diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2011-07-06 15:17:16 -0400 |
---|---|---|
committer | Eugeniy Mikhailov <evgmik@gmail.com> | 2011-07-06 15:17:16 -0400 |
commit | ba7aadf317232c69a71d40dacc80772c11cbc297 (patch) | |
tree | 96e33e8645629baed4652c7661f6fc6a17c877de /code_from_navy/fortran/FourLevelPrograms | |
parent | 458abee2f5e308e5713fbc4af4b97b8103da6779 (diff) | |
download | Nresonances-ba7aadf317232c69a71d40dacc80772c11cbc297.tar.gz Nresonances-ba7aadf317232c69a71d40dacc80772c11cbc297.zip |
dos 2 unix encoding
Diffstat (limited to 'code_from_navy/fortran/FourLevelPrograms')
5 files changed, 2119 insertions, 2119 deletions
diff --git a/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v2_Double.f b/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v2_Double.f index 3ec1e70..9ab27bf 100644 --- a/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v2_Double.f +++ b/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v2_Double.f @@ -1,708 +1,708 @@ - program FourLevelPulseProp_v3_Double
-!
-! Written by: Dr. Frank A. Narducci
-! Written on: May 12, 2008
-!
-! This program calculates the propagation of a pulse of arbitrary strength
-! through a two level medium. The equations used are the full equations
-! based on the Risken-Numedal discretization technique.
-!
-! This program only "watches" the evolution of the pulse in the cell. This is
-! due to the constraint that the cell is very small relative to the pulse lengths
-! that we want to use. If we watched the pulse outside the cell and then increased the
-! resolution within the cell, the increased burden outside the cell because huge.
-!
-! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16
- implicit none
-!
-! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision
- complex ci
-!
-! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a
-! three level system
-!
-! Four Level Notes: Valid to first order in dt
-!
-! Version 3: Make a step function in the coupling field.
-
- character*150 fname
- integer nmat,npts,Nfrac,Nframe,Nframemax,NSkip,NWrite,tpts,zpts
- parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve
- !REMEMBER TO CHANGE NMAT IN LMatConstruct Routine
- parameter (tpts=10,zpts=tpts+1) !Caution: funny things happened when tpts=200 (and presumably greater)
- !tpts is the number of temporal points in the cell
- parameter (Nframemax=2000000)
- parameter ( NWrite=100) !number of frames to actually write
- integer i,j,k,m,n
- complex*16 a1,a2,a3,a4,a5,a6
- complex*16 b1,b2,b3,b4,b5,b6,b7
- complex*16 c1,c2,c3,c4,c5,c6
- complex*16 d1,d2,d3,d4,d5,d6,d7
- complex*16 e1,e2,e3,e4,e5
- complex*16 f1,f2,f3,f4,f5
- complex*16 g1,g2,g3,g4,g5,g6,g7
- complex*16 h1,h2,h3,h4,h5
- complex*16 i1,i2,i3,i4,i5,i6,i7
- complex*16 j1,j2,j3,j4,j5,j6,j7,j8
- complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10
- complex*16 l1,l2,l3,l4,l5
-
- complex *16 Omold, Omold_vac
- real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,beta,c,delmax,del1_prop,del2_prop,delc_prop
- real*8 dt,dz,eta
- real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34
- real*8 Ga2,Ga4,Om_crit
- real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tp,tshift,t_end,t_start,t_elapsed
- real*8 tpeak,tpeak_vac
- real*8 epsil,hbar,lambda
- real*8 del(npts)
- real*8 t,z(zpts)
- complex*16 yplot(nmat,npts)
- complex*16 Imat(nmat)
-
-
- complex*16 Om1(zpts),Om2(zpts),Omc(zpts),Om_vac(zpts)
- complex*16 rho11(zpts),rho12(zpts),rho13(zpts),rho14(zpts),rho21(zpts),rho22(zpts),rho23(zpts),rho24(zpts)
- complex*16 rho31(zpts),rho32(zpts),rho33(zpts),rho34(zpts),rho41(zpts),rho42(zpts),rho43(zpts),rho44(zpts)
- complex*16 rho11_last(zpts),rho12_last(zpts),rho13_last(zpts),rho14_last(zpts)
- complex*16 rho21_last(zpts),rho22_last(zpts),rho23_last(zpts),rho24_last(zpts)
- complex*16 rho31_last(zpts),rho32_last(zpts),rho33_last(zpts),rho34_last(zpts)
- complex*16 rho41_last(zpts),rho42_last(zpts),rho43_last(zpts),rho44_last(zpts)
-
- !No Om_last because we never need the previous spatial point
- complex*16 L(nmat,nmat),Linv(nmat,nmat),Ltemp(nmat,nmat)
-
- common/para/ga12,W21
-
-
- real*8 d !used by NR Routines
- integer indx(nmat)
-
-!
