYMGRIO6a+uFEix3m/bGsIAGuVoWmQqWJTiv56zWr1IabBBJ4hv5UIyh
+DRe736UBdVRkyWFdMRZ3Zz6v76DB23BZ5sHThXi1Wohc9BINwnW3fPh5uBD3
+0Is3i/6ggegsUP7WL8TfT+jdKV+mgY0HsYOboxDzBRd97vyXBu1mxZUtWQV4
+xj0wdG4NAfdENDN2PcvHU+qf7zVsIiCpUt9LWz4Pr3myX/+oCQHai3MGxavz
+sKasVPUzUwK6DMvWSE8y8LMG9d/6+wngb5Uq569mYMVt2TyClgQkDq6anTFi
+4DvXLF6k2xEgsC5zwq4uFxMuX96t9SZg5enjFWv5HPxxs6tJbCIBRtbbGMaT
+2fg9rG1LukZAxGAR6FRnY/uFlOWMJAKW5xNiBVE2Zsk8p+emEfBN2pa361gW
+NtX03xyTQ8Bs6OQG85QMXBZpfqe8jIBhTWEtU8oNzIxeovozCdgfpzj0pyMN
+d3++82LxGQHVo3pJ926mYed9lMygdgIupjvNq2ikYeuqdlXfTgKUKUX1vHap
+uFZ1u+pOFgGne/VRT3ky1r6/du3edwS80jr45UpwMnZtlo/OGCIAXXFmACTj
+fKbr1MQwAdLh1NXHK5Lw9stNOVHvCaBb3rymwXEd316f654wQcDcQkPuvcoE
+XGfw7hPfPAFPSocpqnsTsLnkvOfmrwSkuXASWQPxWJbfvctqgQC9Z5YqEZzx
+uLpi0TV2iYDI7JEqcIzDn2a7/Tp+EsALXM2dq2Mxj8vIbPMqOrxdUldAOTH4
++KzERC2VDhVlhy5V6cTgkrO2LQwOOliLZB1IdbqIB4vllANW0yF9QoNlXxON
+A3Xz47/y0GGfVAGz9UE4XhD/7eskSAfXLupk/6cwHMCwxBuF6BAUTVs7JRqG
++Y0v8XaTLvwoZy0QHIKVRfZk6gnTgaOCMWC3NRA71tlFjYrQQcKN8tvLIwD/
+XDS4E7uBDlvXuUufSz6LN7sd6FXcSAdakAzx1+wZHBhTJOAsSofoc7sGum1P
+4eGn+7YUi9OhavjXpsU6b/zSPEV5iwQdhkwe0sSEvTAFItc/IG3Et2PGvYuO
+S/t39TZJ0mHR0G/lwzVnTK2emCjdRAcb6myc5sFj2K/v7U1JaTrUdJxeF8Rl
+hw2PbN2RSPrtPfZ+vhUrXPPQ1tNDhg7GExpH9lxQwByPeGBSlg469iExY/68
+aH7n5dsmcnQ43R6QIOGig9yfK37JJr2rBcmcMjJFO69t9TeWp0PUVuB789Qc
++W5xzLtOerQnL0JR+TBqbV/PHCCtaFzonVZhj9ZY188cV6ADM0Rp5OC8IxLU
+dZotJX2iqtiOut0VJfwQ+DhB2jaJnWfgSkMTxQrlzop0UNbY4CJCoSMW3/6I
+VNLfmLZic3meiG6+ClpJZ670XS8Z80JZHx8XyinRwTtb9GBM3En0ak+yiTnp
+HXoOq93UTqNVFy6/8ifNy8p8vOO5D6oajHe8SXrQZ+DcRh8/dNv4AquedB/n
+NcmwuDOoy+qoUS9pbKP187iDP0qwm87+TLqY8aLvqNpZdO7Y5mlOZTokzfrc
+3bN8FhXz8mqLkw7dJZCq8zwAxXd5Euqk3RMq/aRvBSKZh1qJBqT3v7ay5PMJ
+Ql8yLItMSOsof1FfNgpGkkM1NeakxQKTeD4JhCDv+2bV1qRXPdk8/mo4BB3m
++MOwIT0l2NPSUh2K+CwfxxwmzXI5k1dzIQwxXkU7WJIuN+8cPUYPR/ame11N
+SccaqspTzc6hyIefnxuSdlWJpZWpRaCmxoG8//qnv2Ek34YvEvFNy46Ikhbi
+2PVheTYSyQy9vbzqv/bmMhQKXp5H4Qqq6RPk97cMLRDmd6PQfiQt0EHaalyF
+FWYejY6WDM6W/jfe72y/vmiMRnOdkQaxpFXYMcLy2hfQmLDCtBNpkec1W4P/
+uoA8WFNcOqQpT4ZtOoQuooljS4kU0jP3+QOkL15E2z4T4S/I+R2o2pl2duEi
+0m91YKWTrr2d0SvRF4NS5mhN0qRzb7Qu+JrFIs6o5qPvyPWTmLiwvuV+LII2
+g6OZpOlhh46eyrmE3lwWSOUgffhMZGAT32X04d2jnjpyfaIT5TfWn7+MJmtV
+wt1Ji9pyv3roHodqpfr5q8j1zmmxfUmQFYeO6wf9sCY9t4fYQDe5ggYHz1t9
+IeulQ6fJlk85HmlYJhvJkY7gC+lznk5AO1ZTtRzJevPiKPpW7ZyIkhfMQ4fJ
++rRdZm1c3ZWIYg+m6HiQ1v6kbV9RfRWF7/j06ZgUWT8t4/1/gq6jP3lfz8uS
+9d7VIPLj8MR15Fa2yyCezIeGmj1ixQ5JKHbMyn1WjGz/0CHNkk3JqD7vxZ8K
+Mk8KjMpPH6KkoFWhQWFUMn8kDJ9E/DRIQZKNvHVWZD4l6w5cLfBPQX6aya4Z
+68n+anBXfH+fgiIbdfilyTyzEyc+/9Waisxm3F9RyDzkWZLwnUu4gQ7wWoRJ
+kXl5VC7V92XTDeSdlT63m5sOeZZr/GoXb6C9owO27lzk/Bd/9wt0vYkEyqem
+MzjJ/LBn+//Yko4crzcefk+hQ8+Da0GUgQz0urqA9vEHAVLjnMGj/JlIu7J8
+uu87Ad7CEcFP9mSiro2R3sxvBFBPnQyJvZOJzKL2m95aJEBXyiyMJzoL7S7c
+kqAwR0DmeUqkkEoOmuO+WccYJ+BjWUjkvFMOEuj69oQ2RsCW/tlIVnIOGpdM
+7Jb7SEDH5nfnbyznIMZU6/v0UQJ+jzyIFuu6hZp8OThc3hLgbhIQKxuUi3ze
+Nd4/9pIAEc4F08xRBnq9qHlV/AEBBgKXhY1XGOgzY0PzsX8IcBETH56QyEO3
+DtEupdcTUKy5O1T/aB5Cc/ebVtcSoG+bWNbHzEMLMVSRh+R+7VisILjhTj5i
+GaTIXCT3c8b+o69TggtRbcFh5/hwAp7aTBQaphWi40Ml51xCCZh0DvcfrSpE
+HFvjLbSDCdjqz+DdMlmILCajuZn+BLRkzezqcSpCfu7h1C4vAsanYvMEoBjN
+GdcLAXke0bhWfzJxbSkae65woFGbAOOuS+YVKqUoNMuSa7smAXaCdprdJqWo
+zrm/oUyNPB+kfPssHFGKTIiDgtcUCXhzU98/e6YU5Zy5nqAlQcCV3Achf7/4
+G4W7JS8McZLjXfUo9llSObpjOzbL95o837FaczlEqpA3N+wbD6KBjCbzu7F2
+FXLYbMAePksDxiWm9fn9VeiEQbpgvx8N8g2eUX9GVCGv96Vp2JsGRbltx2fH
+qpD+1vxZfxca2NV7Zsw4VSP9eSHRU3tp4HrBy61fqwYdM9mwWC1EAx9x3y93
+XtaiA8qr8gfyPcCq/UQ2uN9Dns0HUwOy3SH1Mt3ctPYBqtl4IVhb2A045Xli
+Exca0admC5W3r5zhtvSLgndGj1EDV3GgwSFHmKrN4Kn40Izq56duZU3ag1jc
+wNb5Oy0oyThwbcoRW/gxKjUyY9+KYmNiLbf/sIEv5dtexi8z0ZCURpnEY2to
+q2+Oy3nchpweaNHDlyzAZt/hZrpXB1pK/Ip5uA4A3ujwOH9bJwp+dswpRNYU
+wG4rx8VvL5DZ2wzFkhqAYCmBdrGcbpT+YDB3b60R7EvRUU+t6UHdkSKb0UED
+KOt3rAm4/BItEPdkzGe3QfYr3zdK9iwUW1TK4DXRAWGR3KtVjixUF5RY7Ure
+f+JtXiBDVxbKuM+WeqSkA6HdGgUWniyUZp+2nMmjA3btn04FBLBQO7X/bubt
+zSD8iPbncRIL3W7ElrsatCGh0E7WuY2Fjivu1yqgakF4ADqeatiLRKSu7FvV
+pQb/3g2IG97Vi5SczOz0/lGD2G+lpZrGvSghJPTqOYYaXA9bP83c14u4vvEc
+0gtQg7yoT36/jvSiqw9/uZ8WV4O2xNQwum8vauhKcGJ7qcLGwvGregW95Pw6
+z7uvV4E69vW6N3xs5KfDUff2piLQ6sukE4TYKC6fml4ZrQjC6cx4QxE2cmpK
+tU09pQhn7FfcMiXZqHuO3zgJFEH7jQ+fnTobaY82Z7vMKkDpsIXnSzM22q2j
+qWtirgC3p3hF2y6ykc6/9dyT6+TB4rnyxZDLbDS4T1b//Qp5fy7f81k5gY2y
+JKK+TU/LgaNPeMulFDaSO+P6W4cpB2Jzk34mDDZq5dzOE31ODlKX2trwIzaS
+cfAyU5uUBej7uM23mY0EbZn3lPvJ+/09yl+bWtnogwVDRLdVFg6FGgRFdLLR
+2vDBgPN5ssD3q0RuxyAbnWSX/93jSN7nB1uuTg6x0bllwWCLA7JwqnH4e+Z7
+NvLWOzXary8LHZGiXd8n2WjU4qLPpg2yEOa6zbDkMxsVLMeE93PIguruQ4V2
+82zk0iG0AmMy8FrmlCDXEhvxGwS9X3giA///34F+3l2b9JQhA/8D1+XkPw==
+
+ "]]},
+ {RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
+1:eJwt2Hk0Ff8bB/AbFfkKSZJkK0u2tCniw0Moa5QlCqGQfcuW7HcK2SNrRIgQ
+ooQP2UIJ904iRdpQQkmLSr/pnN9f97zOvXNnPjPP834+Z8TsPU1Ps9BoNO4V
+NNq/T4JGBNf9IPENffv1jdUaEPze3PPsIonP8dQVSbVpgMdjSUeRLyS27n7X
+UcDQAPOrXYaXPpL4E2sFAy9ogKTiarGTYySOH13DkasE0GEb83BlB4n3sBpt
+/YwBVrRE8R1LJPG1xOyK3c81ISQ0vPKLBImPPLMUXlbVhnm/zgY7cRIHWYeP
+PDDVBkc3js4nwiSukyJZrjprg4F12mjZRhKnE1KPQ9K0QUi5lN1hDYnNNI08
+xT9pQ9PXfnvmDBP7P3SsXizQgd+uIhvv1DLxl5rBYhbBQ3DBCof5AxM/ntm+
+zKujD2+N/mwWRUyc9ClwkMVWH/S1VO/1qjAxr70L/6pAfRCQuz8vsoeJH73c
+tgnK9KH2T92pXkkmVvs6zH6V2wCm8iu0RDiZWOZw7Y7elwZwdDKHrWeIgdu8
+By+EXDQCab+QRCE3BlZvdJW/wGkCukNGf75kDeIH+5SUv640A/+rZ9i57w3g
+Wk606oGAFaQp/CrM6+7HUrPXNO/m2sKJmWrvsj992NxHTvqRugOsPXDlF9+B
+x/hyShiNKeAEa1kDWLrTe/H5unZktNkVZOMmtFb3d+Otm+rV2955Qka8Hstl
+iYf4wAfJWx12PjAj/Oq8T3QnDpaTFVv10Q/svJd3vmlpx6x1Qmk7BgNAXG2z
+Y86mNqzh3hSZlRsMLD2tA6+MW7GQ/7NJ/ppQSH8kscC2pRlzJ4x2fjweDp3f
+u9D4UAPO9IqbXKiPAMWioL+PD9fjz68+lkVtiYL9Wtvv6/+swdqVGz+NHYmG
+Ot0prtkPNXgwZeZgn1k07DIocUh6UYP9DnpvbLCKBjkzibVPW2pwrZq82CXH
+aBB1ErOzodfglbtfBXAERsOauE2rvdfXYH8l77rEvGh4zlhjmi5fjQUk6BeT
+pqNhqYNkPmivxCxO4vdfn4sB1owNLvEllXi1kKUne0gMcLqYL5vHVeJM7XU7
+ZMNiYMvaYekZ00o839Lb7kTEgIbZaCj/6wo8xJ6w1JQRA/R3E1KutAqsMJtp
++/RuDKxbPRfCp1aOKy5OSdxajAHB4R3rxkXL8VDSmn0eP2NAvMyr+ObKckzz
+ZV0h/ycG9hh9GUCPy/DPw7Z1+SvpYJ6+KOFiXYYThEYs7dbTIUfyd39z0E28
+PpjXDCnSQVp3zTan+hJczyep5e1Ehy6aIPDnlODA3LsRCWfp4HBfxqYzogSn
+W7N2lrrTIU/e4OpWwxK8pj/JlPSlwwa+RM5Xb4qxzJv/LNjC6cAywbdoua4Y
+izDZfEcz6PAiWLRLz60IN4z5Be7opEPwnp1vfpoU4U8TRkPTD+mwcRZoN/cV
+YaHrr//m99LB9JSDChtrET5YuKdq1QAdenSLK9szC/Evn1jD0ud0qOeTy1B9
+eB0XSw+xmMzRIbFyn7OCeAGO++DySJKfAIWv8/uLVxXgJdteyTIBAp4ol60R
+ns7HvEcdardvJmBtp1D52tv5+Kn4esstogTEja6YnVHLx8nEqfSh7QRwrbs6
+aV6bh0duPBNNVCXAMIfjkk5wHjbZLZlDIgLipUJllCAPh3Ack+YHAjiQvfuG
+/lzMQ5q4XtYmYLWr3ALzQw62ZYg4GhgRsNzRunxEPBvbNS+d5rAlQO3I7nyN
+6SzMlXFmBc8pAs6P3gDF21nYN100YZ0DAUufY6O5URbe9POuL7sTAd+EzTie
+HM/Eo6m7lTs9CJgNnN6gn5yBjdaqLweGEjAuxyuvTUvDxT6Fk60ZBBwito39
+6U3FjQZFHdKZBNyeUEqsv5KKDYPdVl7OIiAy3fqzlGwqPh0jUKqXS4Ak7UYd
+h3kKttHysc+6ToAbcx8aKE/Cgu2G92NvEfBUXm/u4rkk/J/zRZ17FQSgiyfy
+AZLwcelf215XEiAczLLqTEUizmwMJ2WqCXA0vHJZljUBn3b4O5FYR8D8wv28
++spYzNXMOVLSTEBb6ThN+mAsPvkrdF0WJiD15EqHzJFLeM7XMf5iCwFKDw2l
+zq+8hM/KN2tbPSAgNOtVFVgR+KjnilsDHQQYGa/irZ2jY0Or4JdFnQSIrpTx
+2xZDxzxpQ4f9uwjocPfdz3Y7BgdvCu/n6KaeD6x+8HhVNB7zbfBjf0TAi0WZ
+rSg7CptMOztgyhVlxjFVilF4xbH8GK/HBBzhyzycYh2J+wfWnOrpIyB9UpZh
+UR2Ob4Y8sTYcIMA558ieHp1wXPJXbe4tZZ/rH+T874VhV5m7LwMHCWjwD61T
+4bqAQz8KdF9hEKAjVNjV2RCMFcLYGwpJAmyesEw/mwrCJx7qV2x+SoB/uP1/
+HzYGYZvKyU1JlIveih3hOheA+dJ7LT2GCGhKj/ARvXEOiwo5bh+mTB6aSNtF
++uM2g18e6BkBrBX5I+a7/PCU2IAZbZgAQVvab+dTvrjG7cyiNeVd6+yEQ5J8
+MK4qX32Hsr2/iMO1WS88P/M7+PgIAcFSYTHVW7wwrdXpRTFl8dpmYyLTAx9C
+6rfmKYeHqI70m7nikItLqUHPCaga/7Xla60LrvfWKrtHeUyr0V6A1xlPQrvs
+V8pcpcElql5ncHxE5Ua5UareOVVm7J44Yp9oFXc7ym5ePxVj5Byw8dlc2WTK
+OeQ9/5uxp7CeCJcpppzuPe+XPWiLE050jE9S/qrsufzm8gn8rPQHc+0LAkxZ
+Zgk5veOYdvytvCLl6l63df6rzXFG0oMZI8o8qR+zmttMsZPmI+6zlF/Uk4c4
+l43wfzvV0iMoZ+oyrHPPHcLhc0fDrlA2H+73UJgDXDVh0HuDsiQjizWsXwmz
+qp05V0NZY1L2qGbEVvyVfTyykbKiRUDUO28OlCPyfbaVsluPb6zgSUWkqTDX
+0Eb5S0mg4w9XNbRQx/7m3/eq7UjEVU0breKku/w7PmwXcD7v0Ef3rMoM/v3/
+xEDB+W2SJqixoCHu3/kj2bcujLocQw/qf0j8u75tGkUuqRUWaJ1OheC/6+8K
+kHil99kKbWJucXGh7FRVbM6y1wbRGpJ5/q0/eiH1/YkmO7RH1oRnB2WzRLJg
+v409+rP3hhPnv/XJbjjJR3NEXC3PNryn7u+3LjOB+YLTaDN9t2AT5avLQwkl
+75zREd508ZOUXbI26kURZ9GXXCUJacoqSparbLe7oZuLu0PmqOc96j4Swu/u
+idK5I4V9KQ+tvLw5iPBCa8J8z+6gjE3lf56x9EaK/KxsU1Q9Jc6639Fc8kFZ
+pbo7jCgHqnKlKD7yRYp6RQ2/qPq0i630FM7xQzEn+1JvUFaUnJNZUjuHrj1n
+K5ml6p1x0qugOiII8Zu0FJhT/VCu/3jiuGMw+ppRd3CM6p9oZWlxFt0QlObD
+bDtFed+GV9dNOUORanii0Qmq/4zeSzGC9MPRteTYdBGqP1Vemn3pawpHRob7
+VtGp/pUio3jFFSIQF+OA/hTV37S2cdNenkiUlxVknd9PQE1uBlNwKAo93aId
+PkblRV5a54KHbjT6cEAidyvluLiF9e33opGl+dPLjlS+OAYZH3PNjkHOe79P
+jfQQsNGM7WmjHYFScHNwCpVX5zkDhk58jEWhgX9rVaj8c2a98e32iTik2Uq+
+VKXy0WyJwb/qSRwqbdJ5qkLlp8KUgkXF7Xhk1pcjK9NI1U/7+2d//BMQj2qG
+21A9AYVq5W7GtGRUOTny3ZHKa0HltvM/9yejVB4lciuV50l7RuILvZORn8i5
+iLEy6vyybBXfXyejO/5CHrqlVD9scvh0rTMFfV90y5qk5gH7oqDHfGwako83
+TztFzZdjYikegy1p6HCUgtaPKwQUGK7xrPmahnYvHLeOS6PuZ/F3Tz+bK2h6
+L2dPcTLVHxak94+d6SjiU21hTRwBAw2X/WkjGYiF/3yJcBhVbxdooTxS2Ujs
+hVK+HjX/3pYFhH62zkZrTbX2eFLzceez2VBGUjZq2qaFkqj52bvj5YW0pWx0
+9uVU3UNrAn6/aggXeJKDDhslanAeo+pHyzda1D8Pbd0hYjSrRQDfygXtqxP5
+qJJsuSMnRsB+LjqvxnI+ivyMV9QKE3BSYNP4pGAB2l9jar9XiIBiOfXAfccK
+0DvZcVuFjVT9mMWVDXUVoACZE5afOQmwKt7KveHWdbRZSaCg8Tsd8g8dG04+
+V4SG9c+NOVL7lw7TySLl1CK0YZ16uAe1v5k+Eew9UVWErq39fdCvgw67vPM5
+dk4XoVPNdm5+mA7tmTOqA9Y3ULam1/ShGjq8/xBdwAXFqMcfNWtl0kH2ct3Z
+uP9KUf2FYX/CkQ4aT2L0K6RK0a7BU87yp6j9Hbe5XL9WKXL2n/ncf5IOkcnf
+PvGeL0V6SxN9HBZ0eH5ln3fWTCn6PB7VYXGYDhfzGgJu9t1EB2pFLxnL0+Ft
+VXP0w8RypGr7qLzlSwzkMTrzWPmqEE42OSrhFwPumzzmbg3WoBXAYbHsHA1G
+PU5ZYFePhPYplN0SjYIUuqO+dk0DuhhweMaDEQErxdmj4xaa0I/TviqZgeGQ
+K9xX+FKtFYl7FItkfgyFDzUZ7BVvHqCWbJpqM18ICBAjuz7fakffFyqs33EE
+wo8JoVczFp1IlL3r42l9f5gr3z14aakLRfmoTN1q8IHuugdEdms3Wv9r4hPX
+Fi8w1TF54Ojci5SqG3e8v+8KmN+y9frux0ikJfPsXiMnAPNdrJHf+tDMjwu6
+Zh4OcE6Iq0cgux91eQzLjKnagU6yokxK9QCyDIMrR72toOyZVbUvfRDlOgly
+sWSbQdZTj+cSFgxUrno0YHuCCfDy5cVXWTFQMWM5juWCCVwy7UPKNgyEFyYt
+J91NILBfttDgNAPt2P+enTQ0AfOeKVdfXwbS4U5QV+aijm+2/9OayEAavC++
+KiQfgdgic9ET3Qz0zPY13VDdGIJ90ZkUZSa6OpvpY9OoD3/v+BLjqkwk12o7
+6HxdH6K/lZbKaTDRniMP7WIu6UNC0PqPXTpMdPGX8uxXC30oCJvy/HWUiRyf
+KvfdWtSD7riUIEcPJnLW2f8pYI8e8Be9j1cqZKIJdZth9ZZDUEsm1D7nJFHc
+O0HLu2w6YF9XJhzLQ6L3Dsn7Cue1gTe965IyH4lc1+uuLRzRBi+LZdurm6nf
+LwW4jpVrg8Jzd05zGRJtMZws1DTRhtJxg9ODuiTSDNO8UH/tIOR+4NjYHUki
+uduqbd/0tMDgkWRkAJ1EGp4P2fSUtOB3ueYnyVgSef/e1FYlpgVW7sHtMckk
+GntVcbrmhyYIzE97auWTqP98/pbUEk1IWezuxs0kGnBhZbvHrgkw9Ha3xwMS
+aftGrpdfBJivp13b0kmiL4+4R2onAIwD9/uff0win+wlu2/3ATh/lYipjJJo
+anuEqJEHQNNoe/z0GImo0Ks2tgZwbRr/fvU1iaqnRfPtDwH0hm588n2aRJIs
+8e5N4gBBNruVSz5R6/e02cvKAyCtblxk/plEXL4bFKz/aMCwiCv36kUS8Vwh
+9Ts+aMD/32+gZ+kdkWhYA/4Hn94+Yg==
+ "]]},
+ {RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
+1:eJwt2Hk0Vt3bB3BpIBlK5soYUojIUNm5eIrMQ26eDOk+p0whmUVJZMycKYnI
+mDkexI5EKPOdSCUNplQipKLfedd6/zrrs9bZ66x1zr6+17WPGN3d7CwzExPT
+9nVMTP93DWcKD6j5ycBkMG/d+jQhCJiguTsvMnBgy/xznyohcHsuRYrMM3CX
+bC4HU7cQ0NLaDSM/M/Cs+fIJC+YdIKWwScz2LQPvLZtTYnfbAU9Ohz3d8ISB
+eXZwbak7sRPWPbrGczKOgd9MWnI6cwvDpaDgsnlJBpaNWbCVXBKFOa+2entx
+an2rVEA9ixiQ59naeoQZuDWbq9ZGUAwMrJNHi/kZ+Fp6VWXfETHYqV7ISmxm
+YHuWsnr3UDFo/NFLH5wdxBrEMbFEPnH44yLC/6B6ECuCQWTRcQm4fApf8YZB
+7HzGIktpWBI+Gq3uEEWDuCPQLd9pVhL0tY/UdR0axK+Oa34pY5ICAdmGORHl
+Qfx5qZ3mICMF1as1Z7qkBrF0i5pL/CUpmMou1RZhH8QFa3yyneLSYD6ZydI5
+NIBlBHef3Ry0B/Z4XYrbeX4A8wUoiLjR94HOkNHqfEY/TnvGqHo/qwDeaedY
+uer6sP29GC+e7QchWf53blZHL37SajkUla4ONrOVHsWr3XjNbPsXNe2jwHH4
+5m+ew8+xSnX9M7VeLeBY78vckdKFy8+41HOIH4d90ePam3o78JhK02KhsB6k
+xugx35B8il9IHSxqkjOCWeF3gRdD2/BDlc4ofTVTsPdYU/zwqBW/pf2TElpk
