summaryrefslogtreecommitdiff
path: root/xmds2
diff options
context:
space:
mode:
authorevmik <evgmik@gmail.com>2011-05-27 15:50:54 -0400
committerevmik <evgmik@gmail.com>2011-05-27 15:50:54 -0400
commit97ae63ce4cff3c1ee6f8caf2a52271acac7ea00f (patch)
tree9ae8501b06f00529c0f50e8f1a0c92188b9f2b6e /xmds2
parente7a9c6ef934ec85e85b5d6248833d695fc7505e0 (diff)
downloadNresonances-97ae63ce4cff3c1ee6f8caf2a52271acac7ea00f.tar.gz
Nresonances-97ae63ce4cff3c1ee6f8caf2a52271acac7ea00f.zip
add solver generated by mathematica
Diffstat (limited to 'xmds2')
-rw-r--r--xmds2/Nlevels_no_dopler_no_z.example/Nlevels_no_dopler_no_z_from_mathematica.xmds174
1 files changed, 174 insertions, 0 deletions
diff --git a/xmds2/Nlevels_no_dopler_no_z.example/Nlevels_no_dopler_no_z_from_mathematica.xmds b/xmds2/Nlevels_no_dopler_no_z.example/Nlevels_no_dopler_no_z_from_mathematica.xmds
new file mode 100644
index 0000000..d98d514
--- /dev/null
+++ b/xmds2/Nlevels_no_dopler_no_z.example/Nlevels_no_dopler_no_z_from_mathematica.xmds
@@ -0,0 +1,174 @@
+<?xml version="1.0"?>
+<simulation xmds-version="2">
+
+ <name>Nlevels_no_dopler_no_z_from_mathematica</name>
+
+ <author>Eugeniy Mikhailov</author>
+ <description>
+ License GPL.
+
+ Solving 4 level atom in N-field configuration,
+ no field propagation along spatial axis included
+ no Doppler broadening
+
+ For master equations look "Four-level 'N-scheme' in bare and quasi-dressed states pictures"
+ by T. Abi-Salloum, S. Meiselman, J.P. Davis and F.A. Narducci
+ Journal of Modern Optics, 56: 18, 1926 -- 1932, (2009).
+
+ Present calculation matches Fig.3 (b) from the above paper.
+ Note that I need to double all Rabi frequencies to match the figure.
+
+ * -------- |4>
+ * \
+ * \ Ec -------- |3>
+ * \ / \
+ * \ E2 / \
+ * \ / \ E1
+ * ------- |2> \
+ * \
+ * ------- |1>
+ *
+
+ We moved to dimensionless units
+ t -> t*g ,time
+ z -> z*g/c , distance
+ rabi_frequency -> rabi_frequency/g
+ eta -> eta*c/g^2 , coupling constant
+ gij -> gij/g
+ Wij -> Wij/g
+
+ where g is 1MHz rate
+ </description>
+
+ <features>
+ <benchmark />
+ <bing />
+ <fftw plan="patient" />
+ <openmp />
+ <auto_vectorise />
+ <globals>
+ <![CDATA[
+ // repopulation rate (atoms flying in/out the laser beam) in MHz
+ const double gt=0.01/2;
+ // Natural linewidth of j's level in MHz
+ const double G3=2.7;
+ const double G4=3.0;
+
+ // branching ratios
+ const double R41=0.0, R42=1;
+ const double R31=0.5, R32=0.5;
+
+ // const double d1=0; // E2 detuning in MHz
+ const double d2=0; // E2 detuning in MHz
+ const double d3=0; // Ec detuning in MHz
+
+ const complex E1=0.005/2; // Rabi frequency in MHz
+ const complex E2=5.0/2; // Rabi frequency in MHz
+ const complex Ec=6.0/2; // Rabi frequency in MHz
+
+ complex E1c, E2c, Ecc; // Complex conjugated Rabi frequencies
+
+ //complex r21, r31, r41, r32, r42, r43;
+
+ ]]>
+ </globals>
+ </features>
+
+ <geometry>
+ <propagation_dimension> t </propagation_dimension>
+ <transverse_dimensions>
+ <dimension name="d1" lattice="1280" domain="(-60, 60)" />
+ </transverse_dimensions>
+ </geometry>
+
+ <vector name="density_matrix" type="complex" dimensions="d1">
+ <components>r11 r22 r33 r44 r12 r13 r14 r23 r24 r34 r21 r31 r41 r32 r42 r43</components>
+ <!--
+ note one of the level population is redundant since
+ r11+r22+r33+r44=1
+ so r11 is missing
+ -->
+ <initialisation>
+ <![CDATA[
+ // Note:
+ // convergence is really slow if all populations concentrated at the bottom level |1>
+ // this is because if r11=1, everything else is 0 and then every small incriment
+ // seems to be huge and adaptive solver makes smaller and smaller steps.
