summaryrefslogtreecommitdiff
path: root/xmds2/reports
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2011-11-03 13:30:13 -0400
committerEugeniy Mikhailov <evgmik@gmail.com>2011-11-03 13:30:13 -0400
commit7f97b8283827d763a1a4f972b349fbb47dd537bb (patch)
treeaae8ee5c32935cd18446669369566447f85967c9 /xmds2/reports
parent8a38fa851ce826a9be05b50838bc1472cb94f434 (diff)
downloadNresonances-7f97b8283827d763a1a4f972b349fbb47dd537bb.tar.gz
Nresonances-7f97b8283827d763a1a4f972b349fbb47dd537bb.zip
perturbative report draft finalized
Diffstat (limited to 'xmds2/reports')
-rw-r--r--xmds2/reports/4wm_with_perturbation_and_exact_analusis/4wm_with_perturbation_and_exact_analusis.tex152
1 files changed, 76 insertions, 76 deletions
diff --git a/xmds2/reports/4wm_with_perturbation_and_exact_analusis/4wm_with_perturbation_and_exact_analusis.tex b/xmds2/reports/4wm_with_perturbation_and_exact_analusis/4wm_with_perturbation_and_exact_analusis.tex
index cb537a8..b30c0aa 100644
--- a/xmds2/reports/4wm_with_perturbation_and_exact_analusis/4wm_with_perturbation_and_exact_analusis.tex
+++ b/xmds2/reports/4wm_with_perturbation_and_exact_analusis/4wm_with_perturbation_and_exact_analusis.tex
@@ -15,106 +15,106 @@ approach}
We consider the following system
\begin{verbatim}
- -------- |4>
- \
- \ E3 -------- |3>
- \ / \
- \ E2 / \
- \ / \ E1
- ------- |2> \
- \
- ------- |1>
+ --------------- |4>
+ \ \
+ \ E3 \ -------- |3>
+ \ E4 \ / \
+ \ \ / E2 \
+ \ / \ E1
+ |2> -------------- \
+ \ \
+ \ \
+ ------------- |1>
\end{verbatim}
-Such system can exhibit slow and fast light behavior for the cases when
-field 2 connecting $|$2$>$-$|$3$>$$|$is weak and treated as a probe field, field 1
-is strong and field 3 serve as a switch toggling slow (field 3 is off),
-fast (field 3 is on and strong) light, and situations in between.
+Our previous study showed that fast light condition can be achieved in
+four-wave mixing condition when two of the fields $E_1$ and $E_3$ are
+reasonably strong, in comparison to $E_2$ and $E_4$.
-Below the examples of fast and slow propagation for the following set of parameters:
+So we decided to check exact analysis vs the case of the perturbative
+approach where we consider $E_2$ and $E_4$ to be too small to affect
+populations and coherences governed by strong field only. Those are
+$\rho_{11}, \rho_{22}, \rho_{33}, \rho_{13}, \rho_{24},$ and $\rho_{44}$.
+Four simplicity we treat those as time and z-position independent.
+Remaining density coefficient ($\rho_{12}, \rho_{14}, \rho_{23}$, and
+$\rho_{34}$) depend on strength of $E_2$ and $E_4$ and had to be treated
+fully with their fields, time and z dependence via PDE solver. Fields are
+also treated fully as z and t dependent but clearly setting above
+$\rho_{11}, \rho_{22}, \rho_{33}, \rho_{13}, \rho_{24},$ and $\rho_{44}$ as
+constants at the beginning of the cell limits the precision of this
+method. One might improve it by treating $\rho_{11}, \rho_{22}, \rho_{33},
+\rho_{13}, \rho_{24},$ and $\rho_{44}$ as function of z, $E_1$ and $E_3$ by
+recalculating this dependence before running the rest of the solver. Since
+time dependence is gone it will be very small computational burden.
+
+
+Despite the simplicity the perturbative model describes the propagation
+quite well.
+
+Below the examples of fast and slow propagation for the following common set of parameters:
\begin{verbatim}
-G3=3.4e7 // decay rate of level |3> in 1/s
-G4=3.8e7 // decay rate of level |4> in 1/s
-gt=3.1416e+04 // repopulation rate in 1/s
+G3=1.89e7 // decay rate of level |3> in 1/s
+G4=1.89e7 // decay rate of level |4> in 1/s
+gt=6.28e4 // repopulation rate in 1/s
z=1.5e-2 // cell length in m
-N=1e10*(1e6); // number of particles per cubic m
+N=1e9*(1e6); // number of particles per cubic m
delta1=0; // field 1 one photon detuning
delta2=0; // field 2 --------//---------
delta3=0; // field 3 --------//---------
+// Detuning of the fourth field $E_4$
+// is set by four-wave mixing condition.
