summaryrefslogtreecommitdiff
path: root/mathemathica_fwm/DoubleFanoResonance.nb
diff options
context:
space:
mode:
authorSimon Rochester <simon.rochester@gmail.com>2012-02-16 19:40:12 -0800
committerSimon Rochester <simon.rochester@gmail.com>2012-02-16 19:40:12 -0800
commitb027ce08ccb77aebe4453f8e8395edea6b83258d (patch)
tree039fa5d58653f71870e04145bac3c791b653eb20 /mathemathica_fwm/DoubleFanoResonance.nb
parent00a564136175cdf7b5ba3e97abc94e4440c83111 (diff)
downloadNresonances-b027ce08ccb77aebe4453f8e8395edea6b83258d.tar.gz
Nresonances-b027ce08ccb77aebe4453f8e8395edea6b83258d.zip
Ajusted parameters in DoubleFanoResonance.nb to show the effect better.
Diffstat (limited to 'mathemathica_fwm/DoubleFanoResonance.nb')
-rwxr-xr-x[-rw-r--r--]mathemathica_fwm/DoubleFanoResonance.nb9320
1 files changed, 4755 insertions, 4565 deletions
diff --git a/mathemathica_fwm/DoubleFanoResonance.nb b/mathemathica_fwm/DoubleFanoResonance.nb
index 95cef4b..726fec1 100644..100755
--- a/mathemathica_fwm/DoubleFanoResonance.nb
+++ b/mathemathica_fwm/DoubleFanoResonance.nb
@@ -1,4565 +1,4755 @@
-(* Content-type: application/mathematica *)
-
-(*** Wolfram Notebook File ***)
-(* http://www.wolfram.com/nb *)
-
-(* CreatedBy='Mathematica 7.0' *)
-
-(*CacheID: 234*)
-(* Internal cache information:
-NotebookFileLineBreakTest
-NotebookFileLineBreakTest
-NotebookDataPosition[ 145, 7]
-NotebookDataLength[ 154877, 4556]
-NotebookOptionsPosition[ 148441, 4362]
-NotebookOutlinePosition[ 148836, 4379]
-CellTagsIndexPosition[ 148793, 4376]
-WindowFrame->Normal*)
-
-(* Beginning of Notebook Content *)
-Notebook[{
-
-Cell[CellGroupData[{
-Cell["General setup", "Section"],
-
-Cell[TextData[{
- StyleBox["Mathematica",
- FontSlant->"Italic"],
- " 8 defines WignerD, so we need to unprotect it."
-}], "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->94096541],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Unprotect", "[", "WignerD", "]"}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"{", "\<\"WignerD\"\>", "}"}]], "Output"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["Load the package.", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->123059143],
-
-Cell[BoxData[
- RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9},
- 3.522586258751662*^9},
- CellID->2058623809],
-
-Cell["Set options.", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->184495045]
-}, Open ]],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"SetOptions", "[",
- RowBox[{"DensityMatrix", ",",
- RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",",
- RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input",
- CellChangeTimes->{{3.534553583703125*^9, 3.534553592359375*^9}, {
- 3.534554968828125*^9, 3.534554970171875*^9}}],
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"SetOptions", "[",
- RowBox[{"Plot", ",",
- RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
- RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"SetOptions", "[",
- RowBox[{"ListLinePlot", ",",
- RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
- RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"SetOptions", "[",
- RowBox[{"ListDensityPlot", ",",
- RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"SetOptions", "[",
- RowBox[{"NDSolve", ",",
- RowBox[{"PrecisionGoal", "\[Rule]", "3"}], ",",
- RowBox[{"AccuracyGoal", "\[Rule]", "3"}], ",",
- RowBox[{"MaxSteps", "\[Rule]",
- SuperscriptBox["10", "6"]}]}], "]"}], ";"}]], "Input"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"SetOptions", "[",
- RowBox[{"LevelDiagram", ",",
- RowBox[{"JLabel", "\[Rule]", "True"}], ",",
- RowBox[{"MLabel", "\[Rule]", "True"}], ",",
- RowBox[{"Arrowheads", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- RowBox[{"-", ".07"}], ",", ".07"}], "}"}]}], ",",
- RowBox[{"MLabelPosition", "\[Rule]",
- RowBox[{"{", "Top", "}"}]}]}], "]"}], ";"}]], "Input"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["Atomic system setup", "Section"],
-
-Cell["Define the atomic system.", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellChangeTimes->{3.522586258751924*^9},
- CellID->188360977],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"system", "=",
- RowBox[{"Sublevels", "[",
- RowBox[{"{", "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"AtomicState", "[",
- RowBox[{"1", ",",
- RowBox[{"J", "\[Rule]", "0"}], ",",
- RowBox[{"L", "\[Rule]", "0"}], ",",
- RowBox[{"S", "\[Rule]", "0"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
- RowBox[{"Energy", "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
- "\[IndentingNewLine]",
- RowBox[{"AtomicState", "[",
- RowBox[{"2", ",",
- RowBox[{"J", "\[Rule]", "1"}], ",",
- RowBox[{"L", "\[Rule]", "1"}], ",",
- RowBox[{"S", "\[Rule]", "0"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
- RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
- "\[IndentingNewLine]",
- RowBox[{"AtomicState", "[",
- RowBox[{"3", ",",
- RowBox[{"J", "\[Rule]", "0"}], ",",
- RowBox[{"L", "\[Rule]", "0"}], ",",
- RowBox[{"S", "\[Rule]", "0"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",",
- RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}],
- "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
- RowBox[{"TableForm", "[",
- RowBox[{"system", "=",
- RowBox[{"DeleteStates", "[",
- RowBox[{"system", ",",
- RowBox[{"Label", "\[Rule]", "2"}], ",",
- RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}], "]"}]}], "Input",
- CellChangeTimes->{{3.53455248065625*^9, 3.534552600640625*^9}, {
- 3.534552682078125*^9, 3.534552741734375*^9}, {3.53455363609375*^9,
- 3.534553678203125*^9}, {3.5345537420625*^9, 3.5345537629375*^9}, {
- 3.534555252625*^9, 3.534555255046875*^9}}],
-
-Cell[BoxData[
- TagBox[
- TagBox[GridBox[{
- {
- RowBox[{"AtomicState", "[",
- RowBox[{"1", ",",
- RowBox[{"J", "\[Rule]", "0"}], ",",
- RowBox[{"L", "\[Rule]", "0"}], ",",
- RowBox[{"S", "\[Rule]", "0"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
- RowBox[{"Energy", "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
- RowBox[{"M", "\[Rule]", "0"}]}], "]"}]},
- {
- RowBox[{"AtomicState", "[",
- RowBox[{"2", ",",
- RowBox[{"J", "\[Rule]", "1"}], ",",
- RowBox[{"L", "\[Rule]", "1"}], ",",
- RowBox[{"S", "\[Rule]", "0"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
- RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Even"}], ",",
- RowBox[{"M", "\[Rule]", "1"}]}], "]"}]},
- {
- RowBox[{"AtomicState", "[",
- RowBox[{"2", ",",
- RowBox[{"J", "\[Rule]", "1"}], ",",
- RowBox[{"L", "\[Rule]", "1"}], ",",
- RowBox[{"S", "\[Rule]", "0"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
- RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Even"}], ",",
- RowBox[{"M", "\[Rule]",
- RowBox[{"-", "1"}]}]}], "]"}]},
- {
- RowBox[{"AtomicState", "[",
- RowBox[{"3", ",",
- RowBox[{"J", "\[Rule]", "0"}], ",",
- RowBox[{"L", "\[Rule]", "0"}], ",",
- RowBox[{"S", "\[Rule]", "0"}], ",",
- RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",",
- RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{
- RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",",
- RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
- RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}
- },
- GridBoxAlignment->{
- "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.5599999999999999]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}],
- Column],
- Function[BoxForm`e$,
- TableForm[BoxForm`e$]]]], "Output"]
-}, Open ]],
-
-Cell["Define the optical field.", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->13161682],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"field", "=",
- RowBox[{
- RowBox[{"ToCartesian", "[",
- RowBox[{"Transpose", "@",
- RowBox[{"{",
- RowBox[{"{",
- RowBox[{
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ",
- RowBox[{"(",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]], "+",
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}]}], ")"}]}],
- RowBox[{"ReducedME", "[",
- RowBox[{"1", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0",
- ",",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ",
- RowBox[{"(",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]], "+",
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}]}], ")"}]}],
- RowBox[{"ReducedME", "[",
- RowBox[{"1", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]]}], "}"}],
- "}"}]}], "]"}], "//", "FullSimplify"}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}], "-",
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}], "+",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]], "-",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}], ")"}]}],
- RowBox[{
- SqrtBox["2"], " ",
- RowBox[{"ReducedME", "[",
- RowBox[{"1", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- RowBox[{"(",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]], "+",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]], "-",
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"(",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]], "+",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}], ")"}]}]}], ")"}]}],
- RowBox[{
- SqrtBox["2"], " ",
- RowBox[{"ReducedME", "[",
- RowBox[{"1", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", "0"}],
- "}"}]], "Output"]
-}, Open ]],
-
-Cell["\<\
-The Hamiltonian for the system subject to the optical field.\
-\>", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->337337829],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"Ho", "=",
- RowBox[{
- RowBox[{"Expand", "@",
- RowBox[{"Hamiltonian", "[",
- RowBox[{"system", ",",
- RowBox[{"ElectricField", "\[Rule]", "field"}], ",",
- RowBox[{"MagneticField", "\[Rule]",
- RowBox[{"{",
- RowBox[{"0", ",", "0", ",",
- RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}],
- "]"}]}], "/.", " ",
- RowBox[{
- RowBox[{"ReducedME", "[",
- RowBox[{"2", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]",
- "0"}]}]}], "]"}]], "Input"],
-
-Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {"0",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}],
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "0"},
- {
- RowBox[{
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}],
- RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "0"},
- {
- RowBox[{
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{"Sin", "[",
- RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "0",
- RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], "0"},
- {"0", "0", "0", "\[Omega]3"}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
-}, Open ]],
-
-Cell["\<\
-The Hamiltonian for the system subject to the coupling field\
-\>", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->327463138],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"HE", "=",
- RowBox[{
- RowBox[{"Expand", "@",
- RowBox[{"Hamiltonian", "[",
- RowBox[{"system", ",",
- RowBox[{"ElectricField", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- RowBox[{"Ec",
- RowBox[{
- SqrtBox["6"], "/",
- RowBox[{"ReducedME", "[",
- RowBox[{"2", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}]}],
- ",", "0", ",", "0"}], "}"}]}], ",",
- RowBox[{"Interaction", "\[Rule]",
- RowBox[{"{", "E1", "}"}]}]}], "]"}]}], "/.", " ",
- RowBox[{
- RowBox[{"ReducedME", "[",
- RowBox[{"1", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "\[Rule]",
- "0"}]}]}], "]"}]], "Input",
- CellChangeTimes->{{3.53455311584375*^9, 3.534553169015625*^9}, {
- 3.534553199875*^9, 3.534553204765625*^9}, {3.5345532359375*^9,
- 3.534553278921875*^9}, 3.534553331125*^9}],
-
-Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {"0", "0", "0", "0"},
- {"0", "0", "0", "Ec"},
- {"0", "0", "0",
- RowBox[{"-", "Ec"}]},
- {"0", "Ec",
- RowBox[{"-", "Ec"}], "0"}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
-}, Open ]],
-
-Cell["The total Hamiltonian", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->737742553],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"H", "=",
- RowBox[{
- RowBox[{"Ho", "+", "HE"}], "//", "TrigToExp"}]}], "]"}]], "Input"],
-
-Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {"0",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}],
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "-",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "0"},
- {
- RowBox[{
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}],
- RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "Ec"},
- {
- RowBox[{
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{"\[ImaginaryI]", " ",
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}], "0",
- RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}],
- RowBox[{"-", "Ec"}]},
- {"0", "Ec",
- RowBox[{"-", "Ec"}], "\[Omega]3"}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output"]
-}, Open ]],
-
-Cell["\<\
-The level diagram showing field detunings.\
-\>", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->944896957],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"LevelDiagram", "[",
- RowBox[{
- RowBox[{"system", "/.",
- RowBox[{
- RowBox[{"(",
- RowBox[{"Parity", "\[Rule]", "_"}], ")"}], "\[Rule]",
- RowBox[{"Sequence", "[", "]"}]}]}], ",",
- RowBox[{"H", "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\[Omega]2", "\[Rule]", "3"}], ",",
- RowBox[{"\[Omega]3", "\[Rule]", "2."}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]", ".2"}], ",",
- RowBox[{"\[Omega]", "\[Rule]", "2.3"}]}], "}"}]}]}], "]"}]], "Input",
- Evaluatable->False],
-
-Cell[BoxData[
- GraphicsBox[{{{{}, LineBox[{{-0.4, 0.}, {0.4, 0.}}]}, {{},
- LineBox[{{0.6, 3.2}, {1.4, 3.2}}]}, {{},
- LineBox[{{-1.4, 2.8}, {-0.6, 2.8}}]}, {{},
- LineBox[{{-0.4, 2.}, {0.4, 2.}}]}}, {{InsetBox[
- RowBox[{"M", "\[LongEqual]",
- RowBox[{"-", "1"}]}], {-1., 3.2}, {0, -1.2}], InsetBox[
- RowBox[{"M", "\[LongEqual]", "0"}], {0., 3.2}, {0, -1.2}], InsetBox[
- RowBox[{"M", "\[LongEqual]", "1"}], {1., 3.2}, {0, -1.2}]}, {}, {
- InsetBox[
- RowBox[{
- SubscriptBox["J", "1"], "\[LongEqual]", "0"}],
- Offset[{-6.6000000000000005`, 0}, {-1.4, 0}], {1, 0}], InsetBox[
- RowBox[{
- SubscriptBox["J", "3"], "\[LongEqual]", "0"}],
- Offset[{-6.6000000000000005`, 0}, {-1.4, 2.}], {1, 0}], InsetBox[
- RowBox[{
- SubscriptBox["J", "2"], "\[LongEqual]", "1"}],
- Offset[{-6.6000000000000005`, 0}, {-1.4, 3.}], {1, 0}]}},
- {Arrowheads[{-0.07, 0.07}],
- ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}],
- ArrowBox[{{0.04000000000000001, 0.}, {0.96, 2.3}}],
- ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}],
- ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 2.3}}],
- ArrowBox[{{-0.04000000000000001, 2.}, {-0.96, 2.8}}],
- ArrowBox[{{0.04000000000000001, 2.}, {0.96, 3.2}}]},
- {PointSize[0.0225]}},
- ImagePadding->{{38.300000000000004`, 2}, {2., 13.700000000000001`}},
- ImageSize->180.3]], "Output"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
-"MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellChangeTimes->{3.522586258753521*^9},
- CellID->471402495],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{"Hrwa", "=", "\[IndentingNewLine]",
- RowBox[{
- RowBox[{
- RowBox[{"RotatingWaveApproximation", "[",
- RowBox[{"system", ",", "H", ",",
- RowBox[{"{", "\[Omega]", "}"}], ",", "\[IndentingNewLine]",
- RowBox[{"TransformMatrix", "\[Rule]",
- RowBox[{"MatrixExp", "[",
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
- RowBox[{"DiagonalMatrix", "[",
- RowBox[{"{",
- RowBox[{
- "0", ",", "\[Omega]", ",", "\[Omega]", ",", "\[Omega]"}],
- "}"}], "]"}]}], "]"}]}]}], "]"}], "/.",
- RowBox[{"\[Omega]", "\[Rule]",
- RowBox[{"\[Omega]2", "+", "\[CapitalDelta]"}]}]}], "/.",
- RowBox[{"\[Omega]3", "\[Rule]",
- RowBox[{"\[Omega]2", "+", "\[CapitalDelta]23"}]}]}]}], ")"}], "//",
- "MatrixForm"}], " ", "//", "Simplify"}], " ",
- "\[IndentingNewLine]"}]], "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellChangeTimes->{{3.534553435828125*^9, 3.534553480625*^9}, {
- 3.534553524203125*^9, 3.53455353465625*^9}, {3.534553920421875*^9,
- 3.534554035921875*^9}, {3.534555327859375*^9, 3.534555328671875*^9}}],
-
-Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {"0",
- FractionBox[
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}], "+",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]],
- FractionBox[
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}], "+",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "0"},
- {
- FractionBox[
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1"}]]}], "+",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1"}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]],
- RowBox[{
- RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L"}], "0", "Ec"},
- {
- FractionBox[
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}]}]]}], "+",
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}]}]]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "0",
- RowBox[{
- RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L"}],
- RowBox[{"-", "Ec"}]},
- {"0", "Ec",
- RowBox[{"-", "Ec"}],
- RowBox[{
- RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]23"}]}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output",
- CellGroupingRules->{GroupTogetherGrouping, 10001.}],
-
-Cell[TextData[{
- Cell[BoxData[
- ButtonBox["IntrinsicRelaxation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
- " and ",
- Cell[BoxData[
- ButtonBox["TransitRelaxation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
- " supply the relaxation matrices."
-}], "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellChangeTimes->{3.52258625875446*^9},
- CellID->448215320],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"relax", "=",
- RowBox[{
- RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
- RowBox[{"TransitRelaxation", "[",
- RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellChangeTimes->{3.522586258754587*^9},
- CellID->150217419],
-
-Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {"\[Gamma]t", "0", "0", "0"},
- {"0",
- RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0", "0"},
- {"0", "0",
- RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0"},
- {"0", "0", "0",
- RowBox[{"\[CapitalGamma]3", "+", "\[Gamma]t"}]}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output",
- CellGroupingRules->{GroupTogetherGrouping, 10001.}]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[TextData[{
- Cell[BoxData[
- ButtonBox["OpticalRepopulation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
- " and ",
- Cell[BoxData[
- ButtonBox["TransitRepopulation",
- BaseStyle->"Link",
- ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
- " supply the repopulation matrices."
-}], "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellChangeTimes->{3.522586211804159*^9},
- CellID->78071612],
-
-Cell[BoxData[
- RowBox[{"MatrixForm", "[",
- RowBox[{"repop", "=",
- RowBox[{
- RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
- RowBox[{"TransitRepopulation", "[",
- RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellChangeTimes->{3.522586211804293*^9, 3.53455357284375*^9},
- CellID->109972911],
-
-Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {
- RowBox[{"\[Gamma]t", "+",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0",
- "0"},
- {"0", "0", "0", "0"},
- {"0", "0", "0", "0"},
- {"0", "0", "0", "0"}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output",
- CellGroupingRules->{GroupTogetherGrouping, 10000.}],
-
-Cell[TextData[{
- "Density-matrix and field variables at one point ",
- Cell[BoxData[
- FormBox["i", TraditionalForm]],
- FormatType->"TraditionalForm"]
-}], "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->24518771]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"vars", "=",
- RowBox[{
- RowBox[{"Join", "[",
- RowBox[{
- RowBox[{
- RowBox[{"DMVariables", "[", "system", "]"}], "/.",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}],
- ",",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "q", ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "q", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"q", ",",
- RowBox[{"-", "1"}], ",", "1", ",", "2"}], "}"}]}], "]"}]}], "]"}], "//",
- "Flatten"}]}]], "Input",
- CellChangeTimes->{{3.5346077411875*^9, 3.534607771078125*^9}, {
- 3.534636125296875*^9, 3.534636133625*^9}, {3.534637152109375*^9,
- 3.53463715240625*^9}}],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[TextData[{
- "Density matrix evolution equations at one point ",
- Cell[BoxData[
- FormBox["i", TraditionalForm]],
- FormatType->"TraditionalForm"]
-}], "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->112084045],
-
-Cell[BoxData[
- RowBox[{"TableForm", "[",
- RowBox[{"eqs", "=",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Expand", "@",
- RowBox[{"LiouvilleEquation", "[",
- RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}],
- "/.",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- RowBox[{"(",
- SubscriptBox["\[Rho]",
- RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Rule]",
- RowBox[{
- SuperscriptBox[
- RowBox[{"(",
- SubscriptBox["\[Rho]",
- RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"a_", ",", "b_"}]], "\[Rule]",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.",
- RowBox[{"\[CapitalDelta]23", "\[Rule]",
- SubscriptBox["\[CapitalDelta]23", "i"]}]}]}], "]"}]], "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellChangeTimes->{{3.53460253115625*^9, 3.53460255159375*^9}, {
- 3.534607779234375*^9, 3.53460778478125*^9}, {3.53463614115625*^9,
- 3.5346361436875*^9}, {3.53463617796875*^9, 3.53463618378125*^9}},
- CellID->26920765]
-}, Open ]],
-
-Cell[BoxData[
- TagBox[
- TagBox[GridBox[{
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{"\[Gamma]t", "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "+",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"\[CapitalDelta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{
- RowBox[{"-",
- FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"\[CapitalDelta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "-",
- RowBox[{"2", " ", "Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "-",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"\[CapitalDelta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{
- RowBox[{"-",
- FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"\[CapitalDelta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"2", " ", "\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"2", " ", "\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "+",
- RowBox[{"2", " ", "Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- SqrtBox["3"]], "-",
- RowBox[{"\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"\[CapitalDelta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i"], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{
- RowBox[{"-",
- FractionBox["1", "2"]}], " ", "\[CapitalGamma]3", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[CapitalDelta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i"], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i"], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i"], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i"], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{
- FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- FractionBox[
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- RowBox[{"2", " ",
- SqrtBox["3"]}]], "-",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"\[CapitalOmega]L", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i"], " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]},
- {
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ", "Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "+",
- RowBox[{"2", " ", "Ec", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[CapitalGamma]3", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
- "-",
- RowBox[{"\[Gamma]t", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
- "]"}]}]}]}]}
- },
- GridBoxAlignment->{
- "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.5599999999999999]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}],
- Column],
- Function[BoxForm`e$,
- TableForm[BoxForm`e$]]]], "Output"],
-
-Cell["Initial conditions for density matrix:", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->16777324],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"inits", "=",
- RowBox[{
- RowBox[{"InitialConditions", "[",
- RowBox[{"system", ",",
- RowBox[{"TransitRepopulation", "[",
- RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
- "]"}]}]}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "1"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
- "\[Equal]", "0"}]}], "}"}]], "Output"]
-}, Open ]],
-
-Cell[TextData[{
- "Here we find the field evolution equations with finite difference \
-approximation (first-order upwind scheme) for co-propagating beams. ",
- StyleBox["h",
- FontSlant->"Italic"],
- " is the the grid spacing in the spatial dimension."
-}], "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->100512453],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"polarizationcomponents", "=",
- RowBox[{"ExprToReIm", "[",
- RowBox[{
- RowBox[{
- RowBox[{"ExpandDipoleRME", "[",
- RowBox[{"system", ",",
- RowBox[{
- RowBox[{
- RowBox[{
- "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]2", " ", "n0", " ",
- RowBox[{"ReducedME", "[",
- RowBox[{"1", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}],
- RowBox[{"Components", "@", " ",
- RowBox[{"ECT", "@",
- RowBox[{"Sum", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"DensityMatrix", "[", "system", "]"}], "[",
- RowBox[{"[",
- RowBox[{"j", ",", "i"}], "]"}], "]"}],
- RowBox[{"WignerEckart", "[",
- RowBox[{
- RowBox[{"system", "[",
- RowBox[{"[", "i", "]"}], "]"}], ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",",
- RowBox[{"system", "[",
- RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ",",
- RowBox[{"{",
- RowBox[{"i", ",",
- RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}]}]}], "/.",
- RowBox[{
- RowBox[{"ReducedME", "[",
- RowBox[{"2", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}],
- "\[Rule]", "0"}]}], "/.",
- RowBox[{
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
- "]"}]}]}]}], "]"}], "/.",
- RowBox[{"\[Omega]2", "\[Rule]",
- RowBox[{"2",
- RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "/.",
- RowBox[{
- RowBox[{"n0", " ",
- SuperscriptBox["\[Lambda]", "2"], "\[CapitalGamma]2"}], "\[Rule]",
- RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ",
- RowBox[{"\[Eta]", "/", "3"}]}]}]}], "]"}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"-",
- SqrtBox["3"]}], " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
- RowBox[{
- RowBox[{"-",
- SqrtBox["3"]}], " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
- RowBox[{
- RowBox[{"-",
- SqrtBox["3"]}], " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
- RowBox[{
- RowBox[{"-",
- SqrtBox["3"]}], " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}],
- "}"}]], "Output"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"fieldcomponents", "=",
- RowBox[{
- RowBox[{"ExprToReIm", "[",
- RowBox[{
- RowBox[{"Expand", "[",
- RowBox[{
- RowBox[{"ReducedME", "[",
- RowBox[{"1", ",",
- RowBox[{"{",
- RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}],
- RowBox[{"Components", "@",
- RowBox[{"ToContravariant", "[", "field", "]"}]}]}], "]"}], "/.",
- RowBox[{"t", "\[Rule]", "0"}]}], "]"}], "/.",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"a_", ",", "b_"}]], "\[Rule]",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"fieldeqs", "=",
- RowBox[{"Thread", "[",
- RowBox[{
- RowBox[{"D", "[",
- RowBox[{"fieldcomponents", ",", "t"}], "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"c", " ", "polarizationcomponents"}], "-",
- RowBox[{"c", " ",
- RowBox[{
- RowBox[{"(",
- RowBox[{"fieldcomponents", "-",
- RowBox[{"(",
- RowBox[{"fieldcomponents", "/.",
- RowBox[{"i", "\[Rule]",
- RowBox[{"i", "-", "1"}]}]}], ")"}]}], ")"}], "/", "h"}]}]}]}],
- "]"}]}]], "Input"],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"c", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",",
- RowBox[{
- RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
- "h"]}], "-",
- RowBox[{
- SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
- ",",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"c", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",",
- RowBox[{
- RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
- "h"]}], "-",
- RowBox[{
- SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
- ",",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"c", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",",
- RowBox[{
- RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
- "h"]}], "-",
- RowBox[{
- SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Im", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
- ",",
- RowBox[{
- RowBox[{
- SuperscriptBox[
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]",
- MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"c", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",",
- RowBox[{
- RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "+",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], ")"}]}],
- "h"]}], "-",
- RowBox[{
- SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
- RowBox[{
- SubscriptBox["\[Rho]",
- RowBox[{"Re", ",",
- RowBox[{"{",
- RowBox[{"1", ",", "0"}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"2", ",",
- RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}],
- "}"}]], "Output"]
-}, Open ]],
-
-Cell["Initial conditions for fields (assume uniform in space).", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->135712718],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"initfields", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0",
- RowBox[{"-", "1"}]]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
- "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
- "0"}]}], "}"}]}]], "Input",
- CellChangeTimes->{{3.534636308703125*^9, 3.53463633696875*^9}}],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0",
- RowBox[{"-", "1"}]]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
- "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}],
- "}"}]], "Output"]
-}, Open ]],
-
-Cell["\<\
-Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \
-fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\
-\>", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->71091213],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"boundaryconds", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0",
- RowBox[{"-", "1"}]]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
- "0"}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}],
- "}"}]}]], "Input",
- CellChangeTimes->{{3.534636354140625*^9, 3.534636376*^9}}],
-
-Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]",
- SubscriptBox["\[CapitalOmega]0",
- RowBox[{"-", "1"}]]}], ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
- ",",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}],
- "}"}]], "Output"]
-}, Open ]]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell["Results", "Section"],
-
-Cell["Choose number of spatial points.", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->35853137],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"n", "=", "80"}], ";"}]], "Input"],
-
-Cell["All system variables for all spatial points.", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->380000867],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"allvars", "=",
- RowBox[{"Flatten", "@",
- RowBox[{"Table", "[",
- RowBox[{"vars", ",",
- RowBox[{"{",
- RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"],
-
-Cell["Equations for all points for the co-propagating case.", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->129539961],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"TableForm", "[",
- RowBox[{"alleqs", "=",
- RowBox[{"Join", "[",
- RowBox[{
- RowBox[{"DeleteCases", "[",
- RowBox[{
- RowBox[{"Flatten", "@",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"Join", "[",
- RowBox[{"eqs", ",", "inits", ",", "fieldeqs", ",", "initfields"}],
- "]"}], ",",
- RowBox[{"{",
- RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], ",",
- RowBox[{"Alternatives", "@@",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"D", "[",
- RowBox[{
- RowBox[{"#", "[",
- RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
- "_"}], "&"}], "/@",
- RowBox[{"(",
- RowBox[{"boundaryconds", "/.",
- RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}]}], "]"}], ",",
- RowBox[{"(",
- RowBox[{"boundaryconds", "/.",
- RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], "]"}]}], "]"}],
- ";"}]], "Input",
- CellChangeTimes->{3.53463640765625*^9, 3.534636603890625*^9}],
-
-Cell[TextData[{
- "Here we choose parameters and integrate the equations. Blue is ",
- Cell[BoxData[
- FormBox[
- SuperscriptBox["\[Sigma]", "-"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- " field intensity, magenta is ",
- Cell[BoxData[
- FormBox[
- SuperscriptBox["\[Sigma]", "+"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- "field intensity."