+ // As quicj and dirty fix I reshufle initial poulation
+ // so some of the population sits at the second ground level |2>
+ // TODO: Fix above. Make the equation of motion for r11
+ // and express other level, let's say r44
+ // through population normalization
+ r22 = 0.001; r33 = 0; r44 = 0;
+ r12 = 0; r13 = 0; r14 = 0;
+ r23 = 0; r24 = 0;
+ r34 = 0;
+ ]]>
+ </initialisation>
+ </vector>
+
+ <sequence>
+ <integrate algorithm="ARK45" interval="600" tolerance="1e-3">
+ <samples>128</samples>
+ <operators>
+ <integration_vectors>density_matrix</integration_vectors>
+ <![CDATA[
+ E1c = conj(E1);
+ E2c = conj(E2);
+ Ecc = conj(Ec);
+
+ // r21=conj(r12);
+ // r31=conj(r13);
+ // r41=conj(r14);
+ // r32=conj(r23);
+ // r42=conj(r24);
+ // r43=conj(r34);
+
+ // Equations of motions see page 1928 of the Frank's JMO paper
+ dr11_dt = gt - 2*gt*r11 + E1*i*(-r13 + r31) + 2*G3*r33*R31 + 2*G4*r44*R41;
+ dr12_dt = -2*gt*r12 + i*((-d1 + d2)*r12 - E2*r13 - Ec*r14 + E1*r32);
+ dr13_dt = -((G3 + 2*gt)*r13) + i*(-(E1*r11) - E2*r12 - d1*r13 + E1*r33);
+ dr14_dt = -((G4 + 2*gt)*r14) + i*(-(Ec*r12) - (d1 - d2 + d3)*r14 + E1*r34);
+ dr21_dt = -2*gt*r21 + i*((d1 - d2)*r21 - E1*r23 + E2*r31 + Ec*r41);
+ dr22_dt = gt - 2*gt*r22 + i*(-(E2*r23) - Ec*r24 + E2*r32 + Ec*r42) + 2*G3*r33*R32 + 2*G4*r44*R42;
+ dr23_dt = -((G3 + 2*gt)*r23) + i*(-(E1*r21) - E2*r22 - d2*r23 + E2*r33 + Ec*r43);
+ dr24_dt = -((G4 + 2*gt)*r24) + i*(-(Ec*r22) - d3*r24 + E2*r34 + Ec*r44);
+ dr31_dt = -((G3 + 2*gt)*r31) + i*(E1*r11 + E2*r21 + d1*r31 - E1*r33);
+ dr32_dt = -((G3 + 2*gt)*r32) + i*(E1*r12 + E2*r22 + d2*r32 - E2*r33 - Ec*r34);
+ dr33_dt = i*(E1*r13 + E2*r23 - E1*r31 - E2*r32) - 2*(G3 + gt)*r33;
+ dr34_dt = -((G3 + G4 + 2*gt)*r34) + i*(E1*r14 + E2*r24 - Ec*r32 + (d2 - d3)*r34);
+ dr41_dt = -((G4 + 2*gt)*r41) + i*(Ec*r21 + (d1 - d2 + d3)*r41 - E1*r43);
+ dr42_dt = -((G4 + 2*gt)*r42) + i*(Ec*r22 + d3*r42 - E2*r43 - Ec*r44);
+ dr43_dt = -((G3 + G4 + 2*gt)*r43) + i*(Ec*r23 - E1*r41 - E2*r42 + (-d2 + d3)*r43);
+ dr44_dt = Ec*i*(r24 - r42) - 2*(G4 + gt)*r44;
+ ]]>
+ </operators>
+ </integrate>
+ </sequence>
+
+
+
+
+ <!-- The output to generate -->
+ <output format="binary" filename="Nlevels_no_dopler_no_z_from_mathematica.xsil">
+ <group>
+ <sampling basis="d1" initial_sample="yes">
+ <dependencies>density_matrix</dependencies>
+ <moments>>r13_rlOut r13_imOut >r23_rlOut r23_imOut r24_rlOut r24_imOut</moments>
+ <![CDATA[
+ r13_rlOut = r13.Re();
+ r13_imOut = r13.Im();
+ r23_rlOut = r23.Re();
+ r23_imOut = r23.Im();
+ r24_rlOut = r24.Re();
+ r24_imOut = r24.Im();
+ ]]>
+ </sampling>
+ </group>
+ </output>
+
+</simulation>
+
+<!--
+vim: ts=2 sw=2 foldmethod=indent:
+-->