+DuIaO8hMwcdYa/nEx1csNGDubO57Z9yM++zfKMXlW0HKM8kFll1NmG8plsar
+bg1ty+1obKgeZyroVK4k2IJCnv/f5ydqscbrkYONf0+DmrZMg/5KFXaxaKku
+Yj8Dv54wBltay/DoXkHWnK10WJ/K6xRTUIaLPy4lmfHQgd2JtkaLLsNPlOdq
+1gnQYRfH8J5ZszL8wsGk2kqEDpoWo0F870txklCExbQcHa5/Gpd2YSrFtHLV
+40l6dNi26dslHo0SHCnUZPbrKh2EhvdvGxMtwRJsVhanwuggXnwhv2hDCTZV
+lir4L4IOykbzfeh5MX6+N3q/cxwdaCmLkk7WxXhCvftmWSYdMqX+9Db5F+EV
+6dJnVbV02KOzebdDbQGOaO23vTdFh3YmIeDLLMAnJx8t+H2mA9Gw167tagEu
+9pvk0ftKhyw5gzQJwwJstdF//uMCHXh54tjffcjHfxt7v/xZowPzOM+i1bZ8
+HJwaeuUBDwGvA0Tb9c7n4a4x0zkVRECAsuKHFdM8PDIa/7JOkwD+r8BUpJqH
+97Hp8atpE2B2hjjEsj4P872aSpfXJaBTJ7+sNT0Xq3vvCv5tSkAtj2zqkad3
+MSH/2HP7WQLiylQd5cVzsNN/OsxKkQTI/5hTy9+YgyMKDpnGRBPQo168WXg6
+GytkjLu9v0EAR9vOEo6KbOyXqMwVlkhA9Oi6r7Ma2fhAuFtV7i0COLelTdKq
+s/DhP6Ir/5QSsPakec1E/BZW7DhhuaWHAA0TpWzN6QxscYFV8HcvAYGj90Ch
+IgNvuv3NY7KfgF/fo0K5UAZulLr4vuYFAUvCFmw9/6bj5E1scTJvCPjqN82r
+n5CKVfXms5w/EzAmyy13jCkZPy4/p2y4kQTd8N1vV7uSsLXiSsSDTSRUjKvE
+1d5Mwq2PpoYFWEkISbH+Lr0vCestx5wbZiNBiuleDRstES9Bt5DSVhLOD6qi
+vpJ4bPjviZ8WQiS8kNP7FuETj7ubTUNidpCAImyyAeLxrpWapUc7SRAOYN54
+rjQOaxIOGbtESCANb97Ytz4W/5ftWFEtQcLcQkNWbVkUHrIfVtCTJeFx4RjT
+nn+iMFPRykcjORKSbDcQ6SORuE1AwNNEngSVp4bSgRsisdykvqCeAglBGe/K
+4VQ4Lr1Q6cGvTIKR8Ubu6m/XsafPyAjzQRJEN+z12h12HQ8d5eL5TPmJq6ca
+S0UYVveq/1WpSgIbbGp5vjEUH2t44i14mITXi3sl0K1r+PYZbvPPlEuLjcPK
+Fa7hjtziX/VHSDDhST+RaB2ChTon8gwRCSmT+wYsK4Px93NY3whIOL4zt72t
+PgDH2tbk1B0nwa6HefrllD/W/dDTdVKHBO9g+pYZfn9cRArOf6Gc91HMhNPH
+Fx/dbqPGf4KE9aXZI7QDXliHxzfumD4JQqeZ/jie8cT6P+dvdlI+sM1e+FL8
+Rfx33USyngEJdG8R4s7XC3ht2t5f25CE4EtHRnotXDDhIdS51ZiE8rHfu35U
+O+EO64dXAim/1X5IF+B2xJI62jKfKGuwH5q17yGxbraBWakJ9X0vrCiEyRJY
+eMWjj92UhExGnXdR1Bm8LNOOnCj/UHdf+3DDBvfo600LmJFgxvw1XFbvX1wY
+IbH7POXKrvPbvDfR8G6VywaNlF/XMnTZ14zwyblthLk5Cek6A9a3fXTx7/9W
+jDMo04Z73eS/AeZyaJZ+S1lzcp+51lUJXB9gfNPmJAkKlr7XPnmwoWr+5zKp
+lM93ekYJ2SqgVo74/B7K8wV+5E8XDTSttMy23oKEI61IxEXjGNqy3Y6mTPnK
+AWB/9UQf+U+IRdApj/flBO6WMkVGmdl3blDerZnnlFRqiWKmTgS9otzuK/lO
+7/sp5PhGSesPZYfyfBrzQTt05aLljBCNhNCFpAmbRns0KsTnrULZIo6Ro2ZH
+R7x/+8eNKEvt47XlYSJR2+qX/STlpXYLgbmcs2ixpNvOh/JTesrgM20HlGzx
+wjWMctraUGzBJ0c0v+pkk0DZKYNf71q4M5Kz/y6TQfmQitXG0zLnUcG3/hd3
+KLMNpDUfeuaKrgxfPH2X8qjryCU+V3f05+/h9hzKQxtu7PAPv4A4N6ZszqKM
+zeRWzll5oEbNmT2plPOzu4dOylxEye13JW5Qjvvq+kDr10Ukf3bvyhXKfkc4
+ExWeeaLk/NlCd8r2UWXuwpleSLmuQMmGsu6wkSG7qzeiyWdXHKOsIPVt7y8N
+H1QhcHiPLGUBrzjWKU5fVPeKI4OL8rrH+ydejPminLCyjXPU+5zh6mttrfBD
+WcPVzt2UB2wv5FRe9UfHoKajgHKJ/vPxf8kAtPHcyYhLlEPV94gz61xCA4ov
+a/Up20mH0otlAtHP0QZzAcqqvO/umrEHod1xQXbj1H7Yuv7Ih19fg9CMU9ZQ
+PuWZuVSJ3P7L6NCV2w8dKRtNSA/46wcjHrfDXePUfjv0xmK+uzEYDaiOzadR
+lmZc4xaXv4qCd7lcN6DM9HjMrGtrCHr5wHi2kNrPVbdTB4WGriGLpG35KlQ9
+ZCW3LbjphKK5vw8E+qn6iY5e2N5aF4p0q0PmHSiT/sYnXW6FIa+YvpEoqt74
+LVhePLQPR0c9hpzvUfW6weDgItdAOOLNO8smQXlOi+AltSNQx+87HLep+u5S
+eGTBLhWJDtk6aVyn6j+Q3XfI5nMU+l3drSJH5YXj+ntLFTbRyPuT3NQNXWo/
+/hrg29gTjaaerazMUPkiPyVvWVoRg36J6GpkUHk03jrxctU7FmUliqh1a5PQ
+08Dz03QyFuVuVn2/lXJDpZZAvlUcivd9OG2iRT3f2Fi2YFc8unHsDle7Jgm5
+GiXnjZkSkEyTQGmoBpVP6o8DV9QSkOPAkFoJlY/xyiMxuR4JaPG4i3wPlZ+B
++1hKl98nIGG+5tjNh6h6FyS+3GlLRNkRTRI0FRJYF4Xc5qKS0VA4T+ZxKt9P
+iiW69T9KRj7VRzV1qPzPMdzsXvUjGUVaLDD+ofrDofxldy+7m0gihrVPZS+V
+B5YMj5+KKSgkLpdjSZKEvvob3kwjqShav7NsnOo/Oyc2+IxzpCFzB8fTlVR/
+cuIO9HmslYZa5VXXXab6F7OLs2/o/TSUb1wgwClAgvJOHX/W4HTEqspI27yd
+qs/LTEFbpW8hJa4Pc65Uf/xY7Bv03foWauiba2JnIUHx5deggfhbSCAnMaiQ
+6q9d+99cTv5F3Z+38cUQMwl/3tUHC/RkovvVK5OcqwTYa3uGinpnob/CNOuv
+cwTwbFg4ljaejereRhGXhghQ47zOrbmWjZ5ay7XfZBBgKyA4NimUgyJ+mD26
+P0BAvuxRP9WTOchWud+nj5oXVC2ii4fac5Arp+emb+0EnMqX4OK9fxdFqSqy
+RdYSkK17cjjBJw/xK2R8VEoi4InZZJ56Uh4SvPJ4eTyegGmbAI/x8jxkJRpd
+ERNLwAGPbDbF6Ty0eNBecZiad1rTZ4/0Wd9D9a3aLrrBBEzMhOZwQj6aWI3P
+jj1PwL4bNc7RWwpRixf/8H9aBGj2hOmXShcia7YhC3Zq/qJx0WR7tQuR7c7F
+blsNAkISlr5wBxYibF5WsaxKwKubqh4Zs4WoOrfYkkWOgIiset+i7iJ0tXn/
+5xQ+Aj6WN4U+jStBDVVLTMGT1Hw40Ja1nqccXeUNHF8OpoOIbPuypnw5iu1s
+1O0PokN2WLvJZd1yNKXraF8YQIe7ak+ZVwLLkSUtKc/Yiw73sjrOff1UjnJF
+bNNDHKj5teZs6qx1BeI8aP03wJAOdlcdT7+Uq0T0HAOTNn46uAq6fbvfX4Xe
+9vid3Z1/Bow6HTLAvha1zG/Slk+xh8TrpP6xqnrUYORUYLFqBxvEWUOjFxrR
+vL/h6+paG7gt3J37RqMZ9XhUMW2RPgUzVamspR9a0KO9rw8bPrQEgfCRA9/v
+tyIXfWGLHlEL+Dm+892sZRtiPqgizdFqBt9KlPojf7Uj9QnxXNMoE+ioaQm/
+1dyBGpO2+D2INgCz46YtpGMXMo/q4dTI1gXMZ9V8V+k5ittxSnJLyz8AtAPr
+Q5a60UH2JpW5fwF8dnJ2CtzqRTqFg4vvuTXgeILC3sTKPmSleBCzNKlC8ctT
+lZ7X+9EfQaMGqYtKkPHC7ZWk5QBa6Jl/pFW2H7h5smLKTw2g4k3bWL0T9kOk
+WTdStxtAu1Y3v3rotR/8evflGpwdQA6F9/5cP7wfaJ1TLp6eA0gN9xPcXfLA
+3URfbY4bQA3ROV+XZuQgKo8matMxgF74ndZqPiwLAZ7oXKL6IPpR+qPpPL8M
+/H3gGT52ZBAlsRaPCKyTgdClwkJZzUFU3sP5gzGzB2L9t39uPz6I/giFsgTh
+PZBzZcr9t/kg+vYuczT63B7oiE70J90G0Vals72366WBL28iRiV3EN0zCY23
+d6HOp4zY6lfsDPSI/s257bcE0GuKhaO2MtClRdZPXJMSwJ3SHqnOw0DVNg9W
+XQYk4ILl2um0HQyk2WQ/blUkAfKvXNlpexmoj+Qw3WAlAYVjBmf7dRhITKJY
+J71OHG7PsPF3hDAQt3NVh/d16jz+TCrE9zoDjUcZpb3zFIM/JVpfpKIYaMXJ
+ucX6jBiccg1oDUtgoC1ivMsh1HldYG7aXTubgdpP3+1PWhCFxMWODtzEQEOs
+lqdqSVGAoY9Kbi0MdDK5aEXMXBTmapnu7Gqj1hOvjW+DKBj7qXkHPmcgM/kH
+Px8LiwL77wKxQ6MMlDFtopNYLQKNo60x028ZSDWz5TE9QQRcGseW094zkP76
+dexm7iLQFcTfszzNQBy57vUx+0TA305JveALA82IsC++3CwCe44a59G+M5Cy
+l2QZTAnDsIgL16ZFBvr36YW+znZh+P//I6iUVqJz4Z4w/A/bixFC
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ FrameLabel->{
+ FormBox["\"Time (\[Mu]s)\"", TraditionalForm],
+ FormBox[
+ "\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
+\\(2\\)]\\))\"", TraditionalForm]},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["case II", "Subsection"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3.0", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3.0", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",",
+ RowBox[{"c", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox["10", "8"]}]}], ",",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{"2", " ", "3.", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"794.7", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "9"}]]}], ")"}], "2"],
+ SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ",
+ RowBox[{
+ SuperscriptBox["10", "6"], "/",
+ RowBox[{"(",
+ RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",",
+ RowBox[{"t0", "\[Rule]",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], ",",
+ RowBox[{"tp", "\[Rule]",
+ RowBox[{"4.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
+ RowBox[{"3.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "3"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]",
+ RowBox[{"6.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]",
+ RowBox[{".5", " ", "1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "3"]}]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{"1.5", " ",
+ RowBox[{
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"alleqs1", "=",
+ RowBox[{"Expand", "@",
+ RowBox[{"Evaluate", "[",
+ RowBox[{"alleqs", "/.", "params"}], "]"}]}]}], ";"}], "\n",
+ RowBox[{
+ RowBox[{"sol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{"alleqs1", ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"15.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"TableForm", "[",
+ RowBox[{"allcountereqs1", "=",
+ RowBox[{"Expand", "@",
+ RowBox[{"Evaluate", "[",
+ RowBox[{"allcountereqs", "/.", "params"}], "]"}]}]}], "]"}],
+ ";"}], "\n",
+ RowBox[{
+ RowBox[{"countersol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{"allcountereqs1", ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"15.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "2"]}],
+ "}"}], "/.",
+ RowBox[{"sol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "2"]}],
+ "}"}], "/.",
+ RowBox[{"countersol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "5."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"5.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}], ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"PlotStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"Black", ",", "Blue", ",", "Red", ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Blue", ",", "Dashed"}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"FrameLabel", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Time (\[Mu]s)\>\"", ",",
+ "\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
+\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {GrayLevel[0], LineBox[CompressedData["
+1:eJwt2Gk0Vt3/BnAhIUOZqVTmTEnKvB/fRCLpUVSSZCqZhzsz930iRWXMnMxk
+HuJJaSMRkuF2VKhQEiWUaKTf+a/1f3XW59U+6+zre+29znYHL0tnVhYWFv41
+LCz/94xmiQ6u/0FiH8mDaysDdCB4ytrrwhKJG+bJ5doEHfDskXPa+pXEevtV
+bJ6V6YB1Wof51U8kFpeIK903rgNyahzbT78hMf9rrQk1U114fCbqCftjEnf/
+I7NTXkoP1jRfEjoWR2IhQcObL9/qQ0gYvfKrLInXKMa6ygwZwIJ/e6O9FIlj
+ONEX+ykDcHLnbu+VJPHdFOAq/24Ah04lj5aKUuvBl/WeEgCbtUs4HblI/I/z
+eZM8e4Cmb30Og7ODeCTcmXNwHuCP21bRu3WD2LLV1zVB3BDCbXAEDQZxwvT6
+WpcsI5g8vLJpGxrExhdqBqSrjcDMUO9et84gPjU6Gz3fZgRiyvcXtmoM4h2C
+tFe1n4ygbqX+bLfcIDa/MCf1UdcYpnMqDLfyDGK7oMld28eM4eiHrHVdz5m4
+69pB+oSaCSj4h8RtdmfijLeCa1TZzODA88MrXzMGcNykU+3fwiNAS3Ph5L/X
+jzNvGnMnlB6DZNXf+dmdfXi82lOWn/Mk2M7W+JSuPMMGAvH4U6Ad8Ore/C2k
+24P1Ncriwg84AC9bAGtnSjc+zqYeUu7rDEqxE4YcfZ04QzcA5+m6Quo1U9br
+sk8wD9HdvUfAA2Ylx0N9I9vxVMtu05oYb7D3Wd31rrkN15/8wO9L+oKU/ian
+LPFH2MVExWiaiwasXS394xYtmPddRsTawABIeSq7uG7LQ7y1zCn11/MgaP/e
+gcaeN2LWnIEg7pUQUCsI+ttzsAF3btNnV1EPBy3DHffNftbitF3h0rvX06H+
+wDTf3MdaPPdqIViInw7qh4od41/V4mSV7K5FATooW8nyDjXX4mld9/3lEnTY
+dm67vd3lWqzppXaRXZEOXLHiHD6CtbhJ8+iKhQkdRphclikqNVhE3W2P0SU6
+/HpMDra2VeKhWzPSnl/pwJYq7HqtuBKLqQ1p1izRgcfVetU6thLvqI+Z//KD
+Dlt4XyrMWlbiCaFqcP9LBwOr0TCRtxXYJc5HYz8PAy6/n5B3Y6nAgi23vSNk
+GbCRYz5ESL8Mk/eIc0LWDJB4uXPj2LYybHq/fB3nSQZIlXoX3WEvw0o/Zrb+
+PMUAjcNf+1FPKS4LTagZPMsA65QlWddTpbixzlzhggcDsuT+9D0MuoPfxVqP
+SEQyQOEAl8y5hmL8YiMpHlHFgA4WCRDJKsbNbz84falhgON9Rbt2RjEOX600
+O3uXAdkqh9KkzYsx+7O2Ke1GBggLxfGMvyvCvN0Cyr2PGMA6IbR0YmMRtjhT
+18QYYsCr4G0dpu4FWA1928z3kwHBGrve/fy3AOcuPCV3/WaA6Byw3NEswJqf
+bvMeXWGA5VlHnXVsBdhWyGTl+hoCug4UVbal5+Mg5mrNey4CGoSUU/We5GFb
+18jTmyQIiKvUPK8qlYvlMuv3pmoRoPptQatobS5+oJn/KE6HgF7tUi7JmRx8
+Y0vWrig9AnjbN5fxVufgTrbCWhcDAmJH18zN6udg3k2zIuwmBPBtTPtgXZeN
+3woj8WJrAsyzuK8aB2djG5kEWY8TBFyTD1PcC9mYThMTV7MhgBs5eAj33cJe
+NPyw/DQBHG7Ki4Mfs7BenOIQ3YmA1cctq0ekMrFMa8OfRB8C9I/szjGYycBZ
+2pbC8n4EhI4Wglp1BjZznme950/Ary8xkfwoAyfpJB/vDyBgWdKKu/dkOqbt
+9G8eCSNgLnBG2CwhFW/4T/eo1VUCxpQFVIxYkvErR63VF7cIMImWebPSnYTX
+apwzWMgmoHpib1zDzSR8ZbQvfW0OAUTKqS/ySkl488D6G/J5BMixFNZzWyfi
+695vz5gUEeA+qIn6y+Jx1eJBb5ZKAoZUTOevXIzHTmJXsz9SRldscwDicX6M
+7cJAFQGSwaxrXSrisMeJG79TawhwMr95XYntBmb9OZG+pp6AhcX72Q2VMbjR
+y9/Y9AEBj0rGWBT2x2CnZUcLjiYCkk6zO6YPX8UDj855NVPe+8RcPpT9Kv65
+N++LAiYgLGO8CmyisUhXy8zLFgIOW6wVqJu/jC2NlFPCWgnYxq7oLxN1GReM
+lhzd+oiAxx5+Wuuqo7CwyPjqyTZqf4CjtWdtJP74uGFNeTsBr5YUpVHmJZwR
+JSKl3UFARalFVJXaJbybpdK8jfIRofSDiacIzM5f0Nb7hICUD0rM4zV0HHCr
+RuRRFwHns45odBnTcdmNvlDNbgJ88z4q0+5FYM+ki9N3KDfSwup1+MJx3Lmb
+z6KeEmC8Ob+jvTEYv0qseyD+jAC7XtaZF9NBuCV7gzuNMo3usP6jaBD+2XJM
+p5dyweT2I3wXA/DU7L7DAb0ENKUwfLcVXsTyd9pyn1AmTSaS1Ukalh8ZlxXu
+I4CtImfYWt0fa9SI42LKEmdY/pw/64cNvMwGZimrb7SXDIn3xVlMI8Gd/QQ4
+0LY63p7zxrfjn2wvoxwsHxFVs8UbB6y6fp6kLFX30CI63ROnaa2f2jRAAD1E
+b7jPyg1f2Bxty6BcNfZ7y7c6V/zpNWO4ivIbwwcOYgLn8ULmA8YoZb6S4GI9
+bxesutx+jJ1J5Z1HZ9a+1wmfV91tqUjZ3funWpSyI25RSAkyp5xF3qPdiTmL
+v7kR3R6UU3wW/DMHzuD726/tj6X8Tdtr9d11W8wmavKhkLIl61y0sulJbNRk
+VvuQck23+0YahzXuk1UpZFLekPQp4+EjS7yB51LzJOVXDaQJz+ph/O7pJMs3
+yukHmKduXTTBL1w+nmcZJMD6ZZ+n6jzgy5eUv3NRlmNmsEX07cUvPfaXbaBs
+8EHp6D6GNP5XtCdSiLLa8YBL73240WlRu0vClN27/GIkTquhvLKbRYKUvxYH
+Ov1w00f77vHN8VHWa0Nb3fSN0M5O55PrKEeoA8/IYzNE49Wa/kO9z0R/bqiM