-}], "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->40567123],
-
-Cell[TextData[{
- "Parameters:\n",
- Cell[BoxData[
- SubscriptBox["\[CapitalOmega]0",
- RowBox[{"-", "1"}]]]],
- ": input Rabi frequency for ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- SuperscriptBox["\[Sigma]", "-"], " "}], TraditionalForm]],
- FormatType->"TraditionalForm"],
- "(rad/s) \n",
- Cell[BoxData[
- SubscriptBox["\[CapitalOmega]0", "1"]]],
- ": input Rabi frequency for ",
- Cell[BoxData[
- FormBox[
- SuperscriptBox["\[Sigma]", "+"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- "(rad/s) \n\[CapitalGamma]2: natural width of J=1 level (rad/s) \n\
-\[CapitalGamma]3: natural width of upper J=0 level (rad/s)\n\[Gamma]t: \
-transit relaxation rate (rad/s)\nEc: static electric field coupling strength \
-(rad/s)\n\[CapitalDelta]: Light detuning from J=1 level (rad/s)\n\
-\[CapitalOmega]L: Zeeman shift (rad/s)\n",
- Cell[BoxData[
- SubscriptBox["\[CapitalDelta]23", "i_"]]],
- ": frequency splitting between upper J=1 and J=0 level as a function of the \
-position ",
- Cell[BoxData[
- FormBox["i", TraditionalForm]],
- FormatType->"TraditionalForm"],
- ", as ",
- Cell[BoxData[
- FormBox["i", TraditionalForm]],
- FormatType->"TraditionalForm"],
- " varies from zero to ",
- Cell[BoxData[
- FormBox["n", TraditionalForm]],
- FormatType->"TraditionalForm"],
- " (rad/s)\nh: distance between grid points (m)\nc: light speed (m/s)\n\
-\[Eta]: light coupling constant (rad/s/m)"
-}], "Text"],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"params", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]0",
- RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
- RowBox[{"1.", " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalGamma]2", "\[Rule]",
- RowBox[{"1.", " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]",
- RowBox[{".001", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"Ec", "\[Rule]",
- RowBox[{"10.", " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalDelta]", "\[Rule]",
- RowBox[{
- RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]",
- RowBox[{"50.", " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"c", "\[Rule]",
- RowBox[{"3.", " ",
- SuperscriptBox["10", "8"]}]}], ",",
- RowBox[{"\[Eta]", "\[Rule]",
- RowBox[{"3.", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{"794.7", " ",
- SuperscriptBox["10",
- RowBox[{"-", "9"}]]}], ")"}], "2"],
- RowBox[{"(",
- SuperscriptBox["10", "15"], ")"}],
- RowBox[{
- RowBox[{"(",
- RowBox[{"2", " ", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}], ")"}], "/",
- RowBox[{"(",
- RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",",
- RowBox[{"h", "\[Rule]",
- RowBox[{"5.", "/", "n"}]}], ",",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]",
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "105."}], "+",
- RowBox[{"10",
- RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n",
- RowBox[{
- RowBox[{"sol", "=",
- RowBox[{"NDSolve", "[",
- RowBox[{
- RowBox[{"Evaluate", "[",
- RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",",
- RowBox[{"{",
- RowBox[{"t", ",", "0", ",",
- RowBox[{"4.", " ",
- SuperscriptBox["10",
- RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{"ListLinePlot", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Transpose", "@",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"Evaluate", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"i", " ", "h"}], ",",
- SuperscriptBox[
- RowBox[{"Abs", "[",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+",
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}],
- ")"}], "]"}], "2"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"i", " ", "h"}], ",",
- SuperscriptBox[
- RowBox[{"Abs", "[",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+",
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}],
- ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}],
- "]"}], ",",
- RowBox[{"{",
- RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.",
- RowBox[{"sol", "[",
- RowBox[{"[", "1", "]"}], "]"}]}], "/.",
- RowBox[{"t", "\[Rule]",
- RowBox[{"4.", " ",
- SuperscriptBox["10",
- RowBox[{"-", "6"}]]}]}]}], ",",
- RowBox[{"FrameLabel", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- "\"\<Position (m)\>\"", ",",
- "\"\<Intensity \!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \
-\(2\)]\) (rad/s\!\(\*SuperscriptBox[\()\), \(2\)]\)\>\""}], "}"}]}]}],
- "]"}]}], "Input"],
-
-Cell[BoxData[
- GraphicsBox[{{}, {},
- {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
-1:eJxt039M1HUcx/H7jfLzfhBUrlxQJpOAzMIm6/OGiMMOQkg2IX4deAwERTyE
-CEygOBCoKDOooaZpDMjzCDiF0zrZLVCWc4qI/PI8TqrjNNQy0IN+jBf/9d2+
-++6x5/f93Wf7fj7PpOfFqXgcDif23/u/5/9fOua/1Zrw0fxk6KKNbOJ1691m
-jSBs0f2sw3Rm92cOb/gSExWk9ttSn4MHWZ1I8WjE50V4mF1t666z1K2Hx1ju
-iU7/+HWhsJk1aHipG8MjYAv7Wa4SaMxRsJWNGrS3hFOx8BQ7YX16QLkQD//K
-NrR39zklJMI2Nt43Gv1EQSpsZxtXn4zYFJ8O32HWw0ECabEKnmGmX95Wu+7P
-gu+y38YP5ZyMzIXvsVXXnt/2HWcnfJ9d/N7TfPGFXfAfrP+Sb+7xLQXwnyyp
-un4g0V4IP2CXO08JTDnF8F9srv2lH4q3l8Kz7HawUl2yeS88x+JLInvfUZXD
-D9mVzyMDVnp+AD9izhphxEppJexg1T57OEm8Knie+SoeRuVH74MX2Io990IC
-amrhv1nsBm0A3+9jmEMjfoLqTcr6RZdx6FmTIuNd86foXDpvmcg5mrEfnUuF
-12+4ZT15AJ1HC3Gj+dk3vkDn0eo0haFlqBGdT9PJk8br9q/Q+fTqwM2YosCD
-6AL61vFl+FOth9EFJD/7yi2h7xF0Ic1UWSouHDqKLqT1P35Y6utzDF1ER242
-+L0/fRxdRDXeO5Mbtc3oTnRuvEn11rUWdCeKkXt0BU21oS+jAVu5cnavFn0Z
-qWWPu+/epUNfTkHyrLBZRzv6cvrJm1s/ktCB7kzn8qRSh1cXujO1JNROhFfp
-0V0oNPOTyomXT6O7kMiFm9kb143uSpLhYV42pwfdlRobxrZqYpa6Gxla174X
-Ob30fTcK5lx5My4R6+W4U6BmjbZtEP+rzJ0qJY81maIy0T1I37zWs0KG/Vjm
-QQcnx3aUDy3tXzEVrvjG4G9XL5rE1GcvKjGsysf7YiqqDfx6iwQ2iqlzfiil
-1bYd8xI6c/aBIplgkpB8c7CYL9iGeQmdz9N3NIVkY15CDQF3ii/3LK1PSjon
-H93p33EeSUqW+y2ZrzkyMC+lGY831uxYBxulVHPKluGlU2JeRqX6Xr7+dhrm
-ZdSjrp9LqcD5L5NRdFftVaNzCuZlxE03e42EJGHek45FX0g7MJgY9g98xGyh
-
- "]]},
- {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
-1:eJw1zgtMU3cUx/FrgVaE0tJqWCYpuo3geOiqTgSEc4LEDXVxVYgKRgUlisYJ
-qIzGV0UUCRAEESxhLqDAECYVsICVCaLRoKJiFTYfPAQllQw3EC2+jefc5Obm
-k+//98+dGr11aYxIEATNx/fTl5+65DWpfcPNwZ9lgOLN+miry0VyE6SuPrDY
-8Jj7VSjvT6vR9rJvQa+bedHJdrYZ/p6bebCrgd0JN2K3ty8/z34Ad+s9UVHN
-7objmfKnC4vZveCEIcqOCnYfuF4yr/vyBPsJ5LYq1Huy2QNQIt3l653HtkDn
-ynj/U0nsQdgbsOLKnTj2v+CeukydtYr9HDb1tc1zDGH/BymDD69UeLH/hzeu
-SWEiFXsYakeTZWXWJvIIZAdrbSMG2S/Ad5kkoes2exTWTAs3JhnZLyH03rN8
-fTH7FZTGaqb4p7CtkB9wplG6kT0G9UXuBSOh7NdQqFFv8vNgv4FIL9Vv6wT2
-W3hZtbZoqukC+R08jNB/c2cV+z38nvYocKKYLaC++9X1hWV/fbZOwIYQF7Up
-iCyMw623ftyR0N5IfRyK/Gc050aRBRHW/fRVZGTveeoiDBsS9q1dTxZssMOo
-Tw+6baJugx6+F9+OAlmwRaXTZY1f7jnqtlj0dFifaGmgboctbQvQw42ss8Pv
-q2ts+8LrqYuxQ9YzeeWGOupiTJj1z+UbCUbqEnSMaL1+NPIsdQnmnT60aNvs
-WurjcbUpHGWWaurjUTKywui6/wx1ezQF747601pF3R6/NujGDAWV1CfgkbiN
-ge9tyqlPQB9tfKJZVULdAUOXlIslnkXUHdBXPXTYJ6aAuiP+GnVT/0PjEeqO
-OFM7lpMzPYu6FB+Y7ecmRmdTl2Lb/u/uBy0opO6Equ6MxGuGUupOKD5bJU/N
-KqMuw5175tW2NNP/6GTY83O394wv6LwgRwg0y94NUEc5qt0mnf5jDt8nx+c+
-Xq79nuQmOVZs36L9JYb3zuh3YVdAWBQZnVEl3Tc0ksF7Z0zPDAs4mM57Z/Se
-5WJnreC9Apt005XqSt4rMC//UVxlC+8VWDK/s3XoEu8VaMk5OeeumfdK3FZl
-+DbtHu+VOBYvybV08V6JsapjDvd7eK/EuuQUzbN+3k/EGofkaSEDpcEfAHau
-f0Y=
- "]]}},
- AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
- Axes->True,
- AxesOrigin->{0, 0},
- Frame->True,
- FrameLabel->{
- FormBox["\"Position (m)\"", TraditionalForm],
- FormBox[
- "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
-\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"",
- TraditionalForm]},
- PlotRange->{All, All},
- PlotRangeClipping->True,
- PlotRangePadding->{Automatic, Automatic}]], "Output"]
-}, Open ]],
-
-Cell["\<\
-Same plot with flipped magnetic field\
-\>", "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->264338212],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[{
- RowBox[{
- RowBox[{"params", "=",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]0",
- RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",",
- RowBox[{
- SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
- RowBox[{"1.", " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalGamma]2", "\[Rule]",
- RowBox[{"1.", " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",",
- RowBox[{"\[Gamma]t", "\[Rule]",
- RowBox[{".001", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"Ec", "\[Rule]",
- RowBox[{"10.", " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalDelta]", "\[Rule]",
- RowBox[{
- RowBox[{"-", "100."}], " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"\[CapitalOmega]L", "\[Rule]",
- RowBox[{
- RowBox[{"-", "50."}], " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"c", "\[Rule]",
- RowBox[{"3.", " ",
- SuperscriptBox["10", "8"]}]}], ",",
- RowBox[{"\[Eta]", "\[Rule]",
- RowBox[{"3.", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{"794.7", " ",
- SuperscriptBox["10",
- RowBox[{"-", "9"}]]}], ")"}], "2"],
- RowBox[{"(",
- SuperscriptBox["10", "15"], ")"}],
- RowBox[{
- RowBox[{"(",
- RowBox[{"2", " ", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}], ")"}], "/",
- RowBox[{"(",
- RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",",
- RowBox[{"h", "\[Rule]",
- RowBox[{"5.", "/", "n"}]}], ",",
- RowBox[{
- SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]",
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "105."}], "+",
- RowBox[{"10",
- RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ",
- SuperscriptBox["10", "6"]}]}], ",",
- RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n",
- RowBox[{
- RowBox[{"sol", "=",
- RowBox[{"NDSolve", "[",
- RowBox[{
- RowBox[{"Evaluate", "[",
- RowBox[{"alleqs", "/.", "params"}], "]"}], ",", "allvars", ",",
- RowBox[{"{",
- RowBox[{"t", ",", "0", ",",
- RowBox[{"4.", " ",
- SuperscriptBox["10",
- RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}],
- ";"}], "\[IndentingNewLine]",
- RowBox[{"ListLinePlot", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"Transpose", "@",
- RowBox[{"Table", "[",
- RowBox[{
- RowBox[{"Evaluate", "[",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{"i", " ", "h"}], ",",
- SuperscriptBox[
- RowBox[{"Abs", "[",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+",
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",",
- RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}],
- ")"}], "]"}], "2"]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"i", " ", "h"}], ",",
- SuperscriptBox[
- RowBox[{"Abs", "[",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+",
- RowBox[{"\[ImaginaryI]", " ",
- RowBox[{
- SubscriptBox["\[CapitalOmega]",
- RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}],
- ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}],
- "]"}], ",",
- RowBox[{"{",
- RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.",
- RowBox[{"sol", "[",
- RowBox[{"[", "1", "]"}], "]"}]}], "/.",
- RowBox[{"t", "\[Rule]",
- RowBox[{"4.", " ",
- SuperscriptBox["10",
- RowBox[{"-", "6"}]]}]}]}], ",",
- RowBox[{"FrameLabel", "\[Rule]",
- RowBox[{"{",
- RowBox[{
- "\"\<Position (m)\>\"", ",",
- "\"\<Intensity \!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \
-\(2\)]\) (rad/s\!\(\*SuperscriptBox[\()\), \(2\)]\)\>\""}], "}"}]}]}],
- "]"}]}], "Input"],
-
-Cell[BoxData[
- GraphicsBox[{{}, {},
- {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
-1:eJxtzn9MzHEcx/Fvv0R31V0hP1rkx8atNrXlV3i/T0k4UVSE8qOk/GiF4nak
-kBYn3xaG/EjtnJbunFDKOuoIiwoX7SQ5lVh+xMnl93p///Pdvvvusefn9dnX
-fW1CSIwlwzDBf99/3/8/ang9RfP96iijuN9a2CtXL453sZnd71rYXBn+Gxtd