-! Fundamental numbers
-!
- ci=cmplx(0.,1.)
- pi=acos(-1.0)
- c=3e8
- hbar=1.055e-34
- epsil=8.85e-12
-
-!
-! Atomic numbers (based on Rubidium 85)
-!
- beta=2*pi*3e6 !in Hz
- W41=0
- W42=0.
- W43=0
- W32=1.
- W31=1.
- W21=.001
- W12=W21
- W34=0
- ga12=0.5*(W21+W12)
- ga13=0.5*(W31+W12+W32)
- ga14=0.5*(W41+W42+W12)
- ga23=0.5*(W32+W31+W21)
- ga24=0.5*(W21+W41+W42+W43)
- ga34=0.5*(W31+W41+W32+W42+W43)
- lambda=780.24e-9
-
-!
-! Atomic parameters
-!
- write (*,*)'New version from moved folder'
-! write (*,*)'Enter density in m^-1'
-! read (*,*)eta
- eta=6.9e11
- alpha1=3*eta*lambda*lambda/(2*pi)
- alpha1tilde=alpha1*c/beta
- alpha2=3*eta*lambda*lambda/(2*pi)
- alpha2tilde=alpha2*c/beta
- alphac=3*eta*lambda*lambda/(2*pi)
- alphactilde=alphac*c/beta
-
-!
-! Initialize matrices and set up Identity Matrix
-!
- do 20 i=1,nmat
- do 10 j=1,nmat
- L(i,j)=cmplx(0.,0.)
- Linv(i,j)=cmplx(0.,0.)
-10 continue !j loop
- Imat(i)=cmplx(0.,0.)
- Linv(i,i)=cmplx(1.,0.) !contains identity matrix
-20 continue
-
-
-!
-! User defined numbers
-!
-! write (*,*)'Enter peak scaled Rabi frequency for the pump at entrance of cell'
-! read (*,*)Om1peak
- Om1peak=1
-! write (*,*)'Enter peak scaled Rabi frequency for the probe at entrance of cell'
-! read (*,*)Om2peak
- Om2peak=1e-2
-! write (*,*)'Enter maximum detuning in MHz for dispersion lineshape plot'
-! read (*,*) delmax
- delmax=0
- Ga4=(W41+W42+W43)
- Ga2=W21
- Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4))
- Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4
- Om_crit=sqrt(Om_crit/2)
- write (*,*)'Om_crit = ',Om_crit
-
-! write (*,*)'Enter peak scaled Rabi frequency for the coupling field at entrance of cell'
-! read (*,*)Omcpeak
- Omcpeak=0.
-
-!
-! First plot the dispersion lineshape
-!
-! do 40 n=1,npts
-! del(n)=-delmax+2*float(n)*delmax/npts
-! call LMatConstruct(Ompeak,del(n),L) !construct the L matrix
-! call LMatConstruct(Ompeak,del(n),Ltemp) !Need a temporary because L gets destroyed
-! call ImatConstruct(Ompeak,Imat) !Need to call in loop because it gets destroyed
-! !See also note in subroutine
-! call ludcmp(L,nmat,nmat,indx,d)
-! call lubksb(L,nmat,nmat,indx,Imat) !Imat now contains psi
-! do 35 i=1,nmat
-! yplot(i,n)=Imat(i)
-!35 continue
-! if (.false.) call MatCheck(Ltemp,Linv)
-!40 continue
-! call plotit(del,yplot,nmat,npts)
-!