+3L8o+qx0xjxlglN6cdT1GLpi1OE5RlnGoMA1qeI4uv222bmHckeA7LjpFxuk
+y10d3kD5XFWRNeseO+SyV7PxFuXIxaQp2yZ7xB+zLERQtoojc7XsHJDlQFyC
+I2U5JeHTQixOqJ9RqLqP8nKHldhCrjOauz/yaQvltNXnN4rfn0fhqbvbe6j9
+dM0QNb0UfQGde5Yzfpuyzt4Ta8/scEfRNS0S3pRHPYZDRDy8UBBb3cw6ys/Z
+r28KivZG0nZkWB+VJ2yp8tPlhA8yAeOdyZTj5jzu7vvlizjetkwLUQ7U40tU
+e+qH/Ba2LPRTebWPqfSSzPJHSTv8BWMoq8nNK/7Sv4h01JvKF6n8M09759Yw
+glCa/yGrAmpeysx6Jk46BaPptr+ZQDlSW0GK9UAIEnIsSxntIUBTeDzPkicM
+davOFa+lfHhKnhlkRkeVhs466tS86ry2+vqsiY5a9cS211PzLU9eEpBSZaCl
+iLEHGpRZHo1Zdm8gUERUF69iJwG1t1IHJZ5fQqYCgjKfqT7JTm5f9DwQiQKa
+XcutKMfGLgq23YtET7sUZu4/pvowyOKYW2YUGq2WoIdQfSRqtW7ogX00qlPJ
+kB2i+iyUJ+C57acYtIws7D/ep/qFrXC52jYWWcWMa0pStvrFFFnbG4tUTyu1
+H26kzrdp1eMV1deQXa/9mqL/qPy0Tb1Yod1AZrN5bCp3CcjXL3O3YElAJmEq
+5rfKqT7QfhT6UysBhZypiMsqIyBeY/havk8CmoyUiEkrpdZXWlfx/W0CelB4
+vvhyCTUP4o6fb7cnIv7PAVd0CwjgXJLwXIhJRkuVOxw5Mwk4tj3Rc6A5GR05
+GCgynU5ArjmXV+23ZOTK+XfpcRr1PYu+e/nb3UQawnv0LqZQ83Gc9PmxKwUJ
+V08tNyQQ0N94ncYynIq6RUPu1kRTeQtnCdsgn4nIXd+n46nzcbI0IOzLqUw0
+/C/TSdSbgF0v5sKY8ZmIn8YrlelJQPfO1+HJvzLRm4vejhluBPwZb6SL9WYh
+jvt5woHOVH4M/SK30bLR/LEXz6up81qIfdEobSIHSdvndG/SJ0CL77KAwWoO
+suTqrZXRJeC0mPjYB4lcVGtzOURRm4Ai5X8CNY/logDP5lrlPVR+rGJLn3fk
+ovkDaUPrVQiwKZLmFy7PQwI/Aob3bCYgx+TYy4SLBUhKvdbJ4AcDHlt+KNBO
+KkDM5nyvD0sMmLEN9pmoKkCfijrCYhcZoO6Tw71rpgBF9suUdM8xoC19Vq//
+VCHqurHDRvY9A6Y+RubyQRH6hmTbDw8wQOl6/YXY9SUo69ea6tBiBhj0RplV
+yJegpc6vR8gC6n7Hb63cZ1iCcEah4Y48BhAJy58FQkuQ5Wih9NMsBozc1PTJ
+mC1BqCB0cS6BAVeyGwPuPLuDDJzD/v4XwoDJqoeRT+LKUJNHzsGT5tT9jtme
+zSZUhSZ0zLOlZ+jgIe45Xz5Qi9QeiKq8EqbD4a5zGWDfgHIf+/i0yoRD4mUn
+M6PaRrR7WTgjXSgU2KU4I2MXm1DW9aikhq9BcEvyWf5r/RY0JdXqfDs+AD7W
+pnJWvGul8r9jZc6SBmLRw+pfytvQ5NMqXdpnX/gxsXl89ng76k1wkZRv84b5
+st0DV391oMB35+Qcgjygs741OrOlE3mntGi/PuUKlsb/tjqd70avv86f3jPg
+DFjkREve7h50//0bOQUrBwBrdTZi+RnabLmwFBtvBxc383WJZfahE1PJm99c
+PQnGCWqKiTX9aF3Q2/CQ7mNQ+sKmxu/yAKodnfTk/nMEMoY8R2SPM5GJhZHU
+3nQzEBDKvlZlw0SOga0WvRFmcNXyGdK2Y6LGZofGQBczCOxTyj/kzEQn97sp
+smuYgXXXtJufHxNdKxOb/NZnCgIPHVZa4phIgvSp0FpvCjEF1ttsO5moYMgo
+flucCQT7IZdE7UEkbKe7T/qpEfy96xc9pjeINBqKacR/RhC5XFKibDCIwpbq
+BBfyjeBGkOCnDuNB5C/Q77scagS5EdNev48OIra7rouVO42gMzYxyMlzEGU8
+G6vvTN0PIgVT1/bmD6JgMY04W19DqCNv1I3wkOjUi/RcbwsAh/pSyZgNJGrV
+mWM7pA8gkNJxVVuIRIyBYi5NJQDv46tn0jaRaJh2h6m7DkB1xIPHWpFEQ4ON
+bn+bDaBk7JDzwAESTSpw7D+nYQC3PnKLdhIkSr+XrfjnCIJDT+WIgMskspg0
++x6khuBP2b7PcjEkqrK8Oym0AYGNR3BbVAKJRLo93uT26YPYwoyXYQ6JNm7i
+CxA5og+JS52d+CGJToRsq7Wy1gN4Prnbs5VEC6lt45maerDQwHJ7SzuJzplK
+vV8R0wOLQC1aaA+Jap3OKAq/0gWe38XbdUZJJG/+qeOGoy40jbZdm3lDogaJ
+M201Rrrg1jT2Pe0tie69yeRZkNeF7jDR3u8zJHJpMwM8qwNBdru1iz+T6O7I
+f9yH+3RA4R+LAusvJCoafvPqR40OvNzqxs+xRCJ6eGcRTtaB//+/gc7wMI7f
+DtCB/wFEHUjK
+ "]]},
+ {RGBColor[0, 0, 1], LineBox[CompressedData["
+1:eJwt2Hk0Vev/B/ATQpJKKqlMGQpJcjNcnnwos7g6KEoyFJGSecpMCGcfMpMp
+ROao3HquEpkynLNTUiGVIUlUoui3v2v9/trrtfZ61tp7P5/n/fmsLeFw0cKZ
+g0ajbVtFo/3vGkuLDWz4SeIO2+ONPPMGEPjR6uL57yT+NhAmV7DWEDy6ZZzE
+5kg8HeezdFTKEKwy2kzjPpF4n0/98LilIcgocUucektiv44tohuaDOHJ6ein
+XE9IfPRAgseRGCNY9V+kED2ZxJ2XMn1yFE0gKCSsak6axCVJkxbkIzOY9W69
+by9J4m2aYR2X35mBkztfa48oiW1lP/mlrTIHE9vUofKtJA5ca6gXKGkOO9TL
+eB3XkHjQI/DspJM5PPjW68CeZuNhx6AB92lz+O0mtvVOPRvrCT6fB24LuGKD
+Q32AjYM7pgV+nqXD+6PL28URG9+eSVUuD6CDsa7mvU4NNtZY4dM4f40OwgpN
+s2IqbNw36yIkVEeH+uWGM50ybNxShVnrV+gwkV+pK8bPxqhPTacywxKOjefw
+dAywsNCB7YeqXlrBbu+g5B3uLGzY9t1MK/oE6A8cXZ7L6seS7HsqPwJPg0/G
+Wd719/pw7qn58rZER0hV/FWU196L1Tk7man15+DkdK1n+fIznP4Pb/KpEXdY
+9/f1X0J/d+O32mP+zZaesI7Tj6M9rRMryIud7rDxBvmEUV3u3nbclJHCVljw
+g/RrRhyJ0k/xVibIRhUEwbToSPDlqFY8dmx+0scvFOw9V/aP/deCfQtFJs5P
+h4Ok1nannG2PcXHPjgfWfFHA0dHcN2LWjCdW7xF1PB0DaV3S8zw7H+Kbn00d
++kquQutCGxoeuI9lbT5f8rkXD0rFAX+6DRux7DGT80WD10BNd0+T8WId9pfy
+PjtRmQQN+hMCM1N1eIfM6QD3hiRQNil1ZLym7rs2Nk4/SAIFS+l1z/+rw12r
+5vJHu5JA/JyEvV1MHT52IKs1ZzIJ1iRs4/bcVIfR2LNhulQyvGKtsUjbW4ur
+NKLe1qQlw9ITkv2I2pzOghM/jFQZwJm+2fVaaRV2MEgu9NVgAL+r1YpVQhX+
+U/1xfb4WA3aue7l72qIKV/G8kZ7WZYC25VDIlneVeGF+J7erOQNiPozKutEq
+8UPXNax5FwZs5P4SJKRVgZcNbpccymCAyMt9G4fFK/BExWSXWDYDJMsvldzi
+qsAVc5/il3MZoHJ0rg91l2N9d53e2iIGWKV9l3a1Lccj209pL1cxIEfmd+/D
+gFt4/Mc5JNrKgN36a6TONZZiweVH8cFfGNBGE4EtOaW4Tb8pZ+QrAxyb5Oxa
+w0uxTreQi843BuTtNcnYZVqKG1Kcpf/8ZMBmoWT+kbESrPvg/qZTHARwjAp9
+P76xBPef14m/JUTA60DxNiP3YjwY3MV/RZWAQJX9Y4v/FGOOM0GH09UJ2DoD
+tFuqxVgh8OD2qr8JsDjjqMHDWYxzPq8uIA8R0KFfUtWSWYQtNxZPcxkQ0Cik
+kK75tBDnpkwHfLUmILlK1UVRsgBvFajbP+dDgOK3WbWS1QU4/7dszJgfAT3q
+5WtEJ/Px7B/iXX8AAetad1Ssq8nHAS/cKm+GEJAwtGpmWisfG40GOeyJJkBg
+Y8a4VX0edpJD3PkpBJjm8MXpBebhW/mG+85cJ+CabIjcQcjDdcxVDmLpBPAh
+hwube3PxLdfNn5hZBHC7Kcyzp3Jwkb2Ss1UBAStPmlfMJbMxPYfeZlpFgJb5
+gXztySys6S4jOVxNQPDQTVCqycLBL5/7XKglYOlrfNR6lIVjHrj/CbtDwA9R
+S76eE5m449uiT2QTATP+k5uNiXScbfeg7VsrAcMKgnuP0FKxrZ1ud+grAgxi
+pd4ud6bgnvr15ZlDBNSMHkxuvJ6CTwss45rXBESk2X6VlU/BlSd3xQ+8JUCG
+drOBz4qJ4/M84mljBLizVVFfBQM77ubt75si4Pleoy9XfRk4oryFgT8RgK6e
+zAdg4GKbj8xb0wSIBnKsPluZjC3SFW39ZghwMr2eKM+ZhDMdr374+pWA2fmm
+vMaqeFwRgfY7/CTgcdkwbffheKxQVH9v1yIBKae4HDMH4/CR7DW+7ygffGoq
+G8wVh/29jJOtfxEQkjVSDTax+K+SWRnxFQKOmq0WrP8Sg812Kxt0URbnkvOW
+io7BRgeNM73+EPDkgpcaT000ThdY2/4vjQl8wP2oe3UUrnHeoivHyYTX3+V2
+oexI3Ffs1IMpV5abRVcrRWLh+bJIcy4mmAtlGjJtI3Au5z5Xt9VMSBuXZ1nX
+huG7TZv4Q3mY4JJjrtKhF4Z52mdZvylfLpxS8LkXimWl1mI/Xibc9wlp0BC4
+gs3uyK44rWGC3o6ittb7gXiVmbfgzrVMsOvhmHwxEYBXFz2bDKfsE+awdmpr
+AC7niP49Rrn4vYS5gK8ftr7vO3+DnwkP0sIvi9/0xbmDph8XKZMGo6nKpA8+
+W2C0+591TOCszB+0UvbGR/qfpi9QFjlN++1yxgvb8xx7oifABOWN9qJBjMv4
+Rvg2lELZwUfM8cbMJRxm771Vaj0TAmVDo2t3XsK65sK+LpQl6x+axWZ64HXZ
+W8TLKYcFaQ72WrphzXF9uvQGJlQP/9r5rd4V39BIfmNH+a3uvw7Cgi44K/FE
+zXXKWvwa0/Y9TpjmVaL0i7L7pUWlaAVHTNut82bPRibkkPd8bsWfwackU/ot
+KX9Tv7gylngSRw4kJt+kbMExE6tgdAJrJ1oe76Bc2+m+0YfbCo9FCpyborwh
+5VPWw8cWOOOQ4b+8gtR+NpIG/CtH8Zl3aXQpypn6LNtcXwNsJx+nrEXZ6mWv
+h+IXwNJ+dfRjlGVYWZyhvQcxd/PNprOUtcflj+mE78Ln8344+lFWsvaL/ODJ
+h3gN1c2jKbt3eMWLnFJCFtc5QhmU50r9nX66aaHKhfEvGZQ1W5CYm9YR1BoZ
+WphHOVQZ+F89MUaT06fTCiiP9hUES8n8gw7HiHf9zxG8u+aHXOkIdE9o36As
+pV3smlJpjTrvFn7PpNzmJz1i9NUGFQunTRGUz1WXWHH8ZYeq/34mGks5aj7l
+48kH9kgv4x0RQNkymSxQs3NAMfqeuq7/ez/5zaeEaE4og2vzASvKP9oshWcL
+nBH/3vP22pSfOqSxu3TPIfFH67pkKWesDCSVfnBB65xyL/NTds3aahQZex45
+nbxrNUN9b42Dx1ef3uOOTFOXfJ9R5mNlNGt0XUDvM7nZtygPXRgM2nLhIgq7
+EXQ+kvIAV+L2gNhLiCd4SdOGMrbYu3j2uCdSrZAyUqScPHPhjs7SZdQvx7Wp
+h6oPf00BplKXFxqp/PMsk7J9fNVF0RxvFD6p/NiBspLMF7klLV+kKUTSp6l6
+FPZO5p0Q8EM2rolztymverzv4/NhP7RHS6L9PGXWqUsFteEB6Kd4qeFbqt4r
+jLtHTzgFojWtr4lEylHquyU59INQashMpTpl1c0jhRb8IeiHfNKZq9T52cCp
+ObY0E4JuaAouylGemk3fVdR/BeWn2zl1Uufv6EdZVoBxGIorPdL4hzqvGm8s
+5549CENdf73JuU5ZlowUlFQMR+jRQevdlGmPhy06N0SgpS5l/cN8TKjLTWeL
+DESi6mmmkBWVF3mprfMe+lHozl3/TBaVJwkJ85ta7kWhMh/NOWPKTgFmdLfs
+aDQ7FCT2FzcTtlryPP/XPhaxjr52HaXyK5jfb+Dkp3i0+sRyewGVhy6cN3/U
+nExAO8P4iE/LBFgusbas7klAZ7379ipTVpxQtK6suYYajIc+NFD5Otry8cWy
+TxJ6re1ukU7lc5FWhbsZjUDd5/RUHlP5LaL+OHhRjUDNKYnHBmcJYKgMXivy
+JND3OR3Dz1+o/iXPU7nwjkC025H31lL5b7XN8fONViYSuyNQJ0n1D97vIh6z
+8aloZ4ZE0/1RAugSTI/+/1KRUHlhTO0IAQWmay7WfUtFwyIFWSXDBGiULFz0
+truOMnRMs6++ofqRNen5c38aclbnXq8wSEDf/UQf2mA6WvVzzaGvvQRkXKGF
+bJDNRiqqNS/9/yXgfblfyFfbbDTBjetEqH65/8VMCIuRjehxEuP37xHQue/N
+ldSlbHTYw+3MbAMBv0fuhwn35KCkL42VWjUE2Ot6RYn75KFfrUoqNsUECHHN
+H8kYzUcmDR3mN+IJUBOIEdReyUe312ZrdVwl4JTwtuFxkQKEXT7IzsYQUKJw
+yF+VXoAaegZ/qkQSoGqZUD7QVoCuFmwrywoiwKZk1/rNtwsRchbY+cKNgHwD
++kvCtxiJ0s8nbTei+pfFeLF6SjEyz98nOa5PwOTJQM/R6mL02MiVrD5CgLJn
+Pt/+yWKksRCToQYEtGROa/bZ3kT5XEebZdUI+DgVVSAAJWhVlqvtFWkC5BMb
+ziesLUOJoqO1W1aoebMn2rhStgz1ZnJ8S/1FzYfrrRR6dctQ+NRw9oZFBkQQ
+Pz4LBpehewLfJWjUvPfquqpn1nQZWsxqkG+eZMDVvPt+t57dQkr8kcdbSQa8
+r34Y9TS5Ak0L/KP/uYyaD1mteZxC1ahE7n32b0MGiCm0LWgrVqONBuNmQvoM
+yI9uM79iUI2Km5l8cocZUKj2lGMxuBr1eZtkmiEG3MxrPzvzoRpNHFTXiVSm
+nq/BOX3atgbtebdqLlGEAXbhLqdf7K1FESWDxd6sZLiwzePL7f46FOXLz/Dj
+SIajHeeywL4Racyqh09tSgRmjJPxkbr7iKPn5K4z2xOAS5I3KmH+AXISu3uH
+tSEOckWfFb3Raka2c5HKXU9jYKounbdy7BGavqgyP5MfBcKxg8pfb7cgUdZs
++dpjEfBzdMfItHUryn+bbGWgFQZfKg70xy21IVmOVuONKcHQ3vAoNru5HTlv
+CIh3zPIHC71/Hjm5dKLU7Zqp4Yo+gLccby480I1e9xWpjvR6Algpc0b8eIbo
+ISPcv+9eAN8dAh3C2b0osGeHqOagC+gRSnLM2j70ckVTLAE5QfkLm1qvmH50
+08xUoPaaPWQ993glbc1CGZEzR8gJGxAUyrtWbcNC8yNquZJ9NhBn8Qyp27GQ
+D69KScRdG/DvlS8ycWahy3w3Gv1ibMCqY8LNy4uF9pYeVP5Lmlr/0GG5OZmF
+jLbVM346n4D4Yivxk+0s1LA8Ier/zRoCvdBZpjobWbC5hhZ0LeHPHa/YYU02
++v2JN2VYyRKifpSVKWizUbEf19/Pd1pCUsCmT216bOSp2q09tUCHgtCJi7+O
+sVGz9v4LTbfp0J7ADHDyYKNGCa+Mz8J02FL88drBIjYKUynrdfhlAfVkUv0r
+fhKpbdOO4Bw3B4eGctH4DSRKInmOn3huDoJpbXHqQiSyNlk4jlvM4ZL1yumM
+7SQKeBNW15BvDoqvLvBbyZGo5KLBm+O25lA2bOLcr0+iGFd6E7vEDHKn+La2
+R5DIVd1x31KOKZh0yUT4xZDo8BblreYhpvC7QuezTDyJZt7M6zw+ZQo2FwJb
+ogkSRdtbSP8SNQXh2cmLuvkkSudeb/aw0ASY39vb8UMSqXc8XfKoNgYYeH/A
+4xGJJC2O1IQSxjDbSLuxs5VEm1Mkz1V4GYOZv5pPcDeJLv1xTD+mZgz8v0ol
+NIZItKJXo/rhsRE8GGq5NvmWRIw0vLf7phG4PRheyHhHoncX7QufXTWCzpCt
+PQuTJPJ31WkTMzOCALsD6qWfSeQmu0K/pGwEuw+ZFVt9JdFi1WGJoc1G8FLM
+bT33dxKtLnwjYr9oCP///wXVpabu//PaEP4P1Yd9rg==
+ "]]},
+ {RGBColor[1, 0, 0], LineBox[CompressedData["
+1:eJwt2Hk0Vd0bB/AbKrzKS8RLkTJUhjS8GWLnoSjzXFSSWabMQ2b3ZIwMIUpE
+6JoVzbsiY2W49yKUITKUKWMp9TvvWr+/zvr8sdfaZ+/n+zxnHTEbD2N7FgqF
+wrOOQvnvGU2JDqr5zsTG/k//ZLcegaAxc4+LS0y8hefCvM3YEXB/K2knOs/E
+x18LGAOLCphnNurFfmVipzjOtGPKKiApv0Hs3AATqxcl1zmUqMDr80QT22sm
+Hjgk/EkyRRXWvYjiM01i4j1n5CUoXkfhckh4+bwEE7sE20qpvgCY82l4bL2T
+if8Ysuk96QSwc+VsaBNh4vzRBD+tUQDdM2n9NAEmdjwX+CuZQx22KRWz23KQ
+6587jE2YqsOzxXYbxhQDP19t6iycUYdfLqICD+4zcIDB9dvFcscg1BKH+QID
+F/PMNKx+0oRR/TXhHYiBcb9MwLHvmqCjofKoVZmBxe0mzXM2aYGgzJM50UMM
+nHRJ6VmkohbcX6u50CrJwG92Z3FxJ2nBRG6ZhigXAwsrPKCrHD0BJuM3N7Z0
+07HKi6lcidKTsNvnctI2Vzqmssd4LT3WhcpXByZ7nOj40LL7Vw6GLihxf1FP
+tafjxBd94/umdEGbdnqZ4zwd555Lj6sU0QPXoX/PrRjRcZS/lAlB1YNK3bm9
+dAU6Tnue0hJlog+KEvaN0ax0HDBVepf9jwFodeuvzWd1Yu1CYYuxRiPwzXRg
+537UgTvD7sf8s9cc0uR+5uc0t2O2k1o3ZZcs4exUlSdt7R2+6NYefuOyNWw6
+cv0n35G3WDg15VvMB1vYxOrP0pzeirOu7KuLdnAE6fhhjQ3tzTikwT1Ut8gF
+MhK0Wa5KNOGTPIK79/z2gCmRoWAvagPWoH2X19fyAmvP3/tHXtTjCmPhDaZj
+PrBTVdju5j91WHKWde61lz+wtLzsGDJ4iavtD6rpaQZB+huJhY3bn+NfHxzV
+aJtDoGGlEQ12P8YJtFK37KwwkC8I/PP2ZC0eOJifMy4aAYoae57o/KjGgvhh
+0a/jkbD6msl4VV+OxX1vP/5kGwWsGfzOCUXlWM25uXrZMQq4nM1/m8eXYxYu
+GyF21yjYvun97injcmxrdEh6l08UqJn1h2z9VIZtuXy4lalRcOXzsJQLpQwb
+P7pXP5EfBTwbZi/zqZZg1msvxZSGo2C3Foe4Y20RDmJlCluaUKGRIgRbbxbh
+ix+PpIWbU8H2yV6rhogiXKHk4FBgQYUcWd3MXXpFmM9rI8/oeSrw8yVxDY0U
+4t6lcn0NVyqwDPMtneYpxHy8UmNhVCp8CNrRqO1agK+peS9OVFMh6ND+kR9G
+BTiFM1LwUQ0VBGaAck+hAOunf/KhPqKC8QVb5Y2sBZhVS7+DD1OhRauwvP5G
+Pu580Pd5SwsVavlkMlSa7uA/pXaycQNUSCpXcJLbmYdbHlINdTcSILc4p1i4
+Pg/nsulJLXIQ0KZE4xCZzMUCFgJhmVwEbGrYVrKpMheLU+fvdfMQEN+/bmZK
+NRdv0KTV7t5GwGaezHHz+zm4oSdmTUyegN+vX/423JmNB30YhRfNCFA1PJir
+NpmFdWUHP+eeIiC4/y7IV2ZhB2/uOIYFAavf4qjcKAtn0uZWZa0IWBYx42yz
+uIG79Oz0HzoQMBMwya+TnIF/JqwdEfInYFCGV/Y4JQ2HLihb8l8n4ES0+MBa
+ayquiKyzephOQOXw4aTa66m4Se0zt3kmAZHpZ75JSafiqCOlXrHZBEhS7tZw
+mqfgtKXOrc15BLgyFFBHyTVsLT0yXVRGQJes9myM3zUcOSOkwF9BAIo5mwtw
+DSeK3lIMqyRAJIhlvUNZEu6y+n3+5H0C7PSuX5VmTcSMrOYdtY8ImFt4klNb
+HocbU0085+oIqCsepOw+FocNpfUe735NQOo5NtsbvbE4/WlX0bkGAg436UkF
+s8XiC99VfJ43ERCSNVQBltHYv1y61PQtAZyw4dXb9VT81l7k3hCTgA9Le3eh
+7CisV2PS+6mLgDKaAVEhH4UpMdy3h7sJMOS7cTLlTCTu3Tg/xnxPQPq4NP1U
+VTjOP+mhk/KBAM1t+Y0Nj4OwWMvuSMcRAqzaWCZ7JgLxnN3pbLlRAnzDbf76
+IhCIlXe5np0nXTAqZrjZzx9fydWgXBojgLUst9f8gA8uYBTaHpskQOg85ZfT
+BW9snWxq9Y30AR5rkcvXvPDERi3B7C8E2PiK2t6euYQzF3maRr8SEH5Zpbfd
+zAXXFG76ZThDQMXgz+2L952xmyztwwjpAY2nNoK8TthZ/Z2f9yxZP1zKU9Zt
+drjNqosZM0fAopLH75GrZ7GXiIV4wjwBxiwz0TLaFvja6LXnbAsEVLW68vhu
+MMfn9TBnEOkPtcwTXL/1sbL8UWy5SIDauLSJesQufOnzZ7/FJQLkT/lHffbk
+RBm29JvGy2Q9tHjHCZ2TR2G1Rp5lpFXqkaiL6nE0YGq/y2KFgLADwNX3WgdN