-yPWQDqNLDIpx5CdQVdrS3nlkEvkZ4PQIPWueQjaA7qRpSa4Gya0QWWVs8Pkx
-h9wGt9rBQ5IlIRth9Q538YcbweR2MAebErTvQ8mdsD5/swcTGEHugkMHAtJT
-1kWR38Pbui/e/svWkrtBfPmoS0xsDPkjbOSXZCfJN5A/wc8zhrxur03kz1Cf
-NnRWyJsEcg90xQdJmWFJ5C9gkr1ShfptI38Fj64F843aZLIJZsWsOS8P3En+
-BiNK5QVJ42TkXpiH++9vEaSSv4PUMUfkKkojm0H0rry6Wp9O7oPewvBco2Yf
-+QcYFGNWRZzOIP8Edv3quT4VmeRfYBquzlrSnUX+DbrwZFtZmJzM4K5qfa+4
-NbvfexhMjXOfpwtiqVugcmr0sbN3cqhbYDdv8u2J4bnULVEkLfc9aXeMuiVO
-jbS3EuqPU7dCVhprnlt/groVHuyYHqZ6dYq6Nfadel7l5nWGujWysqjUsAXn
-qNugf1wB+1iRT90Gh9vX6er4BdQHYPClSVVLLxRSH4DNfPkGgURB3RZbjvD8
-lN5K6raYKPGc1jO2iPpAdOuJq10ZXUx9IOrUNw73qkqoD0KReGHUyiI19UFo
-+La9M4zRULdDw72bsCbtCnU7/Nx+1vWAuZQ6D683P/WoybhGnYdsdXGo6cV1
-6nzcZXUtJK+jjDofMy9FODS4lVO3x9CnNXdHvKTze+yxrjXZUpLC3e+AOb7Z
-mdadKuoO6Fp/Md7Ti8w4Ik/d8MhvN/f/jih9Pb6yIpHMCFC5z7c58jQZBfjA
-Z4YykOXOC3CRlsmfqCRrBcj67k5py+f2QhyV8lCRdJnbC7HkydIyvYrbCzFa
-dmjOsApuL8SA0ibvl5Xc3gm3Nl5IbKvh9k44fgV/Wl8tt3fCRdEWRcsecnsn
-DCgcktjymNs7Y/HItx2Dm7i9M97+1eQGL7i9M04IzNA8aOH2zrjc38vQZeT2
-g9Fh28xNAW/Us/8Agkd76w==
- "]]},
- {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
-1:eJw1ywtQzGsYx/F/m63VtteU0sokSRdDQsJ4H5t1GQ1tjJG0kVvbJvYccU4c
-rRAToyZFmmKnIZdBamOLytaKzLhXWorOpOl0myK0VlqO6XnfmWfe+cx3fp6x
-uyK2sRiGkf9/v3/69Kkxxzo+10hHdYt0uM7zaDJRG4h299rATXrqehIeXV9d
-VUj9gkgfjLQtPEzdSFRd/vddVdQmkubsPmsojLqVDEz65hI4i/pfMuwYvPfE
-OOp2stHFfWOX2YDuIFs/Rtq6vaXuJM4FCXJxJXUXaZ8yWZZbQN1Drm9Wpxw4
-SN1HlL2PV3YrqPuJxD+ytmcR9UeSnPbK+81E6k/k0rnpPj7f76MHiSzzmQTK
-qD+TAN+nbSFq6i8kyMPYaZxK/ZVE89X9Ie3V6CHSGv+iPjaL2kz63mdc9g2j
-/kYGxmdbeUNVaAuRcatmvLxB/Z3smtmQkBJOPUycb65rLGZT/yAeA817Jmsr
-0SPkZFxd/39yaiuxhpULbD7cQ/8kthOMfpJMagYUTcsuFLigNQz4tsxZL6+6
-i90G5CrR0YZgtMYG/t6QuK6yqQI7C9KVdYp8KVrDAp/iFk5qYzl2WyhyuNv0
-MBCtsYUZZ2IgRqfHPgb4/ziHZlvvYB8D5udRS6TxaIYNh4KWpM/X3sbOhtxY
-r8Ly/jLsdqB6XWFewEVr7CDFsyUvIkiH3R6sH/xzqmeWYreHwanN6VN8SrBz
-4DTPs2TRj2LsHCjSunYKE25gHwuKpW4BDfeuYR8LE1qODJeevYzdAQor3MPe
-7b+I3QG8htzWFBi12LlwONDwODw/DzsX+tKj4tT6LOyOkB39l9L75HHsjuAm
-6bbMNu/HzoO8yA3xyhV7sfOg6OWyucneR7HzId+QydUZM7DzQXe+TWHJoF0A
-OfzMNL/VydgFYH91vmCVAs0IwbtnpNZGtm/UIITGkcRUyxa0RginuNNa7XKT
-Rm0Qgqy5j12zDc2IoPCqvGQeZw/uRcCae0bXlfMn7kXQfTDfdC7pD9yLIO6m
-XZ3ApMa9GEKz1aGcjt24FwPDLYoKDkBrxPBkTl5bkj4R92KIWPq+dHD6Ttw7
-QdTWhis7Hqlw7wTgx4tmh8Tj3gnaHSUmhqXEvRMs98paEZCyA/fjoLdssaV3
-53bpL+2TdNk=
- "]]}},
- AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
- Axes->True,
- AxesOrigin->{0, 0},
- Frame->True,
- FrameLabel->{
- FormBox["\"Position (m)\"", TraditionalForm],
- FormBox[
- "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
-\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"",
- TraditionalForm]},
- PlotRange->{All, All},
- PlotRangeClipping->True,
- PlotRangePadding->{Automatic, Automatic}]], "Output"]
-}, Open ]]
-}, Open ]]
-},
-AutoGeneratedPackage->None,
-WindowSize->{1084, 904},
-WindowMargins->{{Automatic, 248}, {Automatic, -30}},
-ShowSelection->True,
-FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)",
-StyleDefinitions->"Default.nb"
-]
-(* End of Notebook Content *)
-
-(* Internal cache information *)
-(*CellTagsOutline
-CellTagsIndex->{}
-*)
-(*CellTagsIndex
-CellTagsIndex->{}
-*)
-(*NotebookFileOutline
-Notebook[{
-Cell[CellGroupData[{
-Cell[567, 22, 32, 0, 71, "Section"],
-Cell[602, 24, 206, 6, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->94096541],
-Cell[CellGroupData[{
-Cell[833, 34, 68, 1, 31, "Input"],
-Cell[904, 37, 64, 1, 30, "Output"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[1005, 43, 113, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->123059143],
-Cell[1121, 47, 230, 5, 31, "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->2058623809],
-Cell[1354, 54, 108, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->184495045]
-}, Open ]],
-Cell[1477, 59, 349, 7, 31, "Input"],
-Cell[1829, 68, 572, 16, 72, "Input"],
-Cell[2404, 86, 282, 7, 33, "Input"],
-Cell[2689, 95, 416, 11, 31, "Input"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[3142, 111, 38, 0, 71, "Section"],
-Cell[3183, 113, 163, 3, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->188360977],
-Cell[CellGroupData[{
-Cell[3371, 120, 2251, 50, 132, "Input"],
-Cell[5625, 172, 2828, 69, 72, "Output"]
-}, Open ]],
-Cell[8468, 244, 120, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->13161682],
-Cell[CellGroupData[{
-Cell[8613, 250, 1677, 47, 53, "Input"],
-Cell[10293, 299, 1779, 54, 55, "Output"]
-}, Open ]],
-Cell[12087, 356, 164, 4, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->337337829],
-Cell[CellGroupData[{
-Cell[12276, 364, 634, 18, 52, "Input"],
-Cell[12913, 384, 10059, 299, 132, "Output"]
-}, Open ]],
-Cell[22987, 686, 164, 4, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->327463138],
-Cell[CellGroupData[{
-Cell[23176, 694, 1031, 28, 67, "Input"],
-Cell[24210, 724, 707, 21, 72, "Output"]
-}, Open ]],
-Cell[24932, 748, 117, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->737742553],
-Cell[CellGroupData[{
-Cell[25074, 754, 146, 4, 31, "Input"],
-Cell[25223, 760, 6204, 173, 144, "Output"]
-}, Open ]],
-Cell[31442, 936, 146, 4, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->944896957],
-Cell[CellGroupData[{
-Cell[31613, 944, 537, 15, 31, "Input",
- Evaluatable->False],
-Cell[32153, 961, 1411, 28, 190, "Output"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[33601, 994, 197, 4, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->471402495],
-Cell[33801, 1000, 1277, 29, 92, "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10001.}],
-Cell[35081, 1031, 2306, 70, 132, "Output",
- CellGroupingRules->{GroupTogetherGrouping, 10001.}],
-Cell[37390, 1103, 478, 14, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->448215320],
-Cell[37871, 1119, 367, 9, 31, "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10001.},
- CellID->150217419],
-Cell[38241, 1130, 870, 23, 72, "Output",
- CellGroupingRules->{GroupTogetherGrouping, 10001.}]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[39148, 1158, 484, 14, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->78071612],
-Cell[39635, 1174, 390, 9, 31, "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->109972911],
-Cell[40028, 1185, 1388, 40, 74, "Output",
- CellGroupingRules->{GroupTogetherGrouping, 10000.}],
-Cell[41419, 1227, 241, 7, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->24518771]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[41697, 1239, 1104, 31, 33, "Input"],
-Cell[42804, 1272, 4345, 136, 72, "Output"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[47186, 1413, 242, 7, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->112084045],
-Cell[47431, 1422, 1706, 44, 77, "Input",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->26920765]
-}, Open ]],
-Cell[49152, 1469, 60487, 1739, 554, "Output"],
-Cell[109642, 3210, 133, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->16777324],
-Cell[CellGroupData[{
-Cell[109800, 3216, 493, 14, 33, "Input"],
-Cell[110296, 3232, 4557, 154, 72, "Output"]
-}, Open ]],
-Cell[114868, 3389, 341, 8, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->100512453],
-Cell[CellGroupData[{
-Cell[115234, 3401, 2265, 58, 139, "Input"],
-Cell[117502, 3461, 1330, 45, 37, "Output"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[118869, 3511, 678, 19, 33, "Input"],
-Cell[119550, 3532, 553, 16, 30, "Output"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[120140, 3553, 537, 16, 31, "Input"],
-Cell[120680, 3571, 4404, 138, 83, "Output"]
-}, Open ]],
-Cell[125099, 3712, 152, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->135712718],
-Cell[CellGroupData[{
-Cell[125276, 3718, 924, 27, 31, "Input"],
-Cell[126203, 3747, 802, 25, 30, "Output"]
-}, Open ]],
-Cell[127020, 3775, 255, 5, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->71091213],
-Cell[CellGroupData[{
-Cell[127300, 3784, 916, 27, 31, "Input"],
-Cell[128219, 3813, 797, 25, 30, "Output"]
-}, Open ]]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[129065, 3844, 26, 0, 71, "Section"],
-Cell[129094, 3846, 127, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->35853137],
-Cell[129224, 3850, 68, 2, 31, "Input"],
-Cell[129295, 3854, 140, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->380000867],
-Cell[129438, 3858, 231, 7, 31, "Input"],
-Cell[129672, 3867, 149, 2, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->129539961],
-Cell[129824, 3871, 1171, 33, 72, "Input"],
-Cell[130998, 3906, 458, 14, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->40567123],
-Cell[131459, 3922, 1394, 41, 247, "Text"],
-Cell[CellGroupData[{
-Cell[132878, 3967, 4644, 129, 143, "Input"],
-Cell[137525, 4098, 3033, 59, 234, "Output"]
-}, Open ]],
-Cell[140573, 4160, 141, 4, 43, "MathCaption",
- CellGroupingRules->{GroupTogetherGrouping, 10000.},
- CellID->264338212],
-Cell[CellGroupData[{
-Cell[140739, 4168, 4667, 130, 143, "Input"],
-Cell[145409, 4300, 3004, 58, 235, "Output"]
-}, Open ]]
-}, Open ]]
-}
-]
-*)
-
-(* End of internal cache information *)
+(* Content-type: application/mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 7.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 145, 7]
+NotebookDataLength[ 159220, 4746]
+NotebookOptionsPosition[ 152176, 4535]
+NotebookOutlinePosition[ 152568, 4552]
+CellTagsIndexPosition[ 152525, 4549]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+
+Cell[CellGroupData[{
+Cell["General setup", "Section"],
+
+Cell[TextData[{
+ StyleBox["Mathematica",
+ FontSlant->"Italic"],
+ " 8 defines WignerD, so we need to unprotect it."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->94096541],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"If", "[",
+ RowBox[{
+ RowBox[{"$VersionNumber", "\[GreaterEqual]", "8."}], ",",
+ RowBox[{"Unprotect", "[", "WignerD", "]"}], ",",
+ RowBox[{"Remove", "[", "WignerD", "]"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{", "\<\"WignerD\"\>", "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Load the package.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->123059143],
+
+Cell[BoxData[
+ RowBox[{"<<", "AtomicDensityMatrix`"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.522532598595615*^9, 3.522532603186735*^9},
+ 3.522586258751662*^9},
+ CellID->2058623809],
+
+Cell["Set options.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->184495045]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"DensityMatrix", ",",
+ RowBox[{"ComplexExpandVariables", "\[Rule]", "Subscript"}], ",",
+ RowBox[{"TimeDependence", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input",
+ CellChangeTimes->{{3.534553583703125*^9, 3.534553592359375*^9}, {
+ 3.534554968828125*^9, 3.534554970171875*^9}}],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"Plot", ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"ListLinePlot", ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"ListDensityPlot", ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ";"}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"NDSolve", ",",
+ RowBox[{"PrecisionGoal", "\[Rule]", "1"}], ",",
+ RowBox[{"AccuracyGoal", "\[Rule]", "2"}], ",",
+ RowBox[{"MaxSteps", "\[Rule]",
+ SuperscriptBox["10", "6"]}]}], "]"}], ";"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"LevelDiagram", ",",
+ RowBox[{"JLabel", "\[Rule]", "True"}], ",",
+ RowBox[{"MLabel", "\[Rule]", "True"}], ",",
+ RowBox[{"Arrowheads", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", ".07"}], ",", ".07"}], "}"}]}], ",",