\end{verbatim}
-\begin{figure}[h]
- \begin{center}
- \includegraphics[width=1.00\columnwidth]{slow_light/fields_propagation.pdf}
- \end{center}
- \caption{Propagation of the fields under slow light condition}
- \label{fig:3fields_slow}
-\end{figure}
-
-Slow light behavior is observed for the 1 $\backslash$mu S long Gaussian pulse and
-the following fields parameters
+\subsection{Slow light propagation}
+To ensure uniform starting conditions scripts for exact and perturbative
+approach are ran with the same command line parameters which set detunings
+and field Rabi frequencies (in 1/s):
\begin{verbatim}
-E1=7.5e7; // field 1 Rabi frequency in 1/s
-E2=1; // field 2 --------//-----------
-E3=0; // field 3 --------//-----------
+--delta1=0 --delta2=0 --delta3=0 \
+--E1o=1.9e7 --E2o=3.1e5 --E3o=0 --E4o=0
\end{verbatim}
-fields 1 and 3 have no time dependence at the input of the cell.
-
-Propagation of all 3 fields is depicted at Fig.\ref{fig:3fields_slow}
-and output beam fields profiles in comparison with input are shown at
-Fig.\ref{fig:3fields_in_out_slow}
-where it easy to see delayed pulse for the field 2 in the middle.
+Notice that in this case fields $E_3$ and $E_4$ are zero since they are
+governed by parameters E2o and E3o.
+Results are shown in figure\ref{fig:3fields_slow}.
\begin{figure}[h]
- \begin{center}
- \includegraphics[width=1.00\columnwidth]{slow_light/fields_before_after_cell.pdf}
- \end{center}
- \caption{Propagation of the fields under slow light condition}
- \label{fig:3fields_in_out_slow}
+ \includegraphics[width=1.00\columnwidth]{slow_light_compared/fields_after_the_cell}
+ \caption{Slow light condition comparison. Fields are drawn at the
+ end of the cell.
+ \label{fig:3fields_slow}
+ }
\end{figure}
-
-Fast light or negative group delay is observed for the similar conditions
-but with field 3 switched on
+\subsection{Fast light propagation}
+To ensure uniform starting conditions scripts for exact and perturbative
+approach are ran with the same command line parameters which set detunings
+and field Rabi frequencies (in 1/s):
\begin{verbatim}
-E1=7.5e7; // field 1 Rabi frequency in 1/s
-E2=1; // field 2 --------//-----------
-E3=1.5e8; // field 3 --------//-----------
+--delta1=0 --delta2=0 --delta3=0 \
+--E1o=1.9e7 --E2o=3.1e5 --E3o=3.8e7 --E4o=6.3e4
\end{verbatim}
-
-Propagation of all 3 fields is depicted at Fig.\ref{fig:3fields_fast}
-and output beam fields profiles in comparison with input are shown at
-Fig.\ref{fig:3fields_in_out_fast}.
-
+Results are shown in figure\ref{fig:3fields_fast}.
\begin{figure}[h]
- \begin{center}
- \includegraphics[width=1.00\columnwidth]{fast_light/fields_propagation.pdf}
- \end{center}
- \caption{Propagation of the fields under fast light condition}
+ \includegraphics[width=1.00\columnwidth]{fast_light_compared/fields_after_the_cell}
+ \caption{Fast light condition comparison. Fields are drawn at the
+ end of the cell.
\label{fig:3fields_fast}
+ }
\end{figure}
+Notice settling behavior for first half a micro second since our numerical
+solver use initial conditions in assumption that strong fields are not
+absorbed and precalculates only density elements for the ones affected by
+the strong fields.
-\begin{figure}[h]
- \begin{center}
- \includegraphics[width=1.00\columnwidth]{fast_light/fields_before_after_cell.pdf}
- \end{center}
- \caption{Propagation of the fields under fast light condition}
- \label{fig:3fields_in_out_fast}
-\end{figure}
-
-The advancement of the pulse is very small but it could be seen on zoomed
-in Fig.\ref{fig:field2_in_out_fast}.
+\section{Execution speed}
+The perturbation approach is about 40\% faster since there is no need to
+calculate full blown propagation equation for 6 density elements out of
+required 10 (recall that we still propagate 4 fields in addition to this).
+So at least 1000x200 (time x z) grid takes 0.6 seconds vs 1 second. There
+are more samples along z but they are governed by adaptive solver and
+hidden from user.
-\begin{figure}[h]
- \begin{center}
- \includegraphics[width=1.00\columnwidth]{fast_light/probe_before_after_cell.pdf}
- \end{center}
- \caption{Propagation of the fields under fast light condition}
- \label{fig:field2_in_out_fast}
-\end{figure}
-% LaTeX2e code generated by txt2tags 2.5 (http://txt2tags.sf.net)
-% cmdline: txt2tags --target=tex report.t2t
\end{document}