+P7j35x7p4Y68YHFJI9S0ZTh6hbS4WoFzatkp1C+UfCPmOwGN/hJD2t8skV3D
+C7G3pB0rCs1Z/rVCyj56Jlw/CKAupI6dfWaNzDZkyJ4kbZbEzFO0skFpQqsV
+kaQlpfnP8VHskNLfXb2PSC83mgnO5dkj7Y3RtK+kM393JxZ9dkJxanOqWqsE
+OGcJaEdFX0RNcc5/PEgrHz69/vweV+Qzrmp/nTQnPfOl8hs3BNDh/pB0v1vv
+5a1uHkhXkyrcTbqb7apwYPQllOuEL34jjY1lfzic9kQ3B0bOcPwkoDD3Xbfp
+Hi/kkm85s5100ozbA/VVL3TJP1ZsH+kAlc0p8m+8Uf1Qz6IKaeu4cg+Rmz4o
+WbrcUYv0iff6elxuvujORd9AfdLykrN7V1X90HP/jD3GpAV9ktgnNvujbYuh
+/v95Xd2+sa5Bf2Q/lG9jQPoLd0d9fWUAYul/u3KCNP3cpbyqiEC0U0sEjpIu
+0Xk7bGEXhA6/W/olT5qqtHsni9ZlpFuq2SNC2kqKakPbE4y+en5oZyetwD90
+x5grBB2/HzU2Q77v36wqI6szIch+E6dwJ+kvcxm78jtDkb0EcqsgXT+wYKvz
+IAzdKZ79EEtaf0yKHqgTjqZ1Z52t/zvvj2bz756Fo6cdm/kOkpZiRvHulItA
+53/u6F9Hmu9N1QG/2xFI/tYP/Ja8P0rdoHHr35HoXZLbi1TSU482eYtERiLV
+WuMP5qR7K46kei1EIrm1MP6tpKtvZTCEuqPQo44tH/6rr5y0hgV3LSoqdpJ1
+ViEdH7+wpf4RFe1TXOKZIuvRLtDA1CWbQCrs62qPkja6FOLzgusKEnemVI2Q
+9Y0cS9K2hF5Bb+rEm6JIC5ht7HpqHY2sblkde0Tmg0333yVuejTi7FMo0SU9
+p27Lb6cRg2yin8t8JPPUKv/CjEsyFqXKXwibJ/MWzOXfffZrHBp1OGk9840A
+J9a7y5Vn41FFKL5hS9pslb51fVs82qIvNs0k8yw3IXeqrDIBqdbYDZeQeR+u
+H+tZ801Ek9Kbf++dJufRE77vRuOJaE6Kf33EFAFPqtQFC08nIZ70RAkG2U9a
+DQxkirZfQ8fVK6pdyH6Tr1riakBJRrfuvPzlNk72J6W64B+KyejQVde2ArJ/
+XTvUm5DvmYyGQ0we93wm9yu9sWzlUzI6uNzat5/sd+b/2E7fbkhBig17/B8O
+EcC+JOQ+F5eG9nZ43+HoJcBULMW980UaCotz0OEj+2ueHodH9WIaUqbX3RTu
+Ie+/cMXDx+o6EniWrryD7M+up5ie3/eno3meaY91nQR0PL7qS+nNQEMTDFnx
+ZgK2jbH5DW/KRHXrN2b8aCTzyxvsV6eeiUazfSvfkPOBxeWiP7U0E2V0b1m2
+ryfg0DatQPbwGyg8brTPC5P5D6WE/C2VjebKXkfMkPNolOYf8u1MNlqbmZFN
+qiZgf89MCP1aNupaG02RqSLPa9/H0LTVbNRh4RV7rpyAX0OPwwXbbiLU8lUx
+s5jMq4Y3dYdvDlJMCtrpeZOsV7aF45nDuaj2YvDHmggCFDdf4VX7nYsirPJu
+NYcRcE7wn8FxoTwUYGN7uyeE7A8yRwMUTPNQu4+m65dAMl9m8bTuxjxEzffS
+GfEkwLJwFzd/6R3EoVQstusCAbknTN8n+xUgjk/W7iMqBLw2Hi9QSi1ALQFD
+BeHKBEyeDfIcrihAq3tm1IUUyfnimcu5f7IAVQuWPlE/SObxxpRKx5m7yKfk
+wBOnPQSMfaHmbYZCtM7H6BUHPwHSV2suxv9VjBBPpyRtkgpqbYROmVQxmuC1
+Zhsdo4I5t7lMu0YxUtAoui40SoXI5OVp3uBidDzxVG8I+b3Ud13BM2uqGD1Z
+/Zd7O4MKMTmP/e+9u4fehz6+8uIpFUYrnlObkkrQ6ikr09tx5PcevSGHla8C
+pfbT5kVFqSAq07iiJleBMjJdF9uFqZBLNBqGnqhABspf3EIEqXBHsYnlR3AF
+EmuQa+vgocLdnGaHmc8VyDiOcLdgI/dXY58xdaYSlfxVRl2YiAKrCKfzPbJV
+SK9ertmsMgrc/nGfLe2sRj57JeL3KEaBfotjFljXoo/3pN//JRAJKVfsdI5X
+P0ZJMZtFLkyFA9tOdmr8wjNUHuB8ac0xDG6JvMv/qPoSTWc/K/IuDIYv1Rns
+ZSOv0IPU7+F/2INAMLr3wLfSesRot1DeoOAP34e3DU2dakCRhzyqQu/6wGzJ
+wc7Y1Ub0vuiKubeyFzTXvIrOftmMQNhkq0qkBxhrGr2yc2pFn4sGUliUXABv
+Pf3yzsG36Ffug6GuVQcA8wOskcvvUII6i6EqsgW/bZtbBLPbEb+lRqmrhDVo
+JsvvTanqQN+Wq1reO1kCrceyyvtKJzpxWFeik2YGWV3ufRKn6OjYADSgMiPg
+5ctJqLCkI8rDxl3at4wg1vgdUrKiI8Wg/lrrq0YQ0C6dr2tPR7QePdcKNyMw
+b5lw8famo5qj/1TQ5cj1z23WXibR0XeTnXay9w0hrsB8x9lmOqrv9DE+GGMA
+Qd7IIUWJgfqMmS8e/qULfx54Rw+qMBB+cuzezLwOUJeLi2XUGCj4a+RhhT4d
+SAzc8rVRk4Gu71+3Y61YB/LCJjx+mjDQ9BZ2pzNaOtAcnxJo585AhtFsKWei
+tWFrwVjC4XwGmmvXOyPOdxLuMxPv93Exke+7Pe7LVppgU0MTifubifj/qETM
+amkCb3pjrBIfE227rDn7U14TLp36fT5TmIlkmsJp+qyaINfnxmW+l4nuvRsJ
+7ys+DsWDuvadWkx0tGW2NXLlGNz6winQHMlEUXVPFtruaIDuG8lI/ytMxPB/
+aiuaqAG/StSnJeOYqDJ6ZTwiUAMs3YLqiWQmks6fZwsx1ADBuUkPjVwmang2
+7a/9Rx1Slpqb8XMm6iqlPf/XWh2ge/Sg+ysmSpr0yc7TVYe5Wsrt7Q1MxBVb
+3CiipA4GAYq+wW+ZaPzNvo+6vOrA9bNITLmfidg2nJ/3awB41l+fMDnAREYe
+7LtcqwFcng2uZH5iousWvEZetwFaQwTaViaZiKbmEFIVCBBodVCpaJqJrsq/
+dvxCltfuowYF5t+YSDyeJnXIFOC9qAv3hiUmMl2Tup8IAP///4EeCOpRVuUA
+/gfEdGtq
+ "]]},
+ {RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
+1:eJwt2Hk0Vd3/B/AbMiUVKhmLokwpHtPDziffMo9xK1NCxWNK5jGzuOIehCQR
+GTMWj4qtEqFC1zU1IZGZaJCi33nW+v111mudtf/YZ+/P+/NZZ4+jl8U5FgqF
+IryBQvnvGU+JD65bYWK8qLYnqlUPgieoXv98Y2LJebblpfd64PlSyll8iYlH
+VB5xB37XA2pWm3HCDBO35RZrNkvrg5Qi+x67D0ysQ1RSdGj68OxM7HO2Z0zs
+6RvbLkM1gA3N0QKWKUxsZ5VygPHLEELCIiqX9jGxnK5yv0GCKSz6tj5wkGBi
+xzCrrXWlpuDszt3aJcbEtaqLwxqdpmBkk/62bCcTSyt6Pnm50QxE1Es4nbiY
++D7b1EmGrhk0fu127J3txV3TDyojuszgt5v4zvv3erHdDZ2T+RPmEG6NL/tB
+L36VIavXpmMJn0zWhHejXhy0PfCpLdUSDHU0Gzo1enF6DBvPBldLEJR7uCiu
+3Isr9nyX8km2hHtrdWc7pcj1G/mU1ocsYTKvQkecpxeL3BS2q/OxghOfczg6
++hn4mu9oWX8NFfb7hqSIuDOw3v+yq92tT4Nuv8naUvZrPLdjxIDQPQN+Wec5
+tzT04J7zrwo6PZ0gXeFXQW57N1Y7Rjc7lHIBbGdrvMvWXuHZa581p+rcYfPf
+134J/P0S75DMfzeu6Q2bWQNY2jM6sYCz8IcK5AuytFEd9u52vHkv1cFtIAAy
+kwxYru57jqN5erjkw0NgVmwk9FJMK74poclzx+wyOHivHxprbsFHN+QdcRyI
+BAktYeecXU9xv+hzw+blaGDpeNwzYvoYb7rwvsdUNw4yXuxb5hBtwt7jNkLl
+V69A6482NNz/AFOXfqfdzU0ExcKgPy/163G9z/CKVnMSqOkceGj4sxZPv78k
+o5WWDHW6k7zz07XYptZe6Ul2Mhw2Knaiv6vFTaq2oXA7GeSs9m3ua67Fq/ev
+N6vUJMPuC3sc7ONqsfbByNvLXcnARdvF7s1fi7ck+l67x5UCbxhcFhnyNThn
+Ro//cGgKrD5j9j5pqcRX9ngVyMnQgTVzu2tScSXmSSz5fkqeDjyu1HUqrRLH
+nDjFFa1IB9HNg/tnLSoxLXTWr0eFDtpWb8N2fKzAZ9xo+mY6dIgbH5V2o1Rg
+Qzb2qI82dNjGvhAioFWOn4h5Rx+n0UFo8OC24d3lWIGSFbY/mQ4SZReLStnK
+scmkIA8nQQdlk6Ue9LIMC3ruHWnOoAM149s+V5syPOdzSoPvNh1ypH53NwWV
+4i2Gki7aDXTYr8u190J9Md4p7Xms4SMd2ihCsCOnGHs9n3wnOk4Hp4cy9q2R
+xbjy4tLByM90yJU3ypI0Lsb3A1dZYZYO2wVSeEbGivDGnvGjd77RgWVU4Nup
+bUUY6uzE/3AQ8C54d5uBeyH+VqE8uSxDQLDyobGf5oXYKXdEYYs8ATvngVKq
+WogbPB8L7D9IgMVZJw0O1kKceMHkoYUSAR26RZUt1wuw6oyYBe1vAuoF5DI1
+n9/Gla+GRq8YEpBSqeqiIJGPJ4r0WatcCVD4uqhWtDEfH+f4LVrgRkCXehmX
+2FQe/pKqaJDuQcDmVpHyzdV5mDFIMDy8CaC93TA/q5WH45/4Ra8FEsC7Lesz
+9V4uNi774ZocT4BxDnfC8eBcrC51efuJBAKSpMNkVCAXt8zlPBagEcCNHD22
+d9/ESnJq21KSCWB3k1vunc7BJm/sws5cI2D92eN1M4kbOG3attTzNgFaZkp5
+2lPZuN1SeJilkIDQt3dAsTobn/AY4Uy/Q8Dql8SYLSgbbznn/1dFCQHfxay4
+u05fx8bxT98/rCRgPnBquyGRiVfXZp4dfUjAsByf/DFKOl71+jTxp4sAvfi9
+H9Y607D8FXMe0R4CqkdVUuqvpWHGT4q/6msCojJsvkjLpuGyFIqAcy8BUpQ7
+ddzUVDxpmeWWM0CAe68q6imn43ts7/kThgnokzdYuOJPx45pKih4hAB0xTYP
+gI5vekUUuowSIBbMsvF8RQp2RBMSWmMEOBtfuyrLmoxrQ/cNPZsgYHH5YW59
+ZSI2inyHTeYIeFoyTNn/v0RsOF3mwT9PQJodm9P1oQQ8pP+vWR9plefG0qFs
+CTg36l6N2SIBYdkjVWAdj089jWDsWybAxHQj372FOGxgEbmDSXo3m4zv3tg4
+PFImSbv8lYBnHj5qHNWxuMuyka3rG3k+wE7mdgx2WFJV0l8h7+M3GUl0Ixo7
+8rR/HSFdUWYaW6UYjX/dPDDu95MAM4Hr+qk2UfjtYKV55ioBGZ9lGSdrInBd
+I7tVw28CXHLMlDuOR2CV345X1NcIuHR7Ws6v4TIWtdea+pf0A7+wOg3ecHwt
+svvw3XUCjosUtLU+CMa5p3RGL1FSwb6LZWpgMggHH/dye0vaL8Jx0/TOIJzV
+ux3BhlQo/LTHjNc/AG9iWjSysaRCY0bkpd13/HF2X9kFR9JMvdH0w0w/PJNK
+sWkizVqRN0Q97IudJA/ucmNNBaEzlN8uZ33wrktdY02kD29zEAuhX8INPivf
+NrOlgqOfuNOt+YtY1CRi8Q7piBDNoW4rN9wilPR33cZUqBr+Jfr1nitucys9
+skT6g84jR0E+F9z/9UqiHHsqaPFozDp0OeMTMipfs0i7X/ypGCvnhL3Eh/he
+kM5hNviVJp7Fa+8nA1ZJf1X3Wh+7aotL+SnbzTlSwYJlPl7O4DRWfjZqFEi6
+ptN9mx87FYvUfOrMIb01bSa76akFToz6kYxJv6tn6vGsm+CxcK7r70lf12XY
+3PTXw68Suad+kqYOdnsqLABWPTATzs+ZClKMbNbL3SrYNiTHWoa09mfZE0cj
+JXG39tZQRFrxZED0uDc3ujygNmZK2r3DJ1HIThE1/81Ftye9VBzovOKmhYw4
+/aL+Ia3ZgsTdtI4hS/+LD31IXz4MPG+eGaJQu0XVYNKjPfmhe6XM0azS9GoY
+6ShOyeW3rpbIlNeS9TLpvdqFrmkVJ9HbW3vN/3vfFrBvxOCLNbLTOPEpkPSF
+qiIqy1/2SKNroNGbdMxy2oRtowMKmS57c4G0VQozX83eEXU0tmrZ/Lc/2e12
+AhRnlLhNYsKQ9Pc2K8HF/HPo5YmHveqknztm9L7QuYCcryaw7yOdtd6fXDzu
+gj6dp4VvJu2avdMgOv4fVCbd+Pcy+f00VE5tPHPAHY3XCaJ+0tyMrMcaLzxQ
+fkZubD3ptx5DITs8vNDTOUO+dNL9bFeFg+IvIoFw8U+epLGF/M/zp7yRZang
+r+OkU+Y97h9dvYSOXQpdmSfPP1CTN1XxhQ/SnZ/8gEk7JFZ6ieX4ookn4dxJ
+pBWlFmRWtfzRgPmMohhpQd8UzkneALSjo1xmjLx/G54enOgbDkAJjAKXO6QZ
+dhfzayKD0F7zXbV7SJcbvhw97RyMnt2yqOwj73OM+n4JFt0QNFDE4RtHWnX7
+yG0LnjAkqs9r94Gsh62smmOr82Eo/NH3iFjS04uZkgWvw5F++hWvA6RNJqQZ
+QYYRqDdmuOICWV8a762WXjVGoFNHj65vIC3NjOaTUIhE/jUJQtfJeqU8Hbbo
+3BqFdI9tamgi67n2ZmavUH80Mto2lTJC1n9ueuuyp24MqlIL0TtLmkZb5m9p
+iEGXzYjuD2ReOAeZWrrdiEV8P0sMesh82WnF0ffIIR51DFmsJ5H5E8oT0G87
+k4h00urvepB55sJ653u1LQ0dEw0OfETmndUqY8fGLhoa9cgXZCetMKlwsqI6
+CZnQqgeIJQJGWyYG1vySUYQOv230AgEFWuXuphQCCb+se9M1SYCQ+tPQn2oE
+eiL+WXT6MwF05aGkAm8CKTYrarKQDpXlqPjxkUAy3f2bDowTQN3lNHerNRWN
+Ru5hMyfzn/ObkOdiYjpS6ll5zD1EgOWeVM/XzenojLR1EfsgAfnGXF61X9NR
+34pR359+AjSKfnj52l9D+vKx26aZZL85yfReOZSB5C/ReXPJftXz4KofZSgT
+ZcgUu8U8J0Bkgs1/dHMWstzqJmzVRoArX6j/06NZKOaDu4hkKwEsbv8ExNzN
+Quc+1gv8+5QAZRHdIM6I62g4xG4RNxGQFU4J2yp9A5VE5Yyb3CPgU1lA2Beb
+G0gwe/r71xoCDg3MhzHoN9Cl2BmnrGoCOg++D09fvYHsB+tPDFQQ8HvkQYRg
+Vw66Vu568y+yHzvo+MTs9stFP51aLvnmECDAtnwsazQP3XDZzUuJJkCNN45P
+ez0Pfe2rHFSIJMBOcNfwZ6F8xM/nWmB9mYAiuSOBqpb5iMKQ0ioNIUDVilbW
+35aPznw4lSPhS4B1keSW7Xdvo/cvQkfinAnI07McJPwLUTC//DERHbK/WXwu
+VE8rRO3Ch77PahMwZRvsPVpViH5LqrY/RAQc9s7jPjRViLLRaaaxBgEt12c1
+e2zuIL+5+GrzQwRMTMfk80IRejG0K/O1GAGyV+v+oW0qQUtDexUf/SDn0a5Y
+wwrpEiTsomaPyHmOuoUq161TgvL3/17AS3SIIr7P8YWWoNc/C3Qa5ujw5pqq
+d/ZsCWqvWu+ijdHhSu6DgNJXpejscEfav110+FTVFPM8pRyl57B9kCkg50dG
+ay6rQBWirodwvfgfHcTl2n5oK1Sh3S/+4vgMdMiLbTML16tC1vpMng1H6HBb
+7TnLz9AqVFPaqXxQnQ53ctvPz49XofdGK0K+5HxNrTuXOWtTjVb2j9nkb6eD
+faTLmQH5GiSm0SC/ryMFPHZ5Ltx9XYsGd5h5HlxNBpOOC9ngUI8WaA+MPm++
+CqlxzobHah+g5Kvcmw130oBNgjOGttyIema4ZM14E+Cm2KuC91qPkcuUz1xL
+WxxM12ZyVow9QSIaqW5a+TEgGD90+MvdFlSqczQ+wDIKVkZFRmZPtqI1V/k3
+5kciYKFc6XXCahvK+RfnnM0Khfa6J/E3HrcjyXzxYK+8QLA4bv7E2aUT+a6+
+9Wco+wHecerxbaWXqOhA0jD0ewNQD7NGfX+FMlwf7U155gH+Irwdgje6URZ2
+8OAZd4HjhKJMak0P2tXsrmWr7wxlA9Y1PnGvUQpHr1JUhgNk93m+2XeSgdLH
+OnrkVq2BTyA3qcqagWyCDBq8R60hweIVUrdnoPaTkzHt7dYQ2C1bYHSOgQYD
+XCrLM62B2jHp5uPDQELUHy66KuT6Jse1xykMdHQqs/qV/2lILKTutm1nIA8J
+YeVhtlMQ7IPOp6r3oj00hWanE1bw575P/LBmL+q8uXuXjrYVxHwvKZHT7kUs
+H13MFeWtIDmIf6bteC/ybNMDZQ4ryL886fXrRC+aN35oO/rIEtppqUHOnr3o
+1iHbkE5pS9hROJGkUtCLXGh/fEu4TsA9ZvK9NzxMVClbsEPoqxk41pWJJW5l
+IjroKjh/NAO+jLYEdQEm0k46ktLUYwYXT66fyRJmolsLtzhzK8xA4Y0HD1WG
+ieQU+oYEXMygZNjo3GtdJvrUrcNZ2GwKN6e5d7ZHMVHQAnM4474xGL2QigqI
+Y6I192bbN+nG8Lv86JxUIhNZ81rJa/gZg7VHcEsswUTpB9ejTFSMQXBxyksn
+j4mo4n387Q+MIPVbeztuYqJHtONBC62GAP2flDyfMNFkg93KQrEhLNZTbom2
+MtHedd97mxINwTRQzS/0JRMJbB20TzcxBJ5fxXs03jKRaudw3cSgATS+bUma
++sBEX2Ti2poeGYBb4/CPrI9MNEeTMqnKNYDOsJ1dP6aY6Aq/UeSoswEE2Sup
+F88xEcqj8kjoGcD+I6aF1C9MlLh27lWorAEMirttYf9Geub4/S+8BvD//2dQ
+glJndcSSPvwfz2WTYA==
+ "]]},
+ {RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
+1:eJwt2Hk0Vd/7B3CZyVAyJdGERL4aDbHzkKFkjKsiJIpMmYcQ7j1XKPNMPkSI
+TBWVshtE5nLvjaQMyVSSMdGn+p3PWr+/znqtddb+Y5/9vJ9nn61O3pYu7Gxs
+bMJr2Nj+e8awxYTW/WThqtO7L9jkaEHoOMX74hILF9QaFvbUa4FXp7yz7DwL
+/0i5/fIcUwsoWS0msV9Z2EHAhP2NgDbIq3JvPTNI2jZquS1SG146EK84X7Jw
+3tnebnNPBGueUkWtElnYzq79cayyDlwOj6yal2PhY+637F0O68Ksf/Mjx20s
+7NJtLm5lqQvOHvzN3TIsfKH4rfQJF104bps2UC7BwqEFvig6XhekNcp4z/Gx
+cMuGT9O33unCk8XXTsxpJo50Xe5YG6gH/7rLSty/x8Q3GmxRduMRiDiNrwQA
+Ew+4mKgsRxnCZ9Pfm7YgJr7jEk40ZhqCsZ7Ww3ZNJm49e884rdIQJJUbZmX3
+MzFfVY2BX78h3Ptdd7ZdnomjvneNLO8xgsmCSj1ZASbm7t/Dt33cCE5M5PG0
+9TKwvvPlNVq2x2Cn/+VEaQ8G7hiLz9EINQHDXtPf8zk92Do5os5KwxICss7z
+Cj98gwMzlJMe3aVAmsqvovzW19j3B0s/Kc0W7KZrfcp/d2GHTvXdV945guCh
+9F+ihzpxrUzDV05DZxDkCGJvzWjHv8SOf+IdvABK8SN63K9b8Z01slGcuz0g
+89ox9utyr3DrRF+urtElmJYZDvOlNWMxgQ5nowxfcPT5s2f0aRN+mO7zivtQ
+AGzT3uSct/EFbrzjJ/GwIwjY2569GTZ7hkWDehgFN0Mho0NugWdzI4a2PWoT
+HuHQvNyChnof4e5xfynFlSugWhzyt/NoPTYejH1kaxoF6nqKDcYrd/FF9YWH
+bb7RsPqSxXzeVIVDSyU0hRKowJEp5nattApbmK0YiKVQQcCN8ocSX4X7NddU
+bcygwmbBdzunLatwwtyDNKl8KuhYD4SLf6rETfe6sv6tpAJ9bETBna0SN1za
+2nq4iwrrub9fFtWuwCgmR72OjwY7Dfl2XKgvxU8dejXnQmjQwiYF4nml2Pep
+8TXecBqca9hl3xxVirfwVSltjqRB/u7jWdtNSrH9zf2miE4DMdFEgeHREiy8
+Dv10SKEB+4jo0sn1JXjtJtoN2XIafAjd0nLMoxjrm5t7xvXRIHT/ntEVi2Is
+X/RA/eh7GkjMANtttWJcwH5hN9dHGliePafJw1GMc0TuXPf/RIM2w5Kqpuwi
+vLjRlGfPNxrUiypnar26iU1zYzpl2QlIrFJzVdlWiCOtt8t3KhKgsjirXsJV
+iPV6ds05KhPQrVHOJzNVgAVO+qvPqxAg2CxdIVhTgCv43x7g309A/MCamWnt
+AuywS/mFMCJAaH3WBOVePpb+X02vtwUBf14++2O+LRenOdmNhQQQoG2+r0Bn
+Kgc/LVsMzQ0iIGzgFqjW5OBcsXKXRyEErM7F0YRRDhb/a3TwSzgBP2Ss+btP
+ZeOcyeRSWToBM8FTYsbJmdiMc9vEu3QChpRFduuzpeHhTTxz4XcJMIrZMfi7
+PRVvD1JbL3CfgJqRg4n16am47mfFaEYdAdEZtnMKSqmYFnwu7+ZDAuTZbtXx
+U1KwoJ2eUQomwIOpht5UJGHv1NGxnjYC3u4+9v1qYBLO+ynG2NVBALpqVwCQ
+hFf8ppwjOwmQCWXnOl+ZiCfqiy9vfU2As0n6dSWOBPyP17dTh1gEzC405NdX
+xWGD1SM6XR8JeFE2xLbzSBw+GcTSmx0kIPUM57ns/ljcqrJlVHiYgIOvTBTC