+ RowBox[{"MLabelPosition", "\[Rule]",
+ RowBox[{"{", "Top", "}"}]}]}], "]"}], ";"}]], "Input"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Atomic system setup", "Section"],
+
+Cell["Define the atomic system.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258751924*^9},
+ CellID->188360977],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"system", "=",
+ RowBox[{"Sublevels", "[",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]", "1"}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}]}], "]"}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}]}], "]"}]}],
+ "\[IndentingNewLine]", "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{"TableForm", "[",
+ RowBox[{"system", "=",
+ RowBox[{"DeleteStates", "[",
+ RowBox[{"system", ",",
+ RowBox[{"Label", "\[Rule]", "2"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}], "]"}]}], "Input",
+ CellChangeTimes->{{3.53455248065625*^9, 3.534552600640625*^9}, {
+ 3.534552682078125*^9, 3.534552741734375*^9}, {3.53455363609375*^9,
+ 3.534553678203125*^9}, {3.5345537420625*^9, 3.5345537629375*^9}, {
+ 3.534555252625*^9, 3.534555255046875*^9}}],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"1", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "0"}], ",",
+ RowBox[{"Energy", "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}]},
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]", "1"}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"M", "\[Rule]", "1"}]}], "]"}]},
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"2", ",",
+ RowBox[{"J", "\[Rule]", "1"}], ",",
+ RowBox[{"L", "\[Rule]", "1"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]2"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]2"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "3", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Even"}], ",",
+ RowBox[{"M", "\[Rule]",
+ RowBox[{"-", "1"}]}]}], "]"}]},
+ {
+ RowBox[{"AtomicState", "[",
+ RowBox[{"3", ",",
+ RowBox[{"J", "\[Rule]", "0"}], ",",
+ RowBox[{"L", "\[Rule]", "0"}], ",",
+ RowBox[{"S", "\[Rule]", "0"}], ",",
+ RowBox[{"NaturalWidth", "\[Rule]", "\[CapitalGamma]3"}], ",",
+ RowBox[{"Energy", "\[Rule]", "\[Omega]3"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "1", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{
+ RowBox[{"BranchingRatio", "[", "2", "]"}], "\[Rule]", "0"}], ",",
+ RowBox[{"Parity", "\[Rule]", "Odd"}], ",",
+ RowBox[{"M", "\[Rule]", "0"}]}], "]"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["Define the optical field.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->13161682],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"field", "=",
+ RowBox[{
+ RowBox[{"ToCartesian", "[",
+ RowBox[{"Transpose", "@",
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}]}], ")"}]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]], ",", "0",
+ ",",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "t"}], " ", "\[Omega]"}], ")"}]}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}]}], ")"}]}],
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]]}], "}"}],
+ "}"}]}], "]"}], "//", "FullSimplify"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]], "-",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}], ")"}]}],
+ RowBox[{
+ SqrtBox["2"], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]], "-",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"(",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}], ")"}]}]}], ")"}]}],
+ RowBox[{
+ SqrtBox["2"], " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}]}]], ",", "0"}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell["The Hamiltonian for the system subject to the optical field.", \
+"MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->337337829],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"Ho", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]", "field"}], ",",
+ RowBox[{"MagneticField", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",",
+ RowBox[{"\[CapitalOmega]L", "/", "BohrMagneton"}]}], "}"}]}]}],
+ "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"Cos", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{"Sin", "[",
+ RowBox[{"t", " ", "\[Omega]"}], "]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0",
+ RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}], "0"},
+ {"0", "0", "0", "\[Omega]3"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["The Hamiltonian for the system subject to the coupling field", \
+"MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->327463138],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"HE", "=",
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"Hamiltonian", "[",
+ RowBox[{"system", ",",
+ RowBox[{"ElectricField", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Ec",
+ RowBox[{
+ SqrtBox["6"], "/",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}]}]}],
+ ",", "0", ",", "0"}], "}"}]}], ",",
+ RowBox[{"Interaction", "\[Rule]",
+ RowBox[{"{", "E1", "}"}]}]}], "]"}]}], "/.", " ",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}], "\[Rule]",
+ "0"}]}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.53455311584375*^9, 3.534553169015625*^9}, {
+ 3.534553199875*^9, 3.534553204765625*^9}, {3.5345532359375*^9,
+ 3.534553278921875*^9}, 3.534553331125*^9}],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "Ec"},
+ {"0", "0", "0",
+ RowBox[{"-", "Ec"}]},
+ {"0", "Ec",
+ RowBox[{"-", "Ec"}], "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["The total Hamiltonian", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->737742553],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"H", "=",
+ RowBox[{
+ RowBox[{"Ho", "+", "HE"}], "//", "TrigToExp"}]}], "]"}]], "Input"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}],
+ RowBox[{"\[Omega]2", "+", "\[CapitalOmega]L"}], "0", "Ec"},
+ {
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ", "\[Omega]"}]], " ",
+
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{"\[ImaginaryI]", " ", "t", " ", "\[Omega]"}]], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}], "0",
+ RowBox[{"\[Omega]2", "-", "\[CapitalOmega]L"}],
+ RowBox[{"-", "Ec"}]},
+ {"0", "Ec",
+ RowBox[{"-", "Ec"}], "\[Omega]3"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output"]
+}, Open ]],
+
+Cell["\<\
+The level diagram showing field detunings. Dashed arrows indicate dc fields. \
+The level diagram is set to not evaluate, because it needs an updated version \
+of the package that I haven\[CloseCurlyQuote]t released yet.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->944896957],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LevelDiagram", "[",
+ RowBox[{
+ RowBox[{"system", "/.",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Parity", "\[Rule]", "_"}], ")"}], "\[Rule]",
+ RowBox[{"Sequence", "[", "]"}]}]}], ",",
+ RowBox[{"H", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Omega]2", "\[Rule]", "3."}], ",",
+ RowBox[{"\[Omega]3", "\[Rule]", "3.5"}], ",",
+ RowBox[{"\[CapitalOmega]L", "\[Rule]", "1."}], ",",
+ RowBox[{"\[Omega]", "\[Rule]", "3."}]}], "}"}]}]}], "]"}]], "Input",
+ Evaluatable->False],
+
+Cell[BoxData[
+ GraphicsBox[{{{{}, LineBox[{{-0.4, 0.}, {0.4, 0.}}]}, {{},
+ LineBox[{{0.6, 4.}, {1.4, 4.}}]}, {{},
+ LineBox[{{-1.4, 2.}, {-0.6, 2.}}]}, {{},
+ LineBox[{{-0.4, 3.5}, {0.4, 3.5}}]}}, {{InsetBox[
+ RowBox[{"M", "\[LongEqual]",
+ RowBox[{"-", "1"}]}], {-1., 4.}, {0, -1.2}], InsetBox[
+ RowBox[{"M", "\[LongEqual]", "0"}], {0., 4.}, {0, -1.2}], InsetBox[
+ RowBox[{"M", "\[LongEqual]", "1"}], {1., 4.}, {0, -1.2}]}, {}, {InsetBox[
+ RowBox[{
+ SubscriptBox["J", "1"], "\[LongEqual]", "0"}],
+ Offset[{-6.6000000000000005`, 0}, {-1.4, 0}], {1, 0}], InsetBox[
+ RowBox[{
+ SubscriptBox["J", "2"], "\[LongEqual]", "1"}],
+ Offset[{-6.6000000000000005`, 0}, {-1.4, 3.}], {1, 0}], InsetBox[
+ RowBox[{
+ SubscriptBox["J", "3"], "\[LongEqual]", "0"}],
+ Offset[{-6.6000000000000005`, 0}, {-1.4, 3.5}], {1, 0}]}},
+ {Arrowheads[{-0.07, 0.07}],
+ ArrowBox[{{0.04000000000000001, 0.}, {0.96, 3.}}],
+ ArrowBox[{{0.04000000000000001, 0.}, {0.96, 3.}}],
+ ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 3.}}],
+ ArrowBox[{{-0.04000000000000001, 0.}, {-0.96, 3.}}],
+ {Dashing[{Small, Small}],
+ ArrowBox[{{-0.96, 2.}, {-0.04000000000000001, 3.5}}]},
+ {Dashing[{Small, Small}],
+ ArrowBox[{{0.04000000000000001, 3.5}, {0.96, 4.}}]}},
+ {PointSize[0.0225]}},
+ ImagePadding->{{38.300000000000004`, 2}, {2., 13.700000000000001`}},
+ ImageSize->180.3]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Apply the rotating-wave approximation to the Hamiltonian.", \
+"MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258753521*^9},
+ CellID->471402495],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"Hrwa", "=", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"RotatingWaveApproximation", "[",
+ RowBox[{"system", ",", "H", ",",
+ RowBox[{"{", "\[Omega]", "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{"TransformMatrix", "\[Rule]",
+ RowBox[{"MatrixExp", "[",
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ", "t", " ",
+ RowBox[{"DiagonalMatrix", "[",
+ RowBox[{"{",
+ RowBox[{
+ "0", ",", "\[Omega]", ",", "\[Omega]", ",", "\[Omega]"}],
+ "}"}], "]"}]}], "]"}]}]}], "]"}], "/.",
+ RowBox[{"\[Omega]", "\[Rule]",
+ RowBox[{"\[Omega]2", "+", "\[CapitalDelta]"}]}]}], "/.",
+ RowBox[{"\[Omega]3", "\[Rule]",
+ RowBox[{"\[Omega]2", "+", "\[CapitalDelta]23"}]}]}]}], ")"}], "//",
+ "MatrixForm"}], " ", "//", "Simplify"}], " ",
+ "\[IndentingNewLine]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{{3.534553435828125*^9, 3.534553480625*^9}, {
+ 3.534553524203125*^9, 3.53455353465625*^9}, {3.534553920421875*^9,
+ 3.534554035921875*^9}, {3.534555327859375*^9, 3.534555328671875*^9}}],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]],
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[ImaginaryI]"}], " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "0"},
+ {
+ FractionBox[
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1"}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1"}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]],
+ RowBox[{
+ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalOmega]L"}], "0", "Ec"},
+ {
+ FractionBox[
+ RowBox[{
+ RowBox[{"\[ImaginaryI]", " ",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}]}]]}], "+",
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}]}]]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "0",
+ RowBox[{
+ RowBox[{"-", "\[CapitalDelta]"}], "-", "\[CapitalOmega]L"}],
+ RowBox[{"-", "Ec"}]},
+ {"0", "Ec",
+ RowBox[{"-", "Ec"}],
+ RowBox[{
+ RowBox[{"-", "\[CapitalDelta]"}], "+", "\[CapitalDelta]23"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["IntrinsicRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/IntrinsicRelaxation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRelaxation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRelaxation"]]],
+ " supply the relaxation matrices."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.52258625875446*^9},
+ CellID->448215320],
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"relax", "=",
+ RowBox[{
+ RowBox[{"IntrinsicRelaxation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRelaxation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellChangeTimes->{3.522586258754587*^9},
+ CellID->150217419],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"\[Gamma]t", "0", "0", "0"},
+ {"0",
+ RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0", "0"},
+ {"0", "0",
+ RowBox[{"\[CapitalGamma]2", "+", "\[Gamma]t"}], "0"},
+ {"0", "0", "0",
+ RowBox[{"\[CapitalGamma]3", "+", "\[Gamma]t"}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[{
+ Cell[BoxData[
+ ButtonBox["OpticalRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/OpticalRepopulation"]]],
+ " and ",
+ Cell[BoxData[
+ ButtonBox["TransitRepopulation",
+ BaseStyle->"Link",
+ ButtonData->"paclet:AtomicDensityMatrix/ref/TransitRepopulation"]]],
+ " supply the repopulation matrices."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804159*^9},
+ CellID->78071612],
+
+Cell[BoxData[
+ RowBox[{"MatrixForm", "[",
+ RowBox[{"repop", "=",
+ RowBox[{
+ RowBox[{"OpticalRepopulation", "[", "system", "]"}], "+",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "\[Gamma]t"}], "]"}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{3.522586211804293*^9, 3.53455357284375*^9},
+ CellID->109972911],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {
+ RowBox[{"\[Gamma]t", "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}]}]], "[", "t", "]"}]}], "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}]}]], "[", "t", "]"}]}]}], "0", "0",
+ "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"},
+ {"0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+
+Cell[TextData[{
+ "Density-matrix and field variables at one point ",
+ Cell[BoxData[
+ FormBox["i", TraditionalForm]]]
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->24518771]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"vars", "=",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"DMVariables", "[", "system", "]"}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}],
+ ",",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "q", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "q", ",", "i"}]], "[", "t", "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"q", ",", "1", ",",
+ RowBox[{"-", "1"}], ",",
+ RowBox[{"-", "2"}]}], "}"}]}], "]"}]}], "]"}], "//",
+ "Flatten"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[TextData[{
+ "Density matrix evolution equations at one point ",
+ Cell[BoxData[
+ FormBox["i", TraditionalForm]]]
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->112084045],
+
+Cell[BoxData[
+ RowBox[{"TableForm", "[",
+ RowBox[{"eqs", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Expand", "@",
+ RowBox[{"LiouvilleEquation", "[",
+ RowBox[{"system", ",", "Hrwa", ",", "relax", ",", "repop"}], "]"}]}],
+ "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Rule]",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], ")"}], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}]}], "}"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a_", ",", "b_"}]], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}], "/.",
+ RowBox[{"\[CapitalDelta]23", "\[Rule]",
+ SubscriptBox["\[CapitalDelta]23", "i"]}]}]}], "]"}]], "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellChangeTimes->{{3.53460253115625*^9, 3.53460255159375*^9}, {
+ 3.534607779234375*^9, 3.53460778478125*^9}, {3.53463614115625*^9,
+ 3.5346361436875*^9}, {3.53463617796875*^9, 3.53463618378125*^9}},
+ CellID->26920765]
+}, Open ]],
+
+Cell[BoxData[
+ TagBox[
+ TagBox[GridBox[{
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{"\[Gamma]t", "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ SqrtBox["3"]], "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ SqrtBox["3"]], "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ SqrtBox["3"]], "-",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ SqrtBox["3"]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"2", " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"2", " ", "\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ SqrtBox["3"]], "-",
+ RowBox[{"\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1", "2"]}], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalDelta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]2", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{
+ FractionBox["1", "2"], " ", "\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+
+ RowBox[{"2", " ",
+ SqrtBox["3"]}]], "-",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"\[CapitalOmega]L", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i"], " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]},
+ {
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "+",
+ RowBox[{"2", " ", "Ec", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[CapitalGamma]3", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t", "]"}]}],
+ "-",
+ RowBox[{"\[Gamma]t", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t",
+ "]"}]}]}]}]}
+ },
+ GridBoxAlignment->{
+ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
+ "RowsIndexed" -> {}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.5599999999999999]},
+ Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}, "RowsIndexed" -> {}}],
+ Column],
+ Function[BoxForm`e$,
+ TableForm[BoxForm`e$]]]], "Output"],
+
+Cell["Initial conditions for density matrix:", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->16777324],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"inits", "=",
+ RowBox[{
+ RowBox[{"InitialConditions", "[",
+ RowBox[{"system", ",",
+ RowBox[{"TransitRepopulation", "[",
+ RowBox[{"system", ",", "1"}], "]"}], ",", "t0"}], "]"}], "/.", " ",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t_", "]"}], "->", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
+ "]"}]}]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "1"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"3", ",", "0"}], "}"}], ",", "i"}]], "[", "t0", "]"}],
+ "\[Equal]", "0"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[TextData[{
+ "Here we find the field evolution equations with finite difference \
+approximation (second-order upwind scheme) for co-propagating beams. ",
+ StyleBox["h",
+ FontSlant->"Italic"],
+ " is the the grid spacing in the spatial dimension."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->100512453],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"polarizationcomponents", "=",
+ RowBox[{"ExprToReIm", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ExpandDipoleRME", "[",
+ RowBox[{"system", ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ "4", "\[Pi]", " ", "\[ImaginaryI]", " ", "\[Omega]2", " ", "n0", " ",
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}],
+ RowBox[{"Components", "@", " ",
+ RowBox[{"ECT", "@",
+ RowBox[{"Sum", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"DensityMatrix", "[", "system", "]"}], "[",
+ RowBox[{"[",
+ RowBox[{"j", ",", "i"}], "]"}], "]"}],
+ RowBox[{"WignerEckart", "[",
+ RowBox[{
+ RowBox[{"system", "[",
+ RowBox[{"[", "i", "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",",
+ RowBox[{"system", "[",
+ RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",",
+ RowBox[{"Length", "[", "system", "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"j", ",", "i"}], "}"}]}], "]"}]}]}]}], "/.",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"2", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "3"}], "]"}],
+ "\[Rule]", "0"}]}], "/.",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r_", ",", "a_", ",", "b_"}]], "[", "t", "]"}], "->", " ",
+
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"r", ",", "a", ",", "b", ",", "i"}]], "[", "t",
+ "]"}]}]}]}], "]"}], "/.",
+ RowBox[{"\[Omega]2", "\[Rule]",
+ RowBox[{"2",
+ RowBox[{"\[Pi]", "/", "\[Lambda]"}]}]}]}], "/.",
+ RowBox[{
+ RowBox[{"n0", " ",
+ SuperscriptBox["\[Lambda]", "2"], "\[CapitalGamma]2"}], "\[Rule]",
+ RowBox[{"4", "\[VeryThinSpace]", "\[Pi]", " ",
+ RowBox[{"\[Eta]", "/", "3"}]}]}]}], "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ SqrtBox["3"]}], " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"fieldcomponents", "=",
+ RowBox[{
+ RowBox[{"ExprToReIm", "[",
+ RowBox[{
+ RowBox[{"Expand", "[",
+ RowBox[{
+ RowBox[{"ReducedME", "[",
+ RowBox[{"1", ",",
+ RowBox[{"{",
+ RowBox[{"Dipole", ",", "1"}], "}"}], ",", "2"}], "]"}],
+ RowBox[{"Components", "@",
+ RowBox[{"ToContravariant", "[", "field", "]"}]}]}], "]"}], "/.",
+ RowBox[{"t", "\[Rule]", "0"}]}], "]"}], "/.",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a_", ",", "b_"}]], "\[Rule]",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"a", ",", "b", ",", "i"}]], "[", "t", "]"}]}]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}], "}"}]], "Output"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"UFDWeights", "[",
+ RowBox[{"m_", ",", " ", "n_", ",", " ", "s_"}], "]"}], " ", ":=", " ",
+ RowBox[{"CoefficientList", "[",
+ RowBox[{
+ RowBox[{"Normal", "[",
+ RowBox[{
+ RowBox[{"Series", "[",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["x", "s"],
+ SuperscriptBox[
+ RowBox[{"Log", "[", "x", "]"}], "m"]}], ",",
+ RowBox[{"{",
+ RowBox[{"x", ",", "1", ",", "n"}], "}"}]}], "]"}], "/",
+ SuperscriptBox["h", "m"]}], "]"}], ",", "x"}], "]"}]}]], "Input"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"fieldeqs", "=",
+ RowBox[{"Thread", "[",
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{"fieldcomponents", ",", "t"}], "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{"c", " ", "polarizationcomponents"}], "-",
+ RowBox[{"c", " ",
+ RowBox[{
+ RowBox[{"UFDWeights", "[",
+ RowBox[{"1", ",", "2", ",", "2"}], "]"}], ".",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"fieldcomponents", "/.",
+ RowBox[{"i", "\[Rule]",
+ RowBox[{"i", "+", "j"}]}]}], ")"}], ",",
+ RowBox[{"{",
+ RowBox[{"j", ",",
+ RowBox[{"-", "2"}], ",", "0"}], "}"}]}], "]"}]}]}]}]}],
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "c"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}],
+ RowBox[{"2", " ", "h"}]], "-",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ", "h"}]]}], ")"}]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "c"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}],
+ RowBox[{"2", " ", "h"}]], "-",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ", "h"}]]}], ")"}]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "1"}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "c"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}],
+ RowBox[{"2", " ", "h"}]], "-",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ", "h"}]]}], ")"}]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Im", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "\[Prime]",
+ MultilineFunction->None], "[", "t", "]"}], "\[Equal]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "c"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "i"}]}]], "[", "t", "]"}],
+ RowBox[{"2", " ", "h"}]], "-",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "i"}]}]], "[", "t", "]"}]}], "h"], "+",
+ FractionBox[
+ RowBox[{"3", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}],
+ RowBox[{"2", " ", "h"}]]}], ")"}]}], "-",
+ RowBox[{
+ SqrtBox["3"], " ", "c", " ", "\[Eta]", " ",
+ RowBox[{
+ SubscriptBox["\[Rho]",
+ RowBox[{"Re", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",",