+OGPx/gST+SOfCAjPGa6G0zF4tYypQx8nwNSMS+TedzpWOrxhXcIEAVs4d/nv
+IOhYNWwsIGWSgJeefuo8NQRuuW7HkfyFAH7gft7JRcMR5welXWYI+LC0azvK
+pWKJNo8Mi+8EVJabEdWqVKzAySrSnCXAXDT7aIptNL6cvhDMPk9AxoQSw6Y2
+Ei+Li3C6LRFgIF3U0vwoFFscNTyT/IsA+272qb7JEGyWt+yq9y8BAZFOa79I
+hGBVJw35edLFn7eaCwUG4Q8Ooff1/xDAUVnQT9nrj0UzbTc2s9FByoHtX9ez
+ftgB/yq3W0OHvesdZS4n+eLFWcvpWdJOAbLn/pm5hKn+huHCHHSIvKzV/9ra
+HY80nmLs4KJD9dCvzYv33LBfV+NAIelBvcdOkiKu+LeVSuombjpoC2hOO3Y7
+49wnnmu5eOjgcWlFlVA+h4cW33f4k85jPQy4HXcWp1sna4yQXtTw/jN63Q77
+RslI1/DSwZJ9Jkb52ClcdCs7SYSPDrXtHusDuCk4urik1of0h3qWkcAfU8y9
+89VPOX46ZBsybG8EGuEaXkLmMmnKu9deKt8Ba4QpznaS1plQOqEbtR1TpagZ
+59fSQdUmiDrmw4+cSyYvVpH2aPOLkzqjiugx6V/mSWs1IVl3bX2kb63y1UeA
+Dlf2gsD7l8ZIrfyN+x3SI28Kw3bIWyAtOYXMUdI7dIrdUittELXc5ZuhIB1a
+guSGj82dRr7y/JIBpC9Ul1DYD9ijqYqB6XzStIXUcbsnjmivTYN7M2nrRFah
+ur0TWs8dkzZJWl5J7IwomzMasNl+gVeIDj9arCVnC11QQqXP6A7Sr5wymB16
+F1C3ojUfIp31pzehdMwV8dfWvjtB2i1H4hg15iKKnnK3OE9a8+BJLgdFD2R/
+yM0vgDQ/I+uZZocnuv8mEUWRHvDsvyzu6Y0q0lvuxpLu5by+KSTmErqsvvQ6
+gTS23L1y/qQPilHkzEgiXVLQ1Wul6Ivccz9wJpJOnPG8r7vqi4SortJxpIO1
+hFJUO/zQ/cyUD/+t7xhX5S2T54/4ThjoB5I2emdqIuAZgA7NeVMukFaV/75r
+VTsQXfPNE7YmLemfyDspFISYtOveh0mvefG/8bdDQUibciJQnvQX4TdNTTXB
+yDpk0w5+0owzlwpro0KQq55oyBdy/yqMO0dOOYeiRgd365f/7bfGzm3shpeR
+O9tbyCFtr0BzKlcMQ4iSiDxIq4kN37QUCEey//Qba5Jex6E1ujoTjj7KLbpx
+kv4ym7m9qCcCcetuyW4nv7fpuAIjxDgSufY9UDImrfnRer7rSSTq1K5I5CKt
+wKKKbFOJQjc2PON6Qp4nthdDlu3ropG3u5viZtLTDwX9ZKKjkZtGQt8r8nz2
+Vx9K9V2IRo5CS1lepO/eyGRK9VIR+8h9Sg153vPTmhe8DGnoBbXkhDHp+PiF
+DU0PacgiaK3LJ7JenEPMrNxzCbRG2KOFk7SENc/bx44xiNvV/ZoUWY+cxw8s
+CTNikFUV80AGWa+zuufEnPWuIu8Xej8ESberPrUWkI9FUvrZjXNkvYcJBPXa
+fY1DVapj3nFkHrhy3PpRYxePIraaD4yT+WG9yhDn6o5HW/KzHQ+TVplUsams
+uYay9xg2fCbzZqRpvO93QAKyFH96n43Mo+4G0Z8WEwnoOK1tRZvMr4ZaXcmS
+k4kIb+uwDVoloN3MTLl0cxLSeXYiePAnAUXaFR5mbMlIw1tENoLMPymNF2Er
+6sloSO6CTd4iAUn7+68V+SSjFW3BmvoFsp8p8VQuf0pGMoJCL4fmCKBsPPft
+n+YUVBRiT+Ug85d3ScprNi4NcTF8WpLHCLDamuLV8zQNrf3VlEB8JqDQhM/7
+7mIaElyY/x0wSoBmybK3v306Wlx/lXF8hOxPNiyfn3sy0Oj8jAPjAwFvHl0P
+YOvPRJsmw2y0mQRIj3MGjghmoXUXE/GvHgLcRMICX+hmIYsZR1b9GwLY3S8G
+0e5koZwNnMLbuwnYL20YwhuZjRQ52pjMVgKyItjC1ynkIoUXeRqZjQR8Lg8K
+n7PNRaMlq8NbnhCwp28mnJGUix4GBOmWNpD79b+PEWmruYjShg+WPyDg3+FH
+kZLdeejfdN2Vq7UEOOr50bYE5KMtaxwSyosJEOVc0M8aKUDijy84UK8SoC5E
+F9H5U4CK+oczw8n+fkZy49CEVCGak3IT86cRUKJ8OFjNqhDdo/SOWkcSoGYd
+X97bUoi0r978Ok3OD6dLtguL3bmJuOVX093OE1BgZPUuObAYKS/VzRTrkP3Q
+cqJYI7UYGdBGRhXJ+WTKLtRnpLoY6XVq6VUcImCvTwH/nqlitD/Q3KDoIAFN
+2dNab2xvofH1DXRXcv4Z/0IrFIISdGl9psZRCQKUrtddjF9bhk6KPOjz/EID
+nW7CuFKhDC0XlOYmTdCAIkxRfq1XhgZjZDfWfKZBdPKPbyJhZUj4bITB2CAN
+3qer+eRMlyFlAYG0nUwaXM1/FHS76zYK5ZHXF31Mg8/VjbRXiRXojGtsYNxV
+cl5kNOdziFajE0dfGhyVooGscsuyjko1Cj7PPDomToMCosU8wqgayVjxdEds
+oMFN9VfsK2HVaCC4z6FcgAa38lvPz4xVo3nev4zRP1Sg1LlkTtvWoL75LMOR
+T1Swj3J16NtdizJ1I1fX3aaC50av73d67iLeL3aNWSpUMG27kAOO9eip2x0u
+Yb5oSKE7G+vffYQy+uSMv72PBM5tvLT4hSeovrjzZ9ThK3BDpqvoo/YztPRU
+YVNYSBh8uZvJWzn6HD3jUj5D6w8ByZj+vXN3mtC2XtrYMe4g+DkiPTxt04y+
+ERrXS/394XvFvp7Y1RbkwLE/rpLfF1rrnsfkPmtFYjyP736V9wZLA4vnzq7t
+qOOxnAHf6EXA4ief3dzXiZ4ekZrvrjgPQNnLEf2jC1mvm7bo+OEEgdJCbZK5
+rxFhWNVb2u4ABsmqu1Jq36ANO6VW4n+egvK+07V+9B5EWA7uHjayhpy3Xu/l
+bBjogciPh+9OWoCIaP616tMMlK/fpL35qAXEWnYhDXsGShAvXvLQsIDg10pF
+x10YyJ3bYHq3lAVQ2ibd/fwYyNIjyv/AB3MQaXT6/SyRgfZHlHylOJlDXDFl
+i10r+X7xZBj9mymE+qHzKRpMdGnfdGVohDH8ve8XM6TFRPEh0Ssi542B9qOs
+TFmHidrN+yufmBhDQsiGry0GTOSRXq1yZLMxFF6Z9P51gole5T++ua3xGLTG
+p4Q4ezHRPbWCSTG2YyBePH7tYBETMVKeLeakGME9VsK99wIslPT3banppD44
+1ZXLxK1jISvOv1rFPfogktESqyHKQr5yatsEH+vDJZs/DlmbWGjOX75aMkEf
+VN57ClB2sdD3t7OpYgf0oWzouEuPIQv1Omvl5tGPwI0v/BKt0Sw0Oub1PklN
+D453yEcH0VnofdbX65rbyftyhe43+Thy/SvKu34I6cFpz9AmIpmFTNK/zt4c
+1wXJ2SlvvQIWKkuooPZk6ELKUmsrbmShP2EuSiGrAND7eZ/Xcxaqv6FopDUB
+MFvP9s/mZhZaapjPX8cCMAtWDwjrZCGP1Me3pysBBH6VbtUcYCFpt5YubyeA
+JwNN16YGWego+lbWYAbg/mRoOesTC3VGiOmLawO0h0t0L0+xkCTrZM5fCYAQ
++30apd9YaPi7p851LoCdh82KKXMsNB4bHKW0oAPvZN2FuZdYqNLr54n3wzrw
+//83UPA1r6rsbh34P3zpEhM=
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 1.*^7},
+ Frame->True,
+ FrameLabel->{
+ FormBox["\"Time (\[Mu]s)\"", TraditionalForm],
+ FormBox[
+ "\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
+\\(2\\)]\\))\"", TraditionalForm]},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["case III", "Subsection"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{"0", " ", "2", "\[Pi]", " ", "0.01", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "3"], "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3.0", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalGamma]", "4"], "\[Rule]",
+ RowBox[{"2", "\[Pi]", " ", "3.0", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "1"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "1"}]], " ", "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"3", ",", "2"}]], "\[Rule]", ".5"}], ",",
+ RowBox[{
+ SubscriptBox["R",
+ RowBox[{"4", ",", "2"}]], " ", "\[Rule]", ".5"}], ",",
+ RowBox[{"\[Delta]1", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]2", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Delta]3", "\[Rule]", "0"}], ",",
+ RowBox[{"c", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox["10", "8"]}]}], ",",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{"2", " ", "3.", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"794.7", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "9"}]]}], ")"}], "2"],
+ SuperscriptBox["10", "15"], " ", "6", " ", "2", " ", "\[Pi]", " ",
+ RowBox[{
+ SuperscriptBox["10", "6"], "/",
+ RowBox[{"(",
+ RowBox[{"8.", "\[Pi]"}], ")"}]}]}]}], ",",
+ RowBox[{"t0", "\[Rule]",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], ",",
+ RowBox[{"tp", "\[Rule]",
+ RowBox[{"4.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
+ RowBox[{"3.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "2"], "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "3"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "3"], "\[Rule]",
+ RowBox[{"6.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "4"], "\[Rule]", " ",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "3"]}]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{"1.5", " ",
+ RowBox[{
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]], "/", "n"}]}]}]}], "}"}]}], ";"}]], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"alleqs1", "=",
+ RowBox[{"Expand", "@",
+ RowBox[{"Evaluate", "[",
+ RowBox[{"alleqs", "/.", "params"}], "]"}]}]}], ";"}], "\n",
+ RowBox[{
+ RowBox[{"sol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{"alleqs1", ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"15.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"TableForm", "[",
+ RowBox[{"allcountereqs1", "=",
+ RowBox[{"Expand", "@",
+ RowBox[{"Evaluate", "[",
+ RowBox[{"allcountereqs", "/.", "params"}], "]"}]}]}], "]"}],
+ ";"}], "\n",
+ RowBox[{
+ RowBox[{"countersol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{"allcountereqs1", ",", "allvars", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "15."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"15.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}]}], "Input"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "0"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "n"}]], "[", "t", "]"}], "2"]}],
+ "}"}], "/.",
+ RowBox[{"sol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "2", ",", "n"}]], "[", "t", "]"}], "2"], ",",
+ SuperscriptBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "4", ",", "0"}]], "[", "t", "]"}], "2"]}],
+ "}"}], "/.",
+ RowBox[{"countersol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"t", ",",
+ RowBox[{
+ RowBox[{"-", "5."}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], ",",
+ RowBox[{"5.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}], ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"PlotStyle", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"Black", ",", "Blue", ",", "Red", ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Blue", ",", "Dashed"}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Red", ",", "Dashed"}], "]"}]}], "}"}]}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}], ",",
+ RowBox[{"FrameLabel", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Time (\[Mu]s)\>\"", ",",
+ "\"\<Intensity (\!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \(2\
+\)]\))\>\""}], "}"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {GrayLevel[0], LineBox[CompressedData["
+1:eJwt2Gk0Vl0bB3ChRDJlTqYMhaT0lHHnStSLkIdbShIqHvM8l/sQGcqQEBKR
+MXOUaCNDyHwfSjwZKlFChmZ6z7vW++ms36e9197/67r2OlJ27mYXmJmYmLg3
+MDH97xvFFBVU853EDLzEW+WvAUHTNPd/VklsukHf6VGiBrh1yzlILJF4H9m0
+fbBEA2hp7SeiP5HYUeF257EJDZBT2SR19g2Jgzeq9f5loAmt564+Z20lMZPZ
+dP0uaS3Y0BjObx5P4pBTPLE9U9oQHBpWtiRLYot6r4uCQzqw6NNWZytNYpvU
+ocNm0zrg4MLR1itO4tajE4WZ33TA6EzyaLEQtT9eNpOzogBi6oWb7dlJ/DZn
+9+INW4CGlT47xhwDF2eu19YvAPx2lhB6WM3AF4SWSkNFdOHyaXzFFxhYqiLi
+jn2mHrwzXtsuiRh4+HfKQakKPTDU1XrcpcHAKRXa7p9b9EBY6cmixAEG7l4s
+HK/8pAfVazXnu+QYuIB+OPuTpj7MZJfqSnAy8MvNlq27x/Xh7w+ZbJ3Dg/hr
+4F6RVZXjsMsnOF7MZRAzaqW99VkM4diw8dpS+gBODPaWYss3Bd+0i5u5H/fj
+tek9/W7F5pCs/Cs3q6MPZ82pyvBttgLruUrP4rUevPaaNDMKtIGtmrd+8Wt2
+Y/tb8S5ux+xgK4s/c0dKFzYyF0sp9boAirGTupv6OvDtxq9m7ZpOkBpnwHxd
+9jmOiGrZocPnCnPiEyFeEW1YcCA5NSPGA2w91/e9bWzBjn0eGwnSC6S1tztk
+ijzDc0H+gTPsvsDc2dQ/YdKEjS+fqpzz94eUF7LLbDueYr630UPrw4HQ9q0d
+jQ/X4b++PwpXXwsGlbzAP93/qcXJxMoRxf2XQU139xPDH1W4YWOxhuCWMKg5
+NsM1/7EK+x3Mo3/jCoP9RgX2CWNVOGxErWOYLwyULGS3DjVW4dOPGo3iRcNA
+8pKUrU1kFT5QvOfPh91hwB4rsslzWxUW2q7ldPB4GLweZDdL2VOJ24SGaBrh
+YfCzlWQ0t5Th4p4/wn5LYcCSKuAUV1CG8y7tEalbDQNOJ9o6LbYM6/948vjH
+9zDYsfXVrjmzMixJG+vz/hMGOhajoYJTpfiuYpqqIScdIt9PyjszleJPfvKh
+V2XpwLtpIZhfuwT32oje2EGjg+irvbzjkiX4acvrOF4rOkgXe+QXsZbgNZ7p
+n8zWdDhgvNSPuovxj5ZV8Tfn6UBLWZV1OlOMj1o3nPV1pUOm3O++p4FFONHG
+zVUugg67jrHLXKotwPUr14quldOhnUkUBDML8MmkP90/K+lg/0TBpo1Oeep+
+3D8P6ZC1xyht54kCvKFxevRIHR0E+OM5J97mY7FCsfThZ3RgnuRfPcWbj5mS
+E+qjh+gwFiTZbuCShy+Ld84K/aBD0IF9b3+czMPcv/7c0/xFB6F5YCo6lIcL
+eFRHrNfoYHbeXoONJQ+7+5OPUzcQ0Hksv6zldi4eKOFUXGAnoJZfKVXr+T3s
+3yO/VUaUgPiyQ47K0jm4tPagx101ApRXFtXyN+bgpZsyomkaBPSqF7OLz2Zj
+8VLlsutaBGxtEyvZWpGNC4/vTnDXISB2dMP8nHY2DhcZE+M6TgAXb9oHWnUW
+NlOscaihEXAikyNaPygLS6t8Uwo5RUCcfKjCQcjCFZsWew6fJoAD2bkK9N3B
+yr7tt56eJWCTs9Iy42MmjtPxkrjpQMB6a9O6qXQGlm69o3LfkwBtU9Vsndl0
+fM36EJu6NwEho/dBpSIdn9ORKer0IeDnl5gIbpSOLRNbjCb9CfgqbsHRa3Ub
++2zT3vAxlID5gFkBw8RU/PTinyTbaALGlfj26DElYz/TDbJv7hBwPErmzVrX
+TbwiK+PyNYuAismD8bW3buKHLe4vt2QTQKSc+SKveBPLizYJK98jQI7pfg0H
+LQnrc0hpmOYT4MI4hPpLEvArlZk0jjIChvYYLFzzS8AVbUYLK5TRNetsgATM
+LyxlP1ZOgHgQ88aLpfE4oJaec6+SAIcTt64rstzAywqybpw1BCwuP8mqLYvB
+tXcPfDGvJ+BZ4TjTrqMxOOGrxiJPAwE3z7La3x6JxqXsOZu6KB98fkI+hDUa
+V9RJBKhiAkLTJ8rhdBRWluJ3eNtEgLHJRr7qhUg8FKvDf62ZAElWBR+Zq5HY
+s591ZPczAlpdvdXYKq7iGryW5dBC3Q9sau7eGIGjJny2PWojYGxVYSfKCMcK
+AhLnjrYTUFpscrVcJRzrO7Q29FI25b/9n6QzBO7uxw9ePycg5YPioGVlGB51
+7qX1dRLgmGl6oFM/DCuM+snrdRHgde+jku/jK5gw5mN6TLnON7RGg+syXlpQ
+7Uh+QYC+WG57W10QvhTjX63QQ4BNL/Psy5lA/ORMzkIkZd8wuy0fhQJxsvGU
+6QTlvHdSplx+/rgt+R4R00tAQwrdS/K+H36xWfLvUcrk8cnk/aQvThuvOL67
+jwCW0uwR2n4fzLuLJ7eBsug5pt+O573x3tVJNuZ+Avbz2ooHJ3jhkdGexKOU
+7Xwl7O/Oe+Dg0Q0CzZSD5K9crdzhgT9cM+P6RVm6+qlJ1G03XBrQq7R/gICw
+YK2RPgtnHOZjO5JKuXz8146VaiesbxRxqZ3yG916O2E+R1y5Ni+6RJmrMKhA
+y+Mi9uQuWhYdpPLOqTFn2+uAR8rqv+hQdvH4oXJVyR53lasIOFDOJB/7FsWc
+x9VxfDYRlFM8F30yBs7hgIsu3TmUV9Td199et8Z2rAa2DZTNmOejlAyssCT5