+ RowBox[{"-", "1"}]}], "}"}], ",", "i"}]], "[", "t", "]"}]}]}]}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell["Initial conditions for fields (assume uniform in space).", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->135712718],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"initfields", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}]}], "}"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t0", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t0", "]"}], "\[Equal]", "0"}]}],
+ "}"}]], "Output"]
+}, Open ]],
+
+Cell["\<\
+Boundary conditions for co-propagating fields. Fields 1 and 3 are constant, \
+fields 2 and 4 are pulsed. The first point is 0, and the last point is n0.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->71091213],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"boundaryconds", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}],
+ "}"}]}]], "Input",
+ CellChangeTimes->{{3.534636354140625*^9, 3.534636376*^9}}],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0", "1"]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]",
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]}], ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "0"}]], "[", "t", "]"}], "\[Equal]", "0"}]}],
+ "}"}]], "Output"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Results", "Section"],
+
+Cell[CellGroupData[{
+
+Cell["setup", "Subsection"],
+
+Cell["Choose number of spatial points.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->14274527],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"n", "=", "40"}], ";"}]], "Input",
+ CellChangeTimes->{3.538429326772045*^9, 3.5384293666463256`*^9}],
+
+Cell["All system variables for all spatial points.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->809681492],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"allvars", "=",
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{"vars", ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"],
+
+Cell["Equations for all points for the co-propagating case.", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->383167958],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"alleqs", "=",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"#", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "-",
+ RowBox[{"#", "[",
+ RowBox[{"[", "2", "]"}], "]"}]}], "\[Equal]", "0"}], "&"}], ")"}], "/@",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{"eqs", ",", "fieldeqs"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"r_", ",", "s_", ",", "i_"}]], "[", "t_", "]"}], "/;",
+ RowBox[{"i", "<", "0"}]}], "->",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"r", ",", "s", ",", "0"}]], "[", "t", "]"}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"r_", ",", "s_", ",", "i_"}]], "[", "t_", "]"}], "/;",
+ RowBox[{"i", ">", "n"}]}], "->",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"r", ",", "s", ",", "n"}]], "[", "t", "]"}]}]}], "}"}]}],
+ "/.",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"#", "[",
+ RowBox[{"[", "1", "]"}], "]"}], ",", "t"}], "]"}], "\[Equal]",
+ "_"}], ")"}], "\[Rule]", "#"}], "&"}], ")"}], "/@",
+ RowBox[{"(",
+ RowBox[{"boundaryconds", "/.",
+ RowBox[{"n0", "\[Rule]", "n"}]}], ")"}]}], ")"}]}], ")"}]}]}],
+ ";"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"allinits", "=",
+ RowBox[{"Flatten", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{"inits", ",", "initfields"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]], "Input"],
+
+Cell["\<\
+Relabel variables to enforce efficient ordering in NDSolve.\
+\>", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->202174683],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"allvars1", "=",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["y", "i"], "[", "t", "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",",
+ RowBox[{"Length", "[", "allvars", "]"}]}], "}"}]}], "]"}]}],
+ ";"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"varreps", "=",
+ RowBox[{"MapThread", "[",
+ RowBox[{"Rule", ",",
+ RowBox[{"{",
+ RowBox[{"allvars", ",", "allvars1"}], "}"}]}], "]"}]}], ";"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"alleqs1", "=",
+ RowBox[{
+ RowBox[{"alleqs", "/.",
+ RowBox[{"Dispatch", "[", "varreps", "]"}]}], "/.",
+ RowBox[{"Dispatch", "[",
+ RowBox[{"D", "[",
+ RowBox[{"varreps", ",", "t"}], "]"}], "]"}]}]}], ";"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"allinits1", "=",
+ RowBox[{"allinits", "/.",
+ RowBox[{"(",
+ RowBox[{"varreps", "/.",
+ RowBox[{"t", "\[Rule]", "t0"}]}], ")"}]}]}], ";"}]], "Input"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["plots", "Subsection"],
+
+Cell[TextData[{
+ "Here we choose parameters and integrate the equations. Blue is ",
+ Cell[BoxData[
+ FormBox[
+ SuperscriptBox["\[Sigma]", "-"], TraditionalForm]]],
+ " field intensity, magenta is ",
+ Cell[BoxData[
+ FormBox[
+ SuperscriptBox["\[Sigma]", "+"], TraditionalForm]]],
+ "field intensity."
+}], "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->33380891],
+
+Cell[TextData[{
+ "Parameters:\n",
+ Cell[BoxData[
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]]]],
+ ": input Rabi frequency for ",
+ Cell[BoxData[
+ FormBox[
+ RowBox[{
+ SuperscriptBox["\[Sigma]", "-"], " "}], TraditionalForm]]],
+ "(rad/s) \n",
+ Cell[BoxData[
+ SubscriptBox["\[CapitalOmega]0", "1"]]],
+ ": input Rabi frequency for ",
+ Cell[BoxData[
+ FormBox[
+ SuperscriptBox["\[Sigma]", "+"], TraditionalForm]]],
+ "(rad/s) \n\[CapitalGamma]2: natural width of J=1 level (rad/s) \n\
+\[CapitalGamma]3: natural width of upper J=0 level (rad/s)\n\[Gamma]t: \
+transit relaxation rate (rad/s)\nEc: static electric field coupling strength \
+(rad/s)\n\[CapitalDelta]: Light detuning from J=1 level (rad/s)\n\
+\[CapitalOmega]L: Zeeman shift (rad/s)\n",
+ Cell[BoxData[
+ SubscriptBox["\[CapitalDelta]23", "i_"]]],
+ ": frequency splitting between upper J=1 and J=0 level as a function of the \
+position ",
+ Cell[BoxData[
+ FormBox["i", TraditionalForm]]],
+ ", as ",
+ Cell[BoxData[
+ FormBox["i", TraditionalForm]]],
+ " varies from zero to ",
+ Cell[BoxData[
+ FormBox["n", TraditionalForm]]],
+ " (rad/s)\nh: distance between grid points (m)\nc: light speed (m/s)\n\
+\[Eta]: light coupling constant (rad/s/m)"
+}], "Text"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]2", "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{".001", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"Ec", "\[Rule]",
+ RowBox[{"6.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalDelta]", "\[Rule]",
+ RowBox[{"0.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalOmega]L", "\[Rule]",
+ RowBox[{"50.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"c", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox["10", "8"]}]}], ",",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"794.7", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "9"}]]}], ")"}], "2"],
+ RowBox[{"(",
+ RowBox[{".5", " ",
+ SuperscriptBox["10", "15"]}], ")"}],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"2", " ", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}], ")"}], "/",
+ RowBox[{"(",
+ RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{"5.", "/", "n"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2."}], "+",
+ RowBox[{"4",
+ RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n",
+ RowBox[{"AbsoluteTiming", "[",
+ RowBox[{
+ RowBox[{"sol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"N", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"alleqs1", ",", "allinits1"}], "}"}], "/.", "params"}],
+ "]"}], "]"}], ",", "allvars1", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",", "0", ",",
+ RowBox[{"8.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}],
+ "]"}], "\[IndentingNewLine]",
+ RowBox[{"ListLinePlot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Transpose", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}],
+ "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.",
+ "varreps"}], "/.",
+ RowBox[{"sol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "/.",
+ RowBox[{"t", "\[Rule]",
+ RowBox[{"8.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}]}], ",",
+ RowBox[{"FrameLabel", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Position (m)\>\"", ",",
+ "\"\<Intensity \!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \
+\(2\)]\) (rad/s\!\(\*SuperscriptBox[\()\), \(2\)]\)\>\""}], "}"}]}]}],
+ "]"}]}], "Input",
+ CellChangeTimes->{{3.5384287522751856`*^9, 3.5384287728023596`*^9},
+ 3.538428821914169*^9, {3.538428862516491*^9, 3.5384288627725058`*^9}, {
+ 3.538428902935803*^9, 3.5384291940654545`*^9}, {3.538429259116175*^9,
+ 3.5384292721439204`*^9}, {3.538429535554987*^9, 3.5384296043139195`*^9}, {
+ 3.5384301232836027`*^9, 3.5384301351312804`*^9}}],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"1.4660839`7.617703818005998", ",", "Null"}], "}"}]], "Output"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJxTTMoPSmViYGDQBGIQDQPREdMuOuQcsILwDti3ndSQaugXcYLwL9g/fv9v
+yeSvNlD+DfvbbFdqV84LhvIf2DNlcgufmZMM5T+xv2cYZn90QQGU/8L++x6l
+Rv+CSij/jf2qot707YpNUP4H+/B5by897OyA8j/Zz9a3VOF91g/lf7F/tu7B
+mwmCU6D8b/Zizh43lCbNgPJ/2L+e9P9pU8JcKP+X/dtTtd6rDBZC+X/sPQr4
+bzjvWAzl/7P/eHzpxzT9ZVA+g0PLZpaW5PIVUD6jw/rlh93u566C8pkcHkzb
+dSSNew2Uz+yw0Kf19heRdVA+i8N6ppNCn802QvmsDspH5XYEPdsE5bM5vL7/
+LeV/xRYon93hd7WdYdS/rVA+h8PqayVcqWXboXxOh/fVSmuV7u+A8rkcPFtP
+TWk03QXlczs8yllhs71sN5TP42B8LmpV6II9UD6vg1vrjidRG/ZC+XwOrp+5
+nzgt3Qfl8zssDdv9nbtuP5Qv4FByb84jKdkDEH6DgEPi+pX593OgfAZBh+8d
+6zwmrIPJCzo4+E4TXfIIJi/kIN4n+vAY50GovJADn/2HqCsqUD6DsENTyCTd
+iyYweWGHf66WMx9bweRFHBbX3273tjjoBABZ2MLB
+ "]]},
+ {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
+1:eJxTTMoPSmViYGDQBGIQDQM7muLbn3w+6AThHbD/JxR2bvMTGP+C/bMbf4Or
+z8D4N+wFvcqWvVsF4z+wrzJk3llcC+M/se/o2nv2jSOM/8Je96nseYnvB6D8
+N/aTb7Ify50D43+wf+LN7PXTEMb/ZN/HdtdoXcF+KP+LvcSSGY45ifug/G/2
+CeUf7c9a7oXyf9jzGdoLvfu3G8r/Ze9ilvri7PZdUP4f+9pOs67tuTuh/H/2
+uxnX9N7X2QHlMzhc33GAq4J1O5TP6PD+QiLfcc5tUD6Tg8+h9eK77bZC+cwO
+6RnhpvE2W6B8Fod8ESUNtTcboXxWh64LSkoSRhugfDaHiLDdTixGa6F8doeV
+pmuOPJdeBeVzOPCy6la8lF8O5XM6hKREMb93XALlcznkHEydJNGxEMrndkjO
+PJAv8mEulM/jUO0xOy5RdyaUz+twMf7RGrULU6B8Pofm15NSS+5NgPL5HSIl
+DVNX7OiC8gUcuAsyHk2b3gLhNwg4cGkxyHVvroPKCzrktR9/c+dbKVRe0EHy
+pEra+iu5UHkhhxWs/07zfEyCygs5WMQryHFJhEHlhR2aF7kIeU5yh8oLO1gc
+7Q4p6LKEyos4RK9abp4gbOoEAJZ7tCU=
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ FrameLabel->{
+ FormBox["\"Position (m)\"", TraditionalForm],
+ FormBox[
+ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
+\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"",
+ TraditionalForm]},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]],
+
+Cell["Same plot with flipped magnetic field", "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->15127317],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"params", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0",
+ RowBox[{"-", "1"}]], "\[Rule]", "0."}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]0", "1"], "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]2", "\[Rule]",
+ RowBox[{"1.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalGamma]3", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Gamma]t", "\[Rule]",
+ RowBox[{".001", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"Ec", "\[Rule]",
+ RowBox[{"6.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalDelta]", "\[Rule]",
+ RowBox[{"0.", " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"\[CapitalOmega]L", "\[Rule]",