+SISkXNnlwuu7iYbzZ599n6HMc/NT+tNnZlj5T8DaT8pjteRxznVjLOk7I8/B
+IOD2scEzd/yOY04zyQBByrRXfW7KC4CTj6jMS1CWG0xnudJ3EDve3hUjR1nn
+g+LfR+g7sYKJqJECZRVL//D3nhzIg1nogCJll07vGNGzKqjwm8qR3ZSXCgIc
+vjtrIwGRYD8ZylotSMJZWw/Vfd08IEb5yn7gfN1qiAza50/yUZ7szwmRkTuJ
+5OzhBytlYvPO5VEnc6RrLPh8hdq/jE6e081SSyRdFl4/SbndX3bC4MtpVG+c
+PfyC8qXyfBrzXzYoNCdcuJpyxPLNaesGW7T3qR49lbJFPJmjZmOH5s/+4Qmk
+LKcocJafyQFtf9/53JLy13YL4cWcC+ikVeN9Vcpp68M3Ct47ovfWKS+nqPt0
+ShcyCI/6B21SLVespaxx8NTGc7tdUGL4+YJIyqOuI8GCru5ITm2zoATlYdbr
+2wOjPJAXhzr7BypP2GzPj4unPFGaaojMA8rx864Pj/z0QseC6xh7KAdocSWp
+vPBG/+5ZvfSRyq9tTJm7eKYPgnPtMnmUVeQWFH5q+6HAgGphbsqDZz1yKumB
+qIgn7/Mzql5KDLsnrRyCUGIyB8t5yhHqu6SZjwWjd3UPm391E3BIYOKeGWco
+0hW6qylP2XhafjDQMAw1c8XJ06h61fjXYqmnIQzFneqMG6HqW54M55NWpqNT
+Zd8yrSgzPRs36+IhUBsbd6NJBwFVd1IZosPhqACX8fBT/SIruW3Z7VgEciNW
+GCFUf4mNXd7W8jgCXbHjPTrVSvXDQBNz54yr6JzmlHwu1Y+ELNiG6m2j0M4d
+Mp9+U/0shNN/2PpTDKrf+6eOh+qPjiz3v1ZYx6LuDhndo0+o+/s5KLixNxbx
+WI8E+9RR821G2bK0Ig5JjbaudT2i8tMy/XLN9wZSKywxNX1IQK52iYsJUyL6
+cqv5TsMDqh+oPwv5oZaIXnnlnqovISDhwEhcrmci+iTc21VbTK2vyFb6bSoR
+GR3leJlbSNWDiP3nu21JSDro/h1aHgGbV0XdFmOSEfNnl9MSGQSYSyW5DTQm
+I3HFfYnrtwnIOcHuXrWSjKafw/LrNOo887+5+9jcQlky4pqxKVR9WJKe3/el
+oBiD5unORAL66677Mo2koprJGqGmKCpvl5lCeeQz0NjU/ZM3qfn4rtg/9MuZ
+DCR1Im1S2IOAfS/nQwcTMlB/ev2DDDcCuvb+ezn5Zwbqs6r/muZMwO+JujDh
+3kwUa9Xn6HWByo+ud4Skbxaa/HZkIYea1/ysy3ppk9lolWCeWKPmvxpXJJ/O
+ejaSV+lb26hJwFlhkfEPojlIUVOCdYs6AflKhwMOmeegw1VTvVv+ovJjEVs8
+3J6DsuxMQmeUCDidv5Nb4ME9lKTVeYRbjIDs4+avEv3ykIyFaYPodzq0mn3I
+U7+Zh8Ys2vY9W6XDrHWQ52R5HjpbR9ZcXKbDfs9sjn2zeWjlYeV8/jwdWm7P
+afWfuY+kTHj1Wd/TYfpjRA4X5KMCpbF7qgN0ULxe80/slkI046K/6FpAB53e
+q4al8oVoC89Lg/Y86n3HTVPq0y1EChct5rbfowOR+PUzX0ghSs8s42jMpMPr
+W4c80+cK0ZWty1PvEulwLavOv6inCGU3i/tUBNPhXfnTiOfxJWglN6HJ7AT1
+vhtsy2LhL0dV+ZVO0rNh4CritvBgoAoxss0TtgiGgXHnpXSwrUV+GXc8scxl
+SIp0MNSrqkOGxk3v0vlDgFV6c0TscgOaT5CIbVoKhDviPbn/ajehaUKjLjHB
+Hz5WpW4ufduMghJ3byPNfEE4amT/lwct6M7QslvQZy/4Pik2MWfZhkYG3Jz5
+WzxgoUR1IPpnO0r5A3s9Al2ho6Y5KqOpA/HbJypOnnECM/2TzQ6OXWgAaiVk
+By4AFjzVdE+1G33IV7skYGEHQNvPQnztQXbsQ/JxCTbgJ8bVKZzRhy6rLx0q
+i7YC/UQVhaTKfpR6uHrMqsscil+ervSOHECoIXps629TSB9yey1rOYj6rN33
+9aQZAh9/Vlz56UEkUsTB53DFEKLNepC6zSBaqhAO2HrREAL6FHONLgyiybii
+h6mqhkDrnHH29h5E8Y42PNF9BsD31G6tKX4QpfdXWr7iMICYPJqkdccgUtX6
+7bp44zgEeaOLSeoMlKr4b8G+F3rw56F31LgWAznt6+hPeKQHEV8LC5V0GEhN
+5MuJ9Vw9uBG47VO7PgPB/h0KrKF6kHNlxv3X3wwkvetd+ZO9etARmxTo4MZA
+S1WRL7tTj4Jg3nTcwVwGqu2KrDf30oVq8kb1a04S2XELPvIwAbCrKRaP4SGR
+oOp3D0NtAL6U9mh1fhKVcj+f+EsRwMNy/VzadhLN8l6rV2cDUH7tyklTIFEe
+O8Pkd6MOFI4bXRg4RiLt2oZ4hwM6cOcjh1AHQSIDDqsPa6YIjF7IEf6RJDJb
+sx8PVkHwu+TIZ7kYErWqbX8vyIPgtGtQy9VEEhk/ce/L7dMG4cVZd91sEqXF
+a4oKmWpD0mpHB35KomXasOffNC2A4Xeqbs0kKuremXP7kBYs1jLd3dFGoon2
+j7W/hLXAJEDNN6SbRHf1Zg22jWkC568CKY1Raj0Bb/Yb9prQMNoSN/uGRAWu
+Uucr9TTBuWH8W9oUiSZlRTgW5TWhK1So99ssieSuvdnYOKcBgTaq6gWfSYSP
+Nqia9GnArsMmebQvJOqPYHH6WakBryScuTetkojub3KzKVkD/v9/A6ksH8nO
+8deA/wL4ikvY
+ "]]},
+ {RGBColor[0, 0, 1], LineBox[CompressedData["
+1:eJwt2Hk0VuvbB3CzkoiEJETUyRDlZDi5jysZyhDiMUuGSsqYecgsQ5HhefZG
+MhOZq6PBHYlQVDwlGhAJKTIVRb/9rvX+tddn7T/uvfb+Xt91rb3D2cvcjY2F
+hWUbKwvL/10TWBJCbv9k4rpOaz/kbgYh4zSvs4tMfElG5j+vEDPwfCbnKjnH
+xJJNJUo1yWZAI9qNE78w8QL+/d662gzklLl2OHxg4jnEo2O9YAaPT8Q94XjM
+xAKr3I78MebA+jBGyCKVid/TsyMKKo9DaHhk9ZwsEzMYqOKMPA1mL7TddZJm
+4gvHQjgOHKKB6zmeth4JJs4W+/pQ2IYGRnaZbytEmPizVk6KYAINxDXK17ms
+Z+KemEPvF0Zp8GDhuXPfdB8+YvTD06vACn57SIrcaujDMo6FfHR5G4iwxRf9
+oQ8Libj84L9oD2Mmq9ukUB+2U7FMVCPtwVDnYGOXJnX/Cn+eb4M9iCrcm5VU
+7cPRdUdCZSbsoWH19skuuT6sF132t4+5A0zkV+lI8vZhwe3JWu17HOH451zu
+zte9OB4+nbo0dQJ2XwhNFT/Xiw03pP3RZJ4E/dcmq3PZLzF/blvbRpZT4E+c
+Wsff+AIPy+pkS1t5QKbSr6K8jufYJd47yjPDG+yn63wqVrvxhUfkwAbVC7Dx
+n6xfQv88w4rCrPNtOkGwkT2QrYPehed2VNf6RYaBfPKIDtfzDiz6qHJQpDMS
+GClH2S7LPsFc71I3rtjFwLTEcJhvbBvW/n1/tmdjPDj5rKmMPmzFos+luc2k
+E0Faa5tr7tZHWHBCIvymeAqwdTa/GD7WjCvf2pwVcUsF+lPZee7tTfhGdJ06
+YXwV2n60o6HXdzH+9CNpW2s6KBcH/3l25A5GjWWRzTqZoK7z1z3D5Xpc3fgx
+O+hKFtzWn+D7NlWP07fUt3VkZME+ozKXtHf1eM+yp6EwmQUKlrIbXz2sx1xu
+AQ43irJA6vQOJ8f4euyzVdaipjEL1idv5fLZXI9PVVQfU/+YBYO9683pinWY
+a9W0WGE/HVYeM/taWqvxmew9PJue0YGdscU9pawa9xf/Sr/8gg687rQ1WnI1
+9rTcs8D9ig7bN77ZPW1ejaMdVdXm39NB2/JtuPDHKpw8sz2uaIYO8Z9Gdnmw
+VGF1t3dn3QUZIMA1EyqkVYlDbpU+DbVkgNibvQJDUpWYvT/WIs2GAdIV3qU3
+OCrxge+6fgUODFA1mXuBnlXg3vc6Z++6MYBGX5R1t6vAihICnM3+DMiV+/28
+KfgGvhLzTk4uiwG79dfvPH2nDBM121gNXjKgnUUMhHPLsHyeyK+bTAa43Nvj
+2BZVhvHRkMd8bxiQp2hEyBiX4bAwvocdHxiwRSiVd3i0FFc86JYTnmYA24jQ
+orVAKb4eZxK1hYuAdyFS7UfPFeOUkisq19QICFFVGV02K8aDaconSU0CRL4B
+yw21YqwhvqyarkWA+UkXTW72Yix2Y6o1WIeATv3S6layCIuOTdlJHSPgjpAC
+4+CTQny9ysSuy42A1Gq1M0rSBXh3wNLspTQClBZm1Us5C7CKfLe8SQYBPRoV
+6yUm8/G60mBdfjoBG9vEKzfW5uNYSX3+uBwCkt+yfpvWyserWam9qJQAPgHi
+M60hD7PmvuqcvEeAcS5Pol5IHlY+HY3ONRGQsit8zwHIw5s/a4dMPSSABzmf
+3/L8Gu7YsBMGHxPA5aEw3zeVi5k5AmPxPQSsPW5eM5XOwUFB+mjzCAFapvvz
+tSezcZ/cTKDZKAFhb0tAuTYbt5haOCd/ImDle1IsP8rGoR2ZunOTBCxJWPL0
+2JB4XKdDPmWOgG9Bk1sMrzKw/HbfGzNsJAwpCCrqsmTiB9cS1b2kSDBI2Plh
+tSsDn62tF+OUJqF25EDqnawMfOTNA2mGDAnRdLvvu+QzsKXAm4IaORLkWEpu
+89DSsVGz0NF6BRLO9amhF5Vp2Nn93a1VNRJeKR6duRSQhhXEs8otNUhAl+zz
+AdKwmoVM4w1NEiRC2DhPVaViDlP73XpaJLgaZ12WZ7+CeYXvHDQ9RMLs/L28
+O9VJeEK9sKHckIRH5UMsuw8n4RM5vRKPjEjIcOBwIQcSsdS7mtx+YxIOPDHe
+FcaRiIMV9HqWjpEQnj1cA7YJeHJ5YpnTggSTY5yCDTPxeOdC5Jc/lKU49lzY
+GRePDWoTvixakvD4vJ86d20c7sjsE3ptRQIPcLU844zF7Nxqa6fsSHi3uEcG
+5cTgg7WbLMGehKqKY3E1yjGYe7PlHREHEkyFyCPpdtFY11qR3uhIAv2zfK9V
+XSR+6H+vqeskCWdyTVU79SIxzyeGdZwzCb6FUwr+jRdx763o+X9cSLjrH35b
+ky8ClzzV3X3NlQQ98aL2trsh+G+fbUl7T5Pg2MM22T8RjFk1uXc8oewf6bxh
+SiQYv8qo/2B7hoTisR2mfAGB2ENzojvAnYQH9ChfqZIA3DRw+M8aZabBSOY+
+pj9WrOG0ijlLAntV/gBt3wWcZeQcHOlBgtgJlt9nTvphXq9+nWXK+wScJELT
+fHFCmIuq5zkSnP0lXa5/88a2/4UlGJ0nITL04MBzSw8s5bthYdCThJqhX9sX
+GtwxX0riV1UvEj7o3HcWFTyDJWSqeZMpa/FqTjv1uGKTf1vvy3tTefFeVo5T
+cMG6KoWGAZRzmY3+N5JOYpYQDtYmygsaXmujl+0xmarxDvmQYM72LUHhqA2+
+3s3KFkK5ruucgD8XDTccVjeuo7wp40t20yNzHP9hoGmM8rs7TAPeNROs5jZ2
+XMiXBFK/1+5agAHWiqHxa1OmvXnuqTQD2Ld17+xpynK92ewXnx/Ai2neS8mU
+tT/LHz8UJYPV1cSkb1JWtgqM+eTDg6ZGlPw6KJ/r9EsSc1BGi7l1k8OU58qC
+XH96aKFQi9K4RcoHW5Gkh5Yu6mQK6HP5kXBxH/AOPjZE5l3Lipspj7woCNsp
+Z4YqW1w1xSlHr5OZf+tugYJ22Z7bQXmndrF7RpUVCjD42CpNuT1Qdvjod1t0
+xowLpCifrimlsf3tiASOvRjdSjl2PmPc/oETUlYyvMlP2TKVWaDu6IxC70dn
+s1KWk9/iIMTiitKKYqpnqOdbarcUnS1wQz987SYGKD9xpvc91TmNNtJFDZop
+E2uvr5R9OoP4bbq6Cym7Z4scjUk4i9ZNRAZHUdY8YM154q9z6ImJsaE9ZZ5e
+olnz6Xn0KQh09lN+e34gVPi8F6pQ8T7JRfk1x+VtwQneSGzn15JX1PfB5orL
+p6x90Mjgs00FlFO/nb91aMUX2UpssFWgHHSQL135qR+KkmCoT1N5cEqq9pLI
+vYDedA5rlVNWlpvZs6IVgPiLBZqEKIteSF03wReIig8pqrVReWN9tHf81VAg
+avPweuNDudfBu6AuKhh9fj2Q9pDKa6XhsxEb1xCk5GB63ppyrMZuaTb9UOS3
+W6d1msq32pbhQnPecHRP5dA7bsqb2A+OrnwLR/+1F12/Qs3D1CxDpuhlBEo1
+UXi/ibLJ+K7eYMNIlKJ49gk3NT+a7y3nuh9EosbYiAth1LztYsYISitFoQc9
+gbnT1DyyPBoy79oUjXSixxweUvNbf43RJ/Y6BmlNBt1UOkVCXmbbvKd+LBIe
+jzhw0Y2E5OT5za2NscioRVLrKdUPrsHHLDxy4tCYfya2pPpDxJL71X2nBPRx
+m3mKqhMJYbyBr+2/JCEdzpCerTZU/7CXLNXaJ6Mblx9qSFtT+VjpFebsSUbs
+F2t2yVF9pzShZFVVm4L0atmuSFF9ONI63r/qfwXNp45lDZmSUKRVee4Yy1Vk
+OfNhR4I+1Rcaj8KW1a8iga6X7AZ6JKSpDqQU+VxFcUvtvhy61Pny3FU/Pl5F
+L74FrHhRfU7b6vL1els6mi1zfSxA9f26RTHP2aRMVDT+YyRShQSLHemeLx9m
+ojXRvVu3KJNQYLzeq34hE3WHBYeUKFHvs/SH1wXHLLS0CTfdk6fmz4rp81OF
+jkzkfa3/kyXhxd3L/iwDDFTAe/vcsigJ4uMcASMbCSQh2ZJmKkLlVzAs4NEh
+AqW2iE8WbSGBzeNsYOxNAnFXeGn8K0iCqrh+8LpIEoXs8vQw2EDlP4IlfNOu
+HLRDd6y65DcBYxWB4d/tcpDR5Ff35hUCVPq/hfem5SCzfnvX/p8EdO19H5G5
+koO0nI3FVhYI+D18N1K0Jxe55b3NE/xKgJOOX6yUfx6StDWUvvqOACGOeV1i
+JB9dM/wZ1dNIgDpfvKD2Wj6aVNF4qX2HAAfRrUOfxQpQlXnQeHUDAaUK/wap
+WRSg98d53SOqCVCzTK543V6AGjQvLk8VEWBbKsO/5WYhItutC39dJiDfwOLN
+1YBi5Ml5fxvXCQIem38u1sgoRlUnR1UW7AiYtA/xGakpRvP8tdofrAnY55PP
+ozJZjMICOkxKzQloJacPvrArQX8flrXj0iNgfCq2gA9KkUPWZDm3AgHyl2+f
+Td5QjmA9+4TYIgO0e+IMq3aVo8ON/Us536n9kZ+m8FynHH0I4DPe+o0B0VeX
+vgqGlaM9xav96z4zYDBLzSd7uhyd9I4vvE/th5fy7gbe6L6B+GVdR3zuM2Cs
+pin2SWolsug++2FvBLU/9rblsQvVoBzZacezy3SQVGj/oa1Ugw67/D5is0iH
+/Lh20wiDGrSbXdtb9zsdCtWfsC2H1SD3wxn+WybpUJLXcerbpxqktqc/K/MN
+HWi33RjTdrUox0ipZdN/dHCMOnOiX7EOKXGwpm3wpcP5rZ4zN1/Wo9IXc1M2
+w1lg0nk6G5zuILcMzsv/xmVCeryroW79XXS+ajttVDoDOKTXxSbPP0AiwUk7
+UxquwjWJ7qL3Ws2oNXhSflwkDabqGeuqRluQlsCgPNvuyyCaMLDv+81WJJ0U
+EtMzkQg/R8SHp63akPFsZ6TAz3iYqdz/MnGlHWntfKorqhYLHbdbEnKaO9DP
+XaJPQ9yjwFzPrMX1TBd6qpr/58lqOGBh6+bC/c+Q4cV+skUzGIC2jz16qRsN
+nBh9LM3nDwHifJ2iOc/R6TT9PoNcH9C7qrwnve4F2uzpw5J96xxU9NvW+cW/
+RAzT4vT84NOQ/cpzUNaqFw3N8YceEnEBQaG8lBrbXhRGfzXWyukCiebdSMOx
+F7XuV18yW3CGoOfyRUZuvSha7tRKxktnoHVOePj59aJ/na3mqlOcQbDJebWZ
+WpVbjMpm/uF0hqRimpR9Ry9ysvYjU/44QYgfOpWu0YdiShJbyb2O8OeWX8LQ
+wT4U1lIYlCjkCLFL5eUK2n1Iy5H9WcqyA1wJ3vylXa8PfY8y+Kun1QEKLk54
+/Treh0zu/+rVtHGAjuT0YFfPPuTTmPi4IcEehIvHUw4U9aF+ZRb7j3O20MC8
+0jDIy0S2Izu+/MViDc63KySSNjGRTNzoie2frUCQ3p6oIcREbyMvn5TrsQJv
+q7UTxDYmUjuR1B+UawVKg+d5aXuYqE01U1pC0wrKh4zcXuoz0cG1I58cg2lw
+bYpHpCOaiRTXtXif4LYEo6dy0YHxTPTFvSTry6wF/K489FUuiYlup0ZXJw9a
+gO35kNa4q0wUESuUxF1tAaKzk146+Ux0z2AxadrSAtIXOzpwExONIImnTjeO
+A7we2+/ZwkQ2aWGmcpnHYfYOy/XtbUzkokLtexHH4ViQun/YMyYqPvy2ZNLi
+OPD+Ktuh+ZaJ9NaG6wpZj8ODt60pkx+Y6Jr79u0sX83B48HQD+IjE/2Y/mjo
+/cYcusJFen5MMpGya1jLpRpzCHbcr1H2lYl8loRnlHPMYfe/x4pp35lI/N2T
+qi/x5vBG0oOfa5GJEjz+zDb6msP//59B3Mr7bxKO5vA/Nt6KRg==
+ "]]},
+ {RGBColor[1, 0, 0], LineBox[CompressedData["
+1:eJwt2Hk0Vd/7B/AbypBS5sqUTEWS+oSweSjKUIgrs5BIyJwpQ4ZQZu45SESI
+jM2qHYmQqXvvR6SSkuIjEalo+J3vWr+/znqtdc7aZ+3zPO9nr7PZzd/qOAeN
+Rlu/gkb73zWZlhxx6wcb69MrPmlKWkDEBN3/5Dc2Lk5JrbDabgF+PQoe0l/Z
+2N17cipc1wLoRId5yn9sPCB2RHnOyQIU1FZtdnrDxofdg1POXbaAJy6JT7me
+sHFUdCnWk7eEFY/OCVtnsPFg/WZxW20riIyOrfsqz8bdUvwtPLnWMBvcfs9V
+lo2/uq7XD71mDR6n+Nr7pNi4zjXfeBFbg5lD7ki1GBvHdeRKqU5Zg4RWFY87
+LxvvERwyPgs28GCh3401zcLo4s+Qmnkb+OUjLXbzBgt7hmqOZ3nawll7HBMC
+LBy6ePTvwnl7GD/0e5MMYuEZbZOsklJ7MDXUudu9l4XvPox479xsD+IqzbPS
+u1l41+fieaFpe7jx+9axbgUWJo7R5lwtHOBTSa2hND8LXywWeJMh4QhHPhZx
+dw0ysdOte1tC2pxAKTgyQ+IUE580krxwq8IVGlrVJ194MbFZSsVn3VuuoCUw
+ZZBznInVX1rEDbS5gkn10UVeFyYefJO2T3jMFU69/cfpuyUTX+m6WisicQwa
+zGa3MTWYOPDl4ABn7jHQlD/ekczJxB7ZM0/q09zAePDQ768Fz3F0V+R520IP
+CCE8eQTuDuBTfFYnrjd4Q67qcllxZz/eWV6Qug/5g+N0Y0D1715s9Ouj2Z8N
+QbBGO29ZWLsHx6E4uVLOMFjDGcbRmd+NA2etWyckIkE5bcxwVX8nVis1P/6K
+KxYYF0w4Lso/xQdzBz0+JsfDtNTbqMCEdpydFzCippIIrgF/dr5/1IZHzxfE
+cP9zHmR1N3kUbXiMA2QOFgkrpQFHV8vA28Mt2NjPtwZ80yH/mfw8t+RD/GZz
+1okWZia0f+9Ao4P3cFX5rM64aTaolYf/7Tl4G/fpVfiFsHJA03Brs+nPJqzF
+evIsWDEPlp6wWa1tdTiE2/LL6sB84GSIeF+orMPrNn6zfByaD/ze9D/0tDqs
+Lh51NyQyHyTXDClNW9Vhr1LP86yEfNC3GYkWfVeLDdaqLJ5k5EPShzFFH1ot
+DhwhpLgf5MP6VV8ihXVr8A7Fta4fOBigZMwrd+J2JQ7Xf/S1JYkBHbSNIFpU
+iSWS9jt5pDLAvXmbc3tcJdaR0r3Dlc6A4u1mxBbzSnzuQLO6Th4DRIQz+N++
+r8A3mcXiSWUM4BgT/nZ0fQWO6Ks2TnjEgFcRMh0mp8ox74ncfTLfGBCxe+f7
+n5blWP++fJPzDwaIzQDtmkY5zppLeUsuM8DqmPtebs5y3Jt5MGIVBwFdxhV1
+bWQZlo/Xjry7loDbwioMnadXcHFdTNxZRQIy6jS8VGVLcQin1q4UOgGqC7Oa
+FStLsca2VZOkHQF9WtW8UpMluLhPrbDCkYA17RI1axpK8P0nvz7fcCMgbWTF
+zLRuCXZe2iVd7EfA2vXER/qNYhxish3qEwn486Tlj4VsIQ4zA+17DQToWuwq
+0Z8swK2no2yNbhAQNXIV1BoK8KDUZd3+WwQszaUmCKACzFes585uJmBRyoav
+z47EXq27vtU8IWDmzKSIaRYDT3wnIeMFAaMqgtv303IxxxY1WeklAg4ky735
+3Z2Dxx+WHVrxi4CGsT0Zt/Ny8MCiWdPobwLi8x3mFJVzsPKCqETWChIUaFdv
+8dGz8btVDPcOHhJOsTTQQE0m3nMvUiRClIR/t5t8OR+aiXcOqB2VFicBnXcs
+AcjESwZD7S0bSJCK4FjpWZuBq1VXS/+QIMHDPO+iMmc63tGddlNzCwmz883F
+t+tSscG4zDPaDhIeV43SlPal4lzVA55eaiTkOHG5k8MpuKzwp0zPThL2PDVX
+jOJKwR9U9b4m7yYhuuBtPdgn4zdBHnMDWiTwwarWnpUJOMA7qLfSkIRX37Zt
+QYXncEy5wPrn+0iorT6cWK92DjserPVe3E+ChTB5MNshHrsUe9v+c4CE/I/K
+TNvGWPxAJF4owYwEI4myjvZ7ETiAY3evuzUJzn0cky8+hWOl8Uq7gzYkhMS6
+rZ4SC8eB5LiwMp2E8vHNFmtDw3Ci43PR97YkcNaWDNPVgzGapxvIO5Cw0YX2