+ RowBox[{
+ RowBox[{"-", "50."}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"c", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox["10", "8"]}]}], ",",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{"3.", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"794.7", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "9"}]]}], ")"}], "2"],
+ RowBox[{"(",
+ RowBox[{".5", " ",
+ SuperscriptBox["10", "15"]}], ")"}],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"2", " ", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}], ")"}], "/",
+ RowBox[{"(",
+ RowBox[{"4.", "\[Pi]"}], ")"}]}]}]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{"5.", "/", "n"}]}], ",",
+ RowBox[{
+ SubscriptBox["\[CapitalDelta]23", "i_"], "\[Rule]",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2."}], "+",
+ RowBox[{"4",
+ RowBox[{"i", "/", "n"}]}]}], ")"}], " ", "2", "\[Pi]", " ",
+ SuperscriptBox["10", "6"]}]}], ",",
+ RowBox[{"t0", "\[Rule]", "0"}]}], "}"}]}], ";"}], "\n",
+ RowBox[{"AbsoluteTiming", "[",
+ RowBox[{
+ RowBox[{"sol", "=",
+ RowBox[{"NDSolve", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"N", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"alleqs1", ",", "allinits1"}], "}"}], "/.", "params"}],
+ "]"}], "]"}], ",", "allvars1", ",",
+ RowBox[{"{",
+ RowBox[{"t", ",", "0", ",",
+ RowBox[{"8.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "}"}]}], "]"}]}], ";"}],
+ "]"}], "\[IndentingNewLine]",
+ RowBox[{"ListLinePlot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Transpose", "@",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",",
+ RowBox[{"-", "1"}], ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"i", " ", "h"}], ",",
+ SuperscriptBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Re", ",", "1", ",", "i"}]], "[", "t", "]"}], "+",
+ RowBox[{"\[ImaginaryI]", " ",
+ RowBox[{
+ SubscriptBox["\[CapitalOmega]",
+ RowBox[{"Im", ",", "1", ",", "i"}]], "[", "t", "]"}]}]}],
+ ")"}], "]"}], "2"]}], "}"}]}], "}"}], "/.", "params"}],
+ "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}], "/.",
+ "varreps"}], "/.",
+ RowBox[{"sol", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], "/.",
+ RowBox[{"t", "\[Rule]",
+ RowBox[{"8.", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}]}], ",",
+ RowBox[{"FrameLabel", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ "\"\<Position (m)\>\"", ",",
+ "\"\<Intensity \!\(\*SubsuperscriptBox[\(\[CapitalOmega]\), \(R\), \
+\(2\)]\) (rad/s\!\(\*SuperscriptBox[\()\), \(2\)]\)\>\""}], "}"}]}]}],
+ "]"}]}], "Input",
+ CellChangeTimes->{
+ 3.5384292031419735`*^9, {3.538429295341247*^9, 3.5384292970053425`*^9}}],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"1.8981086`7.729866050392017", ",", "Null"}], "}"}]], "Output"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {},
+ {Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
+1:eJxTTMoPSmViYGDQBGIQDQPTej+/XVlnagnhHbBXETnr+KdWxAnCv2D/feKf
+mW03bKD8G/ZGOv52T9uCofwH9kWNR5jfNSVD+U/stdhchK51FED5L+y3hfc6
+rXWshPLf2Fvs3zbz8PdGKP+D/bPdvT+ueHZA+Z/szx0+udS+oR/K/2K/6dtl
+NbYdk6H8b/blc+vbvrLNgPJ/2H99I/A7aP4cKP+X/f14XzvnyQug/D/25m93
+LFwwfxGU/8/+wrbPPvvbl0D5DA5NyddD/rEtg/IZHaKTf7I/3rwUymdy+NV0
+YsGPfph+Zgc7ry/T08Rg9rM4tJ8LqGzd6wnlszrcu678WePbTkcIn82h4vrz
+7N9F0lB5dofdqWsfrn1qBOVzOBj+2n5wl5Y1lM/pwLz6YWZ8IozP5bDpM/sJ
+ty3mUD63w/enthu41plA+TwOD9+c+2N9HmYerwNr34/ZzKcNoHw+h4ZffXMW
+HtKB8vkdJLYvv3swQwPKF3BYErhM2k9IFcJvEHCYay/L/DlRCSov6BB/JepR
+u44CVF7QobrPYc4US1movJBDvOMyqzsw/zUIOfw8q8sltE8KKi/s0LG8Qfz+
+Tyi/QdjhfeaGh4ukZaDyIg5Fp1t7or7IOgEA5cu/PQ==
+ "]]},
+ {Hue[0.9060679774997897, 0.6, 0.6], LineBox[CompressedData["
+1:eJxTTMoPSmViYGDQBGIQDQPbm+Lbn3w+6AThHbBfVyW6lv0gjH/Bft5b73X3
+m2H8G/bfp5l5MbrC+A/sV0yXqw3+fwDKf2Kf8vrcNY51MP4L+0+TNDSSfWH8
+N/YlWk58nVv3Q/kf7KdeCZeNWrcPyv9k35Jp8Ti3bS+U/8W+e8+U7hyzPVD+
+N3vN6Q4f2g/tgvJ/2NuveN+1yWYnlP/L/rTfrc0eM7ZD+X/sn737xfR191Yo
+/589z7xfiuFXN0P5DA5Oi3sig/5thPIZHSb+DXy3W3k9lM/ksM+e6eHK6BVQ
+PrPDV50HAWr350H5LA4T1hpyHjNPg/JZHab8kLZke+AK5bM5fFsV9nvjdjMo
+n90hs8SwNahSDcrncAhyzV/71loMyud0ODuthY8zSALK53LwLCvUunNHEcrn
+djjyZutZxTeqUD6PQ7rQ8x3XkzShfF4H3uhPGrpWelA+n8PWldbrwiYaQvn8
+DiLhIhbbM4yhfAEHM6VXh+9+MoHwGwQcPnzslHSJg7lX0OFDsMO/Q5nmUHlB
+B62exzLpwhZQeSGHJyurLy9qgPIbhBzk2C6f+7EMJi/sMDdLMfxvG0xe2GGC
+rNWiADOYvIiD+WZpxQnbzZ0A9Gi36g==
+ "]]}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->True,
+ AxesOrigin->{0, 0},
+ Frame->True,
+ FrameLabel->{
+ FormBox["\"Position (m)\"", TraditionalForm],
+ FormBox[
+ "\"Intensity \\!\\(\\*SubsuperscriptBox[\\(\[CapitalOmega]\\), \\(R\\), \
+\\(2\\)]\\) (rad/s\\!\\(\\*SuperscriptBox[\\()\\), \\(2\\)]\\)\"",
+ TraditionalForm]},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{Automatic, Automatic}]], "Output"]
+}, Open ]]
+}, Open ]]
+}, Open ]]
+},
+AutoGeneratedPackage->None,
+WindowSize->{1032, 967},
+WindowMargins->{{0, Automatic}, {Automatic, 10}},
+ShowSelection->True,
+FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (October 6, 2011)",
+StyleDefinitions->"Default.nb"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[CellGroupData[{
+Cell[567, 22, 32, 0, 71, "Section"],
+Cell[602, 24, 206, 6, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->94096541],
+Cell[CellGroupData[{
+Cell[833, 34, 223, 5, 31, "Input"],
+Cell[1059, 41, 64, 1, 30, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[1160, 47, 113, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->123059143],
+Cell[1276, 51, 230, 5, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->2058623809],
+Cell[1509, 58, 108, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->184495045]
+}, Open ]],
+Cell[1632, 63, 349, 7, 31, "Input"],
+Cell[1984, 72, 572, 16, 72, "Input"],
+Cell[2559, 90, 282, 7, 33, "Input"],
+Cell[2844, 99, 416, 11, 31, "Input"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[3297, 115, 38, 0, 71, "Section"],
+Cell[3338, 117, 163, 3, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->188360977],
+Cell[CellGroupData[{
+Cell[3526, 124, 2251, 50, 132, "Input"],
+Cell[5780, 176, 2828, 69, 86, "Output"]
+}, Open ]],
+Cell[8623, 248, 120, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->13161682],
+Cell[CellGroupData[{
+Cell[8768, 254, 1677, 47, 53, "Input"],
+Cell[10448, 303, 1779, 54, 55, "Output"]
+}, Open ]],
+Cell[12242, 360, 158, 3, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->337337829],
+Cell[CellGroupData[{
+Cell[12425, 367, 634, 18, 52, "Input"],
+Cell[13062, 387, 10059, 299, 146, "Output"]
+}, Open ]],
+Cell[23136, 689, 158, 3, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->327463138],
+Cell[CellGroupData[{
+Cell[23319, 696, 1031, 28, 67, "Input"],
+Cell[24353, 726, 707, 21, 86, "Output"]
+}, Open ]],
+Cell[25075, 750, 117, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->737742553],
+Cell[CellGroupData[{
+Cell[25217, 756, 146, 4, 31, "Input"],
+Cell[25366, 762, 6274, 180, 158, "Output"]
+}, Open ]],
+Cell[31655, 945, 323, 6, 59, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->944896957],
+Cell[CellGroupData[{
+Cell[32003, 955, 538, 15, 31, "Input",
+ Evaluatable->False],
+Cell[32544, 972, 1463, 29, 228, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[34044, 1006, 197, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->471402495],
+Cell[34244, 1012, 1277, 29, 92, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[35524, 1043, 2306, 70, 146, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}],
+Cell[37833, 1115, 478, 14, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->448215320],
+Cell[38314, 1131, 367, 9, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.},
+ CellID->150217419],
+Cell[38684, 1142, 870, 23, 86, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10001.}]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[39591, 1170, 484, 14, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->78071612],
+Cell[40078, 1186, 390, 9, 31, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->109972911],
+Cell[40471, 1197, 1388, 40, 88, "Output",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.}],
+Cell[41862, 1239, 208, 6, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->24518771]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[42107, 1250, 971, 29, 33, "Input"],
+Cell[43081, 1281, 4345, 136, 72, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[47463, 1422, 209, 6, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->112084045],
+Cell[47675, 1430, 1706, 44, 77, "Input",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->26920765]
+}, Open ]],
+Cell[49396, 1477, 60787, 1769, 568, "Output"],
+Cell[110186, 3248, 133, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->16777324],
+Cell[CellGroupData[{
+Cell[110344, 3254, 493, 14, 33, "Input"],
+Cell[110840, 3270, 4557, 154, 92, "Output"]
+}, Open ]],
+Cell[115412, 3427, 342, 8, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->100512453],
+Cell[CellGroupData[{
+Cell[115779, 3439, 2275, 59, 161, "Input"],
+Cell[118057, 3500, 1330, 45, 37, "Output"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[119424, 3550, 678, 19, 33, "Input"],
+Cell[120105, 3571, 553, 16, 30, "Output"]
+}, Open ]],
+Cell[120673, 3590, 557, 16, 33, "Input"],
+Cell[CellGroupData[{
+Cell[121255, 3610, 711, 21, 52, "Input"],
+Cell[121969, 3633, 5762, 176, 159, "Output"]
+}, Open ]],
+Cell[127746, 3812, 152, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->135712718],
+Cell[CellGroupData[{
+Cell[127923, 3818, 859, 26, 31, "Input"],
+Cell[128785, 3846, 802, 25, 30, "Output"]
+}, Open ]],
+Cell[129602, 3874, 255, 5, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->71091213],
+Cell[CellGroupData[{
+Cell[129882, 3883, 916, 27, 31, "Input"],
+Cell[130801, 3912, 797, 25, 30, "Output"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[131647, 3943, 26, 0, 71, "Section"],
+Cell[CellGroupData[{
+Cell[131698, 3947, 27, 0, 36, "Subsection"],
+Cell[131728, 3949, 127, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->14274527],
+Cell[131858, 3953, 134, 3, 31, "Input"],
+Cell[131995, 3958, 140, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->809681492],
+Cell[132138, 3962, 231, 7, 31, "Input"],
+Cell[132372, 3971, 149, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->383167958],
+Cell[132524, 3975, 1930, 58, 96, "Input"],
+Cell[134457, 4035, 305, 9, 31, "Input"],
+Cell[134765, 4046, 163, 4, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->202174683],
+Cell[134931, 4052, 289, 10, 31, "Input"],
+Cell[135223, 4064, 204, 6, 31, "Input"],
+Cell[135430, 4072, 274, 8, 31, "Input"],
+Cell[135707, 4082, 199, 6, 31, "Input"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[135943, 4093, 27, 0, 36, "Subsection"],
+Cell[135973, 4095, 392, 12, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->33380891],
+Cell[136368, 4109, 1229, 36, 247, "Text"],
+Cell[CellGroupData[{
+Cell[137622, 4149, 5235, 141, 143, "Input"],
+Cell[142860, 4292, 102, 2, 30, "Output"],
+Cell[142965, 4296, 1942, 40, 235, "Output"]
+}, Open ]],
+Cell[144922, 4339, 132, 2, 43, "MathCaption",
+ CellGroupingRules->{GroupTogetherGrouping, 10000.},
+ CellID->15127317],
+Cell[CellGroupData[{
+Cell[145079, 4345, 5003, 139, 143, "Input"],
+Cell[150085, 4486, 102, 2, 30, "Output"],
+Cell[150190, 4490, 1946, 40, 235, "Output"]
+}, Open ]]
+}, Open ]]
+}, Open ]]
+}
+]
+*)
+
+(* End of internal cache information *)