+y+tYEL7DP4WmKauvd5WKzAzEPgfSveodSXALkXa/PHMar+hDBtucSYiN1Bnu
+t/HB283HeL+6klA/uiy5cMMb21wmvAuOkfDG8L6buKAXnvr5dgG5kaDLv3fa
+tc8DX0EhF6PcSVjQ8v/z/qIj1vwq8LjrOAlWHDPJKiZ2WNS5NvyIJwmN3afW
+h6yiYzv7HIdhyq9usw/w/zmEDQ5dvTR8ggT9j8pHDOK24PXj3GLXvUlQsw07
+9yGAD7VH8UmKnaTqoSsodaOTGhoa3md2lrJOG5L20d2Pwrgm5cGHhBh14H/5
+xBSx1m0YKKI8NlAaJadgiUxd1pQtUJbTL/fOqbVFBuyhx8QpEjrC5N+azNmj
+lTujBT5QPlFfQef4xxkF68QmbPclIWE+Z8LxgSva+qh7cyBlmwx2qaazG+py
+NfrYRFlBWcRJmOaBuKpes79QXuywEZ8tPY4KlyKnlPxIIP4Mpld+8ELuN2Mu
+ZlD2LhAzOZd8El0yaNn4kPLePUdXumw9hay24f4JynxMomXvM180qeJ9nd+f
+hBHf4UhRX3/0c6qxQZXyINfFTeHJp5HFeMorM8rYavtPz6MB6GvY+x0nKFeU
+9A5abw1EW8cbq6MpZ8z43jRYCkTRRpNmmZTP6KzNVnsWhJ4WnhW9TNk1tc5f
+qigYbWs5wV1N+cDQIXN+3xAk7V8o3UhZTeHLtiXdUHTGcL3LTcriwRk8n9aG
+Ic87re03KK94vGPi39EwFC1XcaSe8pTAQFtbwxnU3HaXp5Iy0+l0aWNcOEqr
+XRgvoFxj2jNm5xGB5GQfuqRQTtBSkuUwjkSHHX2PBFF2Vkxwq94ahbTzOFqO
+UtYQeXvFij8a1WpHXtWivI5T5/3STDRavTDIKfq/9WYZW8qen0UehOjIZ2r/
+2t7Mu5vejEE+mjrKrZQPTSgyw01jUd4G04X/7f/e1zZfex/EIv47xnvsKSuy
+zwnKqsahh60ac9KUhZ81qodejkNeMrLyY9T3pD0etepeF49KvqxlXqI8fXdN
+kFR8PBqI4/5hQ3m4XjsncD6eqi9RBi/lpksM1sbBc4hHuVLfnaqn4tz2eT/j
+BFSmsc+Ul3Ja2rxQ290EdKhne381VY8e4YetfQoTUV9gsN5bqp4tT0cHP+JP
+QhF8v5WCKaMTNblCZ5OQYI9QCidlMRvuf++7JiNs4lcnTPUHl9k/3wSYyWjZ
+JDQ434vKNwN3EQ/D84i2nNskRLlb7ZENv0IKerfzOkGj+iuKP2zQ8b9U1Pz0
+kli5BwlenFcXGxzTkGBZ3bUVlG2WmKIr+9JQ/ZLMHXuqn1U/qdrWNlxA58wn
+9v+l+n+sbeLF75B05NXsoCfoQkJfs/APy4/pqMF86K4plR/NjQbiFUczUFSn
+eWOsE7X+4cMqlZKZqKd/5ebXVP6U6dacOkzLQv9tl+R1PUrlk9bjqJ+aWai1
+/llyCJVfmbuHL5QFZCG7WnpKEpVvUcrctd/fZaEMLz6xQioP6RvcP19uz0Yb
+JI77pFuQwPNto99sai7y4a30LzYmwXpztt/zR7mIqZUzF2tEQqk5r3/TQi4S
+P2OU7ULl796K7/7Bznlo9PKHneupvD5lyw74sTMfxd0+/X0/ImHg3sUQ2jAD
+hcfM8i7uIkFigit0bA2Bzi12NxWoU/0rGBX62IBAOu9c47Wp+cDhczIs4TqB
+lhdfMgJUSdgtYRzOE0uiNNVf1fVKVP+fpUWvUyxEUazT00HUPBqvDouecyhE
+I8UiBiMbSdj5YiaamVmIJjJNniJqfnXveH02d6kQ9cTedVsSIeHX23ux4n1F
+qExOasZQgOpXw6AEmZBixFTUd9xMzUthrvn9xFgJcmu95CrwjgDNtUmC+n9K
+UEpBOJ05SoCT+IbRjxtL0RW6wXLmawIqVPTOaFiXIlPLX/QVwwRo2KRVD3aU
+ogrnn1F1/QTYV2wRELl+BWksNNzSfkBAyQHroazQcvSoRahcOZuAJ1Yfy7Vy
+ytH7/doKJzIImHSMCBirL0cuDuYJxRcIUA8o4ds5WY6yVgu9pCUT0EZO6ww4
+XEVJL5JEciMJmJhKKF0LFei5iN7GRXcClC/eOpm2ugrZBMr+btpJgH5fommt
+YhVaE1S/J0qVALoAXaXfsArx9BpTN1PnhazFz4JRVUh0PHqkRY6Al3kaAQXT
+VUg5xpnMEiPgfPG9sGu915DcJdWG6F8MGK9/mPA0owbtYUraprdR5z1mezGn
+cD3awPnoD6cxA6RVOr7rq9ajn+IHNqkaMqAkscPi7IF6ZKbYbmmjx4Armk85
+fkbVI2+vKKFCDQZcLe70nPlQj85vktjIpcQA+q3jjGmHBvS4bNsdcx4GOMd5
+ubzY3og2FSzrdXXkg+8Gvy/XnzchsmlterV2PhzqOlEArreRvr/ck5bpXMhO
+8jDd33QPvRhh6a3MyQEuWZ6EtPkHKC7QZVfQ1my4JNVb9lq3BeklLzfLZGXC
+VBODp/Z9K/pT+LowfVM6iCcPq89db0N/zZQ8Tw+lwo8xibfTtu1ots2y6P5o
+Mnyp2fU8ZakD7ZO8h0uFEqHzVmtyYUsn0vxeclVKIx6sjCxbPby6kWGiaT89
+PAaw6NGWK7t60PzCSlX1rAgAujpn/GIv4pa6LbqEQiFUYm2XeGE/OugrW6Zf
+HQhGWWrbshsH0NVJMw5I9oPqF/aNQUnPUUalG3FxtTcU/Ov3Ut6WieZLp3VD
+/TxAULj4Qr09EwVqN1txOXpAilUv0nJmovtd/mGXD3rAmX7lMrPjTMSWOv3q
+l5wH0Ls++QQFMVHOhbLkI6/cQfCh2++WDCYS/Hdo0cfcHVLL6TKOnUy0bVqj
+QEbLDSKCkGe2Fgvxj1yYs/7HFf7eDEoe1WGhOSGa9wpFV0hYrKpS0WchvyTJ
+VXfFXSE9XOi/DiMWevGsBCX/cIHSmE/+y0dY6DC3hGZVsgt0pmWHe/ixUNLf
+o73XrzmDaPnEhT1lLGSrMvQ+8pcj3GCn33jJz0ZBeUHrREbswO1WtVTqOjYy
+Vn3kG9xiB4L5HSlawmzU9traaOqqHZy2/eNCbGKjon7ang0BdqD60pefvo2N
+3jkGVcXz2EHVqNnx58Zs5Czod/2M9lG4NMUn1hnPRtMNUp5EIx3MninEhyWx
+kRNfcUIdSYdfNQafFVLZyEXqYMpwHB3sfSPaErPYKNHwkJCfFR3EZyf9DUuo
+5z98781YsIHsb52d+CEb/f1e0VKtYwMwOL7Lr5WNPBeS1HgVbGD2Nu2yZDvl
+gzM1kQI2cPiMZkhUDxv1FHHmFb2zBv7lys17R9iod/fTNz0p1vBgpO3C5Bs2
+OiFtatcdZA0+D0a/E+/YaKRuVcyIkzV0R4v1fZ9kI8OpPUWa6tYQ7rxLq/Iz
+G910eBCZIGENSnqHy+lzbJTxt2Dw/SprGJL2EVj1jXrf6Xcl9Lkj8P//P5C1
+VWXfq5Ej8H8uDy9L
+ "]]},
+ {RGBColor[0, 0, 1], Dashing[{Small, Small}], LineBox[CompressedData["
+1:eJwt2Hk0Ff//B/AbQlKWiCSJLCGhskTveqWQily5ZN9ahCRb1xZZQ1ni3hnk
+Q4TIWrTpXQpJIu6kRSUtlGSNdn3nd87vrzmPP+bMnJnX8zmvM6s8A5gH+BgM
+huw8BuP/jkmMpPCGHxRW6GzW+GNgA+FDrIAjMxTegNfx8e20gaOdqt4rpyi8
+a5kp31JHG2ARbXtOf6FwzlxWweFIG1DVEVzl8obCzpYLDW8020CLW8IDgRYK
+n1x3iS1mzYR5d+Kk9qVTOMn5ldbjYFuIiIqpnlKhcF3eQxQ3ZgcTwa033JUo
+/KfEWl9uPgu8/URauxQoTOG1IS3LWbDbKbu/QobC78i1P5g7WSBvVC7stYDC
+Gbm3XPdfZEHTt25P3igP/9fAFljqYQ9/fFfKXL3Cw8pa+xnnhx0g2hGfDAEe
+FiWv1gevd4YPVn+XKyIe1ql6scljjzPsMjW53rGJh8snoqQ9DjmDrNbNiZUb
+ePiNlupwbp4zXPnb4NGhysO+Pz3mvgu4wKfCKtOVojw8eTN0iXu/C9gO5ws9
+7OvFgbG/29dw3UA9OCJd3q8Xd71ljXmVeoB5n9XfqdwenKzSZGj58ACEEAeF
+xa4/wfV/c73zpX0hW/t3cUF7N97R1HhY0v8YOI/WBVb8fYytrvmbmgsFwyLj
+nN9Sxp04V7RFXkH8BCziD+Nr53TgVOHdBJhFgmbqoKlgdzsOK2SJepXHADfN
+ku+MygNcu5DhOmMQB6MKbyOPx7fi28MvEhqGEsA9cE73/Z37OPjLQoFVP5JB
+afNy7/xl97BhvEnL9Hgq8D28++St9V1sKP43dL1+OnAeqUwLrbiNAwM/7HHf
+mAmt39vQQN8N3G4aaZBQkQU6Jex/nTsbsXJTyeO1mtlgaLrm5q6f9Tj5qOGK
+naE58KuF4jXfr8Z3lLb2XLnKAX6utE9aWTXOsFpTsfEGB0R9WHOs1Gp8pMDJ
+++ptDqxY9Fx9lFmNG2d3B5W3cWCrXX/U0ndV+N5Xq5tHnnMg8eOgmi+jCg9L
+un20+80BCcHxCKnNlVhNQze5EXFB7vk6iQHFSqzcIS/2ZBsXlCqOlV4SqMS3
+buWsHTLjwgarqSeoswLHBkmpC1tzgcWZUfFxqsAGGSeeKrlxIV/1T/dt9iW8
+Fn0KqY/mgrr5gtWHGsuwXLYyqX2LC20MOViaX4YbU1erkZgLXjc1XFtjy/D1
+kzVnGPe4ULB2N6G8pwznzmi8aW3ngrRUuujb96U4f/VOD40+LvANSs04SJTi
+QANbzv4JLrwKV2yz9CvByZ0+wmZKBIRv0H3/06YEV/sIVVuoECAzBoxLBiU4
+TMznt7k6AUwPr01C/CVYak18kok2AQ/NS6vvk8W47lyq8V8jAhqltLgmDy7g
+nbdY7f17CUivNjisrVSEbaz+5QtEEqD9bcKwdH4RntYqM+qJJqDLqGKBwudC
+HPDvfBMZS8CiVvnKRbWF+K1ZZYBCEgGp/fPGRjcXYg3R1x6zmQQsliCGWVcK
+sO68ZP2BUgL25IucNgsvwLHHF6X5XCIgTS1KQx8KsAVTvm68kgAR5Okv3X0e
+L1hk7j1eS4Cgr9Y0byQfH6+Xt2i6ScBcy925vUp5OO5gIC/lMQGb964v3Po5
+F+f49Ub2dBMQ2X8RdGpzsUT+9MCSXgJ+TabEi6FcfClfrSu1j4BZBTuRrv0k
+rnt9SMVigICxE5+ld2Vy8ZewLXmT4wQMaEmu3cHIxsak7a25RSRYJK1+87fj
+HPYVp57li5FQO6if3phzDt8sQDIGEiSc4jhNqmmew4nRMvzuUiSoMi42iLCy
+sNKZk9lxciT48QzQk8oM/GXAWFpClYSnay3Hk0MzsKSfHzNQjQSU7FwIkIFP
+vppX9VidBIVwvvkHq9Jx/uWF18M1SfDek3NGk/8s3t9UIF2qQ8LE9M2CxuoU
+bHaqKxA2kXCvfIChvj0FB+p3gZcxCedcBLzIF6dxeoKTaqwJCfoP9qhFCpzG
+PhnCmnWIhKjctzXgmIQj9LZJvdtGgpX1fMkr44k4eScK/2BKgqKARvDqhETs
+11g/8W47CS3+QYZCtQnYR33hIsqMBBEQbO6cH4+novtnEi1JeDWjoYzy4rDf
+n289PrtIqKqwTqjRicOTFZU3LXaTsFeK3JnldAp/c5eq/bWHBM6wZq99XQx+
++4mhsM6GhMP5ezc8NIvBC0CTOUX7+IURrZDrJ7GfNjO9jknCjZCohk2Lo/Gx
+qT6l1ftIMJMvbmu9EY7TRq9deMEiwbWL7/OzT2z86/jwENuehJAYz4UjMmxc
+2WfpsNSBhJIPq/YuDg3D9VPKzab7SWjixB5XvBiKPbSfXaNoUxaD2XpUCPa2
+Mnrp4UgCf1XhC5ZeMA5sOFt4zIkEOTfGn8MeQXiHe5vpFG09CXeFiIzj2Ofa
+RoljziR4hqz0+m/sGG6u2rPG3YWEmAiTF912vthhKmu7pBsJNQO/V3y74oNF
+19WvC6H9xvSWp6zkYcyW276Nor1ZdNOoe5c3jjjW/CrRnZ6XYz91ErS8cFBx
+gfdL2vnU9ZBLKR64yT5ziYYHCd+MAuben3HG/p1NQ7dpM/nGkrQs9+OAU79E
++DxJqOvwkwgRZOH+EnvWNtri577k3r7HxHcHnrdH037VSFmIzlnhrDtxntdo
+k+a9TudDLbBinavyKG3W8+6j2uOAY+cFLlzhRc9zby7/yW59LPzmnpwl7a3D
+mrbbYpWx7j4XmyDaOvZhcR8DRRBpY1lD0PZ7GJQi56KDhouzN9ykPVV2wvuH
+72b06If54DPaJvfRSt/NO1D/62MNk7RP6oHoy5ZdiLgrXyfkTcLgk6LI1ao2
+iDW2n1pG+5Sw8nS/zz6knW2wUp326q0lPueq7NEEbs3Uo90WpvLWctIRSTtJ
+axnRPlRTyuLb6IqqNxiOGdOOnz435Nzkjhy+b32+ibZdOlVk6OqJ1mmbjmyk
+raop7SLF8EbY1Hb1WtqzbXayE0UH0OfYxERF2g88ObxHpofQiMS0uDhtYq7v
+bNnHw8j4T8393/T9++TKWMYlHUFn1Z8WvKe9Sd9hvtsaP3TVJeLCA9oivcTd
+TY/8UR40dZXR7vd/EbHUPwDp7q9XjqfdJ3BmOTvpGPISZhc508bMtT8POgQi
+4SwtC13a6WP+V7f9Oo4253aLd9Pv54TJ4iydR0Eo9cdvPYK2e0p1gEJ+MLo8
+cTbahbaO6rjGr82hSP+fb9Yrej5kg9OFPy0OQ/4jPx05tOfdWzf0dCAMjcuG
+7tlNu9flWFFdLBuZneiovUzPW+WuzsH93uEo5sKWemva8UbqSnzmEUi4ME9n
+jJ5XA+m3F5iiUUjtPa9kBW1xfpP3v8ai0DvxZXnVriSMTHCVi3ui0c/BpWLG
+tK2G1HrZu2KQY/DyQDM6H5te2009bopBb65nu7XS+VGj4iSVtGORYFll5xba
+jHsDzA7xU6jzeomyGp23+vNcnlxfHBpwLX10h85zQXbr9FHzeGRjMNwgRzs1
+dXrJ/evx6ALzoWIgnX9vtvU+37wENPzmNFuc7gcZO6Gnt9yTUKbyF7TMlgSB
+3RtnxHqTUFySvP5eul8mtnlJe5smoyuuW2pP0f3ToXPHTlT1NHLXI7RfWpMQ
+KRrW5/wlBelSGc62dJ8d5r84W+uciiT6twQfpPvO7lfv0vldqejpyvkSIXQf
+an/Stq+qTUP49aVn8Rb0PN8fevY35CxqlCi6fJTu0+LNlX7WjEzUlSkr50f3
+tZzRvcifhplIdFHHXQO6zzM2vEgrDsxEDsmNs3OG9PU1haq+v8tElpoeS2L0
+6Xwu8/r6X2sWMrm1SnWPLgnCM3JHJ1Kykc4r7YNL6O/LvlVZR3vuZKO93BtP
+61aTULRnQUD9t2yUu4U8vluZfv6l3wOCXXOQo7e8QaginVd7KvCHLgelN7XM
+5dHfqyc3zoQwXnBRc8Z3Nd3FJMgPCYQOLiIQ605Zc5YoPe+SkaH3thEo6bZS
+9oQICXy+R8LiLxOo5WPQUKEQCRvkzdnCMSRisdPsKAadl2hGlLhaHlrgQwgn
+TRHwoSIsatIpD7XELEq5PEGA7rOxqN6MPFTwj7u3a4yAjnWvo7N/5SGJk/K1
+gl8I+PP2RoxsVz5yF3LutnxPgLtpULxiSAFayhbbsYpHgJTA9A5isBC1ny9v
+FKX3BcPFiZJb5wrRvHrZ6pQqAlxklw0MyxUhGceBgwL0flGqteWEwb4iFDdt
+p/TlIgEGdqkVfW1FqODhwZGEPAIcS5XFpC9fQLHdOxZPJRBQaLHveWZoCXJk
+G9jU2BPQwhwuMTpXgta8kfEo30fAZ+fwwMGaEiRRYOt13oYAvcBCEd3PJYhX
+abIjYhcB98lRkydOF9E9+ZJKwS0EDI3EFy2GUpTG1fNzofc1zTMNR1IXlqOx
+I45qS8e5sLUrYVeVWjnKcnRXKvpC75tiLK1u03IkdHP4kPonLpzKnP0qGVmO
+6gzFXmoOcuFljkFg7mg52mgwmy7I40JywY2wS48voXkBf76KNnLhQ83t+Afp
+lUhDN3f6CJveN3tbC/ilapBsfpjayxkOrNRq+75VuwblFVRc6pnkQGFC295o
+ixokVuzp1vaVAxcMH/D9jKxBJrP/fMs+cuBiQfvBsY816OB2MLR4ygFWwwHu
+qFMt8uTMCAjS+7pr7GG3Z2vrEL+1p/XJAA74Lzs6frmnHumr3djR+yYHrB4e
+ygX3RrRp2TuLVYnZkJXovWtH/Q1UNNCzPk/lHAgoCcenTjehml3yq6uvZcJ5
+hcfFrzffRe0GI3UWKzJgpJ4rXPW+GQlMfRu8u+EMyCa90Ju8fB8Fmh9yG5g9
+DT8G5d+O2rei93Zk4X3BJBivXN9z+lcbinBYbzvPLB7aG5qT8u62o3T875bS
+iVhgmtk0ex/uQGnbVQU/LosGvNTh7oX1ncj2nNwrHTs2AEuP/9TsY/TzY55E
+oWoIhMovfiib142u2v1+faI+EMwydTSy6p6g/smimNP9flDxzLEuKLEHvW5d
+Q4zkHYLcp0dfqtj3oueKZYetN3qBpFRBWo1jL5rv8kryjrIXnGY+Rkauvcjh
+orGfsaQXnOjWLN59oBf1tH6TdBz3BNbDT75BQb3IwqQvVrvCEyRve/69m96L
+AuZvDNVW8oSUEpaic3svOucrlOa23APCg9DBLCMe8lERHfP2dIV/V4OSBkx4
+6JdM8rC2uSvEz5aXa23lodF9ERdFtVzhLHvJlzYzHkotkrPgn3WBopOfAn7b
+8pCAxuiyVyku0J6axfY+ykM5V4vj1l93hqUlQ2n6xTxk52IUpL/KCa5QZ6+8
+FKXQKelLlWEaDuDZUKGQIk4hq0lkYSHhAJKcttNGUhS6Mvo+RvuHPRyzn3Mj
+llPI/z+Z88Zt9qD90l+UpUGhRy++utl72UP5wO4DPeYUUnXbykgrYsH5ERGZ
+9lMUMjCw/FC41g52P1I9FZZIIeZjzidxGTv4U7ntq2oKhQK3/DTOYdiBo3/4
+/YRMCqn8FSl9ydsHshOfA0wLKZRfGuZhH7EPsmba2/FtCqkpZroxumwB+j6s
+P9pMIamxSePL121hopHx34pW+vz1YXq+xbZgfcIwJLKTQq5PNhopsW1B9HfZ
+qk39FLJe0Ls5SMUWmvrvp31+Q6EaRXZEo7gt+DYNfCfeUch8S8gR0T9M6IiS
+6fr+mUJfH0SoT/Qyge263qjsK4Wmvc6/jsJMUN9iXcKapND1Q9vEFSqY8Hyl
+r5jgDIUKfydceZLDhP//34JCok/fzIllwv8ALs5cQQ==
+ "]]},
+ {RGBColor[1, 0, 0], Dashing[{Small, Small}], LineBox[CompressedData["
+1:eJwt2HdcTv/7B/BbhSQNWkiliIZENKg3l4yU0bpvaS+k0t6DtIe0u88JaZf2
+UJ+i3kWaknTfIqEiEalIScj3/B6P31/n8fznjPf1vl7XOWezravhOQ4ajca7
+jEb7v2MULSqgdoGNcW+zPuGvDwHjDFfHOTbe/eBpBy1WH1x6ZO0lv7OxrnrO
+St8MfWAQ7SdjvrDx571pnPH39UFWecVmi7dsTFuVMGS1pA+PrCI6uB6xcQFt
+7FpRpAEsaw4TMk5g47s16tkcOYYQGBxS/n0rG+8ctNnxeDkdZrzaGqyl2dj/
+2ejEzY10sHfmaeuVYOOVT/95Xd1FhxNmqUPFomx8ec5ua5gFHcQ1irjtVrHx
+lrZ2Fcc6OjT+eGrLmmThUsSn+cyJAX+cJEXv1rDwisEXq+kfzsBlU3zFG1hY
+rVnocKewGYyd+rtRCrFwQVGz/qiSGehpa9Z372PhMoMk/TU6ZiCmeG9Gcg8L
+F8rI6mcGmEHN31qbblkWnrGeNs8fMYNPWWXakrwsXHl7q7R+pTkYfby5smug
+HztWGSiZW1rCdq/ABHHnfhzI6fG69Lc1HBs49fd7xjN8gud2iSbtHHgT57n5
+6/twaFj3t+7tjpCq9Ds3s/MpFimvvDLX5Qrmk1XuxX+f4JqiMWkBJ09Ysz/t
+t9D+HtyScqeDbu0Lazh9OTrTu/H3gdL9AeGBoBA3qr3iaScO/zovcBWFAPOa
+Lkf81g5s0hhx67/2UJiUGAnyCG/DK1enqhW5RoC1+9Ku982tuPGBwXh/UDRI
+a220v7n+IeZ48+b2kkcccHS19I2cbsHPTrrJnL93HdIfb51duakJq6/qt635
+lQhtP9vR8EADVr9+VyPEIxmU8/z/9Ryvw4LD0Y1jCymgri13T+9XNZYxPMf7
+RzcNFh+xWQ9ay/Hfks/p2cnpwMkUvnitsByfPBr8XpeZDrwXGUuMuHLcNP1i
++7cb6bBpzcvtk4bluHYVI3VPfjocpA8Fi7wrw80kWZL+XzpEfhjd5kQrwzGR
+Zm1tQ+kguGI6UEirBB+Xu7eyeTMTth9bteVCXSH227vEKsxlQjttA4jcLMTW
+69ft0ixkgt09ecu2q4X4n7Cj75NiJmTuOEHInCzEgcE2DeNVTBAWSuAdeV+A
+61u2fphtZgLHqNCciWABbk7k8fQdYsLrAKl2Xec8rC3eoyEmQEDAnl3vfxnk
+4TedublH1xEgOgW0O2p5WLD/Qau7CAGGNnb7VnLm4ePRKVJYnICuYwXlrWQu
+Xgj5K7VTjoA6IUWmZkcO9ujZ+84NCEgoV3NQks7Gx5OEBR1dCVD6MaNesDwb
+KwlUzl7wIKBXo3iVxEQWlude+djGm4A1beIlayqzsKV1vcHxQALihpZNTWpl
+YbvcvykfIwngEyQ+MmoycWUETrO6RcDSo5Ylfekb2OJFJq9KBwFa+ipZBycy
+cPt7UaK0i4CgoXxQrszAXc8iPm3uIWDxW2w4P8rA8rNR/f/6CJiXoPP0niUx
+LdAwN/oVAVN+E8J6SUxcdrzuT88kAcOKa3ccoaXiJReezyJ8JOhEbXn7tzsF
+B3k+LvjAT0LlqGpCXVoKblA9HV8pSEJoutm3bQop2PFX/NA+YRJkafm1PIxk
+3KchELJZnARnlhrqK0nEF8La9VTlSHi+Q3c62icRR/T+i+uQJwFFm2cBJGLu
+FM5pY0USJAI4lp8vS8CqeY0b7HeSYH8yLV6B8zrWr7efN9pLwszsvcy68lhs
+FvpV0f8gCQ+LhmnbD8fiLKkDej1AQooFlx05GIM/la8K3ahNgmrHyW1BXDH4
+uVKqavkREoIzRirANArnFwUU5+mSwAMrHvQsD8eew2bqz41IeD0nL4NuhOHU
+3UbpE8YklBWfjqhQDsNrY+ici3QS9IXI48lmobgJDnDzm5CQ/lGh/0xVCLYr
+2Vu+ypyEo+K57W0NAXiTidT3g3YkWPZyTLz45I+/O1i8ErQnwTvEdvVnUX/s
+qlIz85Zy3thmfT4fX1w98Sj/0nkSOMuyBhm7vfCyXV5bLC6SsMGK9sfBxhMH
+eNm78TuSsFvQWiIw0QNPhdwfb6Js6y1pd3vKDZeqPdfndyYhJFBz8CndCXv9
+vsgX7kJCxfDvTT9qLuJlF7WyRV1JeKt931ZsrQPmDvhjWkhZi3ffpHWvPdYy
+OHLovhtVL7dfyhGKdvgG35jrAXcSbrLrve/E2uDiWYFHzZR/aLguvY83xzlG
+LcN3PUgw5JiKUtQ9i9UTNhTKeZJQ1e0s6L2Cgbs8q1MzKL+uY+vwLp3CDEvj
+d25eJBz8qGB06KoMNnqTfWTamwTlM75hH9x50C2bLVpHfKjrd3nGbrBQRtRq
+mDIpa7YiSSetI0juttwKZV8SruwG3leP9NCjTTGpPpRH+7KDtsgaoPGpaJ0G
+ylsO5l1MKTuDMppObFbxI6Hdd+uI7jdTtBDBddSR8oWKAgbHXkvkoHo48Rbl
+8NmUcfNGa5Q2tpL2hDI9gZ2tbmmL9kaeSFugLKsgbCFEs0fC3/j1pfxJmG+n
+i81kn0MLr/SVD1PusE1nPda+gMoH+VTtKRNLA9cLPzigeVtdmxDKFzNEdcOi
+HFFUD1c1QXmfqslyKzlntPzEwe1llHn6iZZ9jy+hv/P/WpsoD10aDBS55Ipe
+PzwW0U15gCt+o3+UG5oKF3dmUcaGO36dN3FHp76H+b2kXJD1ZMBYzgPN3Q4v
+HqScMHXp7qFFD8TkkOV4QdlPky9Z+bEnqnVxu9JH2Tq23FXiphdKErsk3U5Z
+5+Wpk7yXvJGMkOyX/ygry07LL2r5ICF6wWA+ZTGvBO5PfL4Il//6mkB52cOd
+48+HfdFmtuJ2H8qf+ftaWyv90NszJ6NNKPdbuGVXXfVHu0sv8qlRLtHrGT1r
+H4Aklcxs+SiHa2yX5jgWiPiklymNUutruS3ctlguCDn7uLtXUFYTHskx5A1G
+cLpV0Z+yAKfm+8WpYLR+Bb81ovx5himT++wyEpR3Wf2Pqvep8W39/nohaNsy
+VrcH5X1v6N+fNIag5jeCw1spb2OHrZVWuorMAwac2NR+oj0cNuwWCEXVSW7T
+MpQn69d4SoSGoqqR6PFH1H4crNif4jEbivYQpQwbytW3mKwNA2FoZPednGvU
+/s1MbZt1ORaOuFJ7L2+kHBc3u661PhxdP0uw86n9bu9/2tjpRgQaoDd/LaX6
+w8At2KuZNxLJ1XhUyVFGF0pS112ORAsPfKazqX4Spa98ft86CrVEyQ+FU/3H
+dWLvHH9/FOrl3RczTfXnzCE7YXvtaOQ9fLaaTrlbuZnOKxuDGk4xfYSo/g7i
+9R0w/xKL6ld87DFzIsGBM3++0jwOKamfOptD5QN9sV9keW8cyt/FYztG5YnS
+J6UzZZXXUMlznnFTB6p/Wsdf/PW+jspE73QKniOh957QgsHH6yh2eqfWHiqf
+7lUdEiswSUADsoxdhlSedZ8+rVi4KRElIpEbITYk5GqVOJ+mJSHTW02RhRZU
+Xmk8DPqlnoSW7ifwFFB5mLhn8FquexLSeqy7LsuMul+FlWU/3yUhsXrVusiz
+JDDW23293ZaMap9q0yWofOWe2+AyE5uKfH9Mp/vqkWC8OdnlWXMqOnVn5uVh
+Kq+zT65yrf6Rig79+KzFd5yqd8FPVy/LNJQ5dsAz7SiVH2fY7gu70tHe9kc3
+val50NcQ700bZCJzviG/YFUSxMe5fEbXEOgSb/feNdQ8ubg2yOfhIQKtfjcm
+SaqQwOHk6BteSiBvps7lfGUS9ogf8+cOIVH9yWyfRGpeEZdpwQLbbqBM523T
+FZtIGCv2Df5mdgPlzCb0cVDzbteLqeD+xBvo+EXlzwYbqPXa+eZy6uINpBP3
+q3NMhIQ/Iw0hYr03UbHmks4bap5aa3uGS3lnopx4zoX1y0gQ4po9QoxmoSP9
+XlwdIwSo80WuPbiUhTTuHtjv9ZYAC7H1wx83ZCP9LdybN70moEDxgJ+acTbq
+/7n+n80LAtToccUD7dnIxmivYv0TAkwLZPiFS3OQVPmxCGYDAVk6xi+TfPLQ
+4kTLAcXrBDwy/JinkZKHVHT9RA3jCJgwD3AfrchDUu7mPZ7RBOx2z+LZNZFH
+1a+aVRxKQCs5qdlnlo8cfnGEffQhYPxzeDYfFCCace69m5YEKMTXOsatLkL+
+vBq2yxQIONgboVe2rQiFyXEl1W4jgMHPUHyqXYTmvu6ZPbeFgNCk+a9rg4pQ
+kTbv2fubCHiVpuaeMVmEFNg336hT72fRmQ2+d57cQeJj8/YhP5gwVtEU3pFQ
+gqwu9Jw/dY96/+tvy+QUqkA7o3er6O9ngqRi+8+DShVoT9IjVQc1JmRFtOtf
+1qlA7+8+pgerMCFHvYPjV1AFMrDNmcxUYEJ+Zuf5qQ8VSCvHsrh5IxMYteeY
+k2aVyDSlYsDvdzpYXnWwerGjCv25GJk3UJ8Ol9a7TJc+q0YNxYpxhQrpcKrr
+QgZY1yETG5UsqcFUSI601ztS3YDKuZ0XEoNSgEuaOzxuthEx5OXP9wskwy2J
+J7lvtFoQ03nTpW8+ifC5msld9v4ByrDYEtnzIR7EogZ3fyttRfPpqlWMnFhY
+GBUfmTzThmokajniiqNgukTlWcxiO1LT+HTVZCQcOmsfRN1o6USJE6IBWStC
+wfCowQN7h25U3ORz6j+JK4BFTFpyVHrQkGuTcA0KAGDs5gydf4Iqwr50yc15
+g484X5fYjadoqm2joLmDBxxNUpZPrupDera16zYIuUDxC9Mqz8hnyMRjlerz
+QgfIeO7yauuZfpRy+H6J1Hp7WCuUea3CtB99T/h67ssKe4gxfII0LPsRussS
+av1hB35PFXJPnOtHQjxnVck+O2B0fXLy9OxHwRsEh4aj7WBtk+3floR+9Cut
+5ciz37YQm8eQMu/sR2sdG+vXf7GBAE90PlmDhR6HKf9+M2QF/+56Rg1rslCP
+SLNEWrMVhM8XFSkeZKHkxsUE61wruO6/7kv7URZykP+ze4+TFWRf+eT624iF
+mlqOWj/5bQmdccn+9i4sdGtMLAZLWYJI3vg11VwW8jqhLsnwN4ca9vWaV7xs
+tMDSmN5ldxZsa4slYgXY6KekiM6szllYm94eoyHERr3f58e7lc6C25klK2Ij
+G8Vb+fc2LpqA0qtLvAx5Nro2xZYrTjGBouET554dY6OQ5u17crrOwK3PPKKd
+oWyk3XFCoeUIA048lg31jWQjg443iapK1PdvyaGvsrFsJLbOd+6BCANMLwW0
+RiSx0eg7w2TRT3QQm5lw1c5iI9YdjYXGODokz3V24iY2+ijzuuL5gDHAwJiK
+ywM2ijlmrJ3cYgwzdbTbm9rYyNRgTaJtsTGc9lP3DuphI363Yhl02Rh4fxdu
+3jdEPa++/uCwrDE0DrVem3jLRotXPV6rCxqDU+PwT+IdG1UXC6jm/zaC7mDR
+3p8TbFSpVnr/vz4j8LdU0Sj8ykb0CLmnFveNYPuB03mMb9T5bklzixYYwUtJ
+J/4Vc2xUV2dj+j7RCP7/fwXilqxteBhoBP8DVxMbSQ==
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ FrameLabel->{
+ FormBox["\"Time (\[Mu]s)\"", TraditionalForm],
+ FormBox[
+ "\"Intensity (\\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
+\\(2\\)]\\))\"", TraditionalForm]},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]]
+}, Open ]]
+}, Open ]]
+},
+AutoGeneratedPackage->None,
+WindowSize->{848, 925},
+WindowMargins->{{13, Automatic}, {Automatic, 4}},
+ShowSelection->True,
+FrontEndVersion->"7.0 for Microsoft Windows (64-bit) (February 18, 2009)",
+StyleDefinitions->"Default.nb"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[CellGroupData[{
+Cell[567, 22, 25, 0, 71, "Section"],
+Cell[CellGroupData[{
+Cell[617, 26, 161, 3, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->836781195],
+Cell[781, 31, 230, 5, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->2058623809],
+Cell[1014, 38, 1838, 60, 65, "Text",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->525777075],
+Cell[2855, 100, 171, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->145610755]
+}, Open ]],
+Cell[3041, 107, 180, 5, 31, "Input"],
+Cell[CellGroupData[{
+Cell[3246, 116, 163, 3, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->429217524],
+Cell[3412, 121, 1234, 31, 132, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->433132487],
+Cell[4649, 154, 765, 26, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->133602844]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[5451, 185, 207, 5, 31, "Input"],
+Cell[5661, 192, 478, 12, 50, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[6176, 209, 2132, 65, 92, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->534530029],
+Cell[8311, 276, 2360, 69, 96, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[10674, 347, 312, 7, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->462076121],
+Cell[10989, 356, 623, 18, 52, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->494599775],
+Cell[11615, 376, 3487, 103, 86, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[15105, 481, 171, 3, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->358620443],
+Cell[15279, 486, 558, 17, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->167259034],
+Cell[15840, 505, 803, 14, 118, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[16646, 521, 197, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->577766068],
+Cell[16846, 527, 3515, 92, 172, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[20364, 621, 3937, 109, 126, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[24304, 732, 858, 33, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->525228576],
+Cell[25165, 767, 1675, 47, 69, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[26843, 816, 4081, 115, 126, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[30927, 933, 478, 14, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->610306692],
+Cell[31408, 949, 367, 9, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->645617687],
+Cell[31778, 960, 880, 24, 86, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[32695, 989, 485, 14, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->854192725],
+Cell[33183, 1005, 554, 15, 52, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->465762594],
+Cell[33740, 1022, 1853, 53, 104, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[35596, 1077, 144, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->314466782]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[35777, 1084, 901, 27, 54, "Input"],
+Cell[36681, 1113, 2805, 74, 69, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[39523, 1192, 131, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->398692331],
+Cell[39657, 1196, 1095, 31, 77, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->298399236]
+}, Open ]],
+Cell[40767, 1230, 47483, 1326, 406, "Output"],
+Cell[88253, 2558, 132, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->8183146],
+Cell[CellGroupData[{
+Cell[88410, 2564, 493, 14, 33, "Input"],
+Cell[88906, 2580, 2579, 84, 92, "Output"]
+}, Open ]],
+Cell[91500, 2667, 324, 8, 59, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->142706944],
+Cell[CellGroupData[{
+Cell[91849, 2679, 7071, 207, 192, "Input"],
+Cell[98923, 2888, 7369, 226, 299, "Output"]
+}, Open ]],
+Cell[106307, 3117, 275, 6, 59, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->97303873],
+Cell[CellGroupData[{
+Cell[106607, 3127, 7078, 207, 192, "Input"],
+Cell[113688, 3336, 7077, 214, 299, "Output"]
+}, Open ]],
+Cell[120780, 3553, 160, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->138519002],
+Cell[CellGroupData[{
+Cell[120965, 3561, 1847, 55, 55, "Input"],
+Cell[122815, 3618, 1775, 54, 98, "Output"]
+}, Open ]],
+Cell[124605, 3675, 254, 5, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->3468672],
+Cell[CellGroupData[{
+Cell[124884, 3684, 1909, 59, 55, "Input"],
+Cell[126796, 3745, 1762, 54, 98, "Output"]
+}, Open ]],
+Cell[128573, 3802, 213, 5, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->102411945],
+Cell[CellGroupData[{
+Cell[128811, 3811, 1920, 59, 55, "Input"],
+Cell[130734, 3872, 1767, 54, 98, "Output"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[132550, 3932, 26, 0, 71, "Section"],
+Cell[132579, 3934, 136, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->573833124],
+Cell[132718, 3940, 69, 2, 31, "Input"],
+Cell[132790, 3944, 148, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->289922153],
+Cell[132941, 3950, 231, 7, 31, "Input"],
+Cell[133175, 3959, 157, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->605757010],
+Cell[133335, 3965, 1108, 32, 72, "Input"],
+Cell[134446, 3999, 162, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->546154363],
+Cell[134611, 4005, 1149, 33, 112, "Input"],
+Cell[135763, 4040, 124, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->53519095],
+Cell[135890, 4044, 206, 5, 31, "Input"],
+Cell[136099, 4051, 810, 21, 75, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->434761194],
+Cell[CellGroupData[{
+Cell[136934, 4076, 28, 0, 36, "Subsection"],
+Cell[136965, 4078, 2724, 75, 108, "Input"],
+Cell[139692, 4155, 572, 18, 54, "Input"],
+Cell[140267, 4175, 643, 20, 54, "Input"],
+Cell[CellGroupData[{
+Cell[140935, 4199, 2127, 61, 98, "Input"],
+Cell[143065, 4262, 29134, 490, 238, "Output"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[172248, 4758, 29, 0, 36, "Subsection"],
+Cell[172280, 4760, 2725, 75, 108, "Input"],
+Cell[175008, 4837, 572, 18, 54, "Input"],
+Cell[175583, 4857, 643, 20, 54, "Input"],
+Cell[CellGroupData[{
+Cell[176251, 4881, 2127, 61, 98, "Input"],
+Cell[178381, 4944, 29472, 496, 237, "Output"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[207902, 5446, 30, 0, 36, "Subsection"],
+Cell[207935, 5448, 2719, 75, 108, "Input"],
+Cell[210657, 5525, 572, 18, 54, "Input"],
+Cell[211232, 5545, 643, 20, 54, "Input"],
+Cell[CellGroupData[{
+Cell[211900, 5569, 2127, 61, 98, "Input"],
+Cell[214030, 5632, 29467, 495, 237, "Output"]
+}, Open ]]
+}, Open ]]
+}, Open ]]
+}
+]
+*)
+
+(* End of internal cache information *)