-! Now that the user has an idea of the dispersion, do the full propagation problem
-! write (*,*)'Enter detuning of center frequency of the coupling pulse in MHz'
-! read (*,*)delc_prop !del_prop is the detuning used for the propagation
- delc_prop=0
- delc_prop=2*pi*1e6*delc_prop/beta !Now dimensionless
-
-! write (*,*)'Enter detuning of center frequency of the pump pulse in MHz'
-! read (*,*)del2_prop !del_prop is the detuning used for the propagation
- del2_prop=0;
- del2_prop=2*pi*1e6*del2_prop/beta !Now dimensionless
-! write (*,*)'Enter detuning of center frequency of the probe pulse in MHz'
-! read (*,*)del1_prop !del_prop is the detuning used for the propagation
- del1_prop=0.
- del1_prop=2*pi*1e6*del1_prop/beta !Now dimensionless
-
-
-! write (*,*) 'Enter pulse width in nsec'
-! read (*,*)tp
- tp=1e-6
- tp=beta*tp !Now dimensionless
-! write (*,*)'Enter length of cell in m'
-! read (*,*)Lcell
- Lcell=100;
- Lcell=beta*Lcell/c !Now dimensionless
- t_start=secnds(0.E0)
- write (*,*)'t_start = ',t_start
-! XXXXXXX
-!
-! Set up initial pulse.
-!
- tshift=2*tp
- tmax=Lcell !Length of time to pass cell (no c because we're dimensionless)
- dt=tmax/tpts
- dz=dt !(no c because we're dimensionless)
-! write (*,*)'tp = ',tp
- Nframe=zpts+int(6*tp/dt)+1 !Change the number 4 to anything you want to see longer pulse evolution
- if (Nframe.ge.Nframemax) write (*,*)'Error!!!!Nframe>Nframemax'
-! write (*,*)'Nframe,tpts = ',Nframe,tpts
-!
-! Initialize matrices
-!
- Omold=cmplx(0.,0.)
- Omold_vac=cmplx(0.,0.)
- tpeak=-1
- tpeak_vac=-1
- write (*,*)'Nframe= ', Nframe
-! pause
-! do 110 n=1,Nframe
-
- do 100 m=1,zpts
- Om1(m)=cmplx(0.,0.)
- Om2(m)=cmplx(0.,0.)
- Omc(m)=cmplx(0.,0.)
-
- Om_vac(m)=cmplx(0.,0.)
- rho11(m)=cmplx(1.,0.) !Change this to change the initial condition
- rho12(m)=cmplx(0.,0.)
- rho13(m)=cmplx(0.,0.)
- rho14(m)=cmplx(0.,0.)
- rho21(m)=cmplx(0.,0.)
- rho22(m)=cmplx(0.,0.)
- rho23(m)=cmplx(0.,0.)
- rho24(m)=cmplx(0.,0.)
- rho31(m)=cmplx(0.,0.)
- rho32(m)=cmplx(0.,0.)
- rho33(m)=cmplx(0.,0.)
- rho34(m)=cmplx(0.,0.)
- rho41(m)=cmplx(0.,0.)
- rho42(m)=cmplx(0.,0.)
- rho43(m)=cmplx(0.,0.)
- rho44(m)=cmplx(0.,0.)
-
-100 continue
-!110 continue
-
-
-
-! Propagation co-efficients
-!
-
- a1=1.
- a2=0.5*ci*alpha1tilde*dt
- a3=0.5*ci*alpha1tilde*dt
- a4=0.
- a5=0.
- a6=0.
-
- b1=1.
- b2=0.5*ci*alpha2tilde*dt
- b2=0.5*ci*alpha2tilde*dt
- b4=0.
- b5=0.
- b6=0.
- b7=0.
-
- c1=1.
- c2=0.5*ci*alphactilde*dt
- c3=0.5*ci*alphactilde*dt
- c4=0.
- c5=0.
- c6=0.
-
- d1=1-(ga12-ci*(del2_prop-del1_prop))*dt
- d2=0.25*ci*dt
- d3=-0.25*ci*dt
- d4=-0.25*ci*dt
- d5=0.25*ci*dt
- d6=-0.25*ci*dt
- d7=-0.25*ci*dt
-
- e1=1-(ga13+ci*del1_prop)*dt
- e2=0.25*ci*dt
- e3=-0.25*ci*dt
- e4=0.25*ci*dt
- e5=-0.25*ci*dt
-
- f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt
- f2=0.25*ci*dt
- f3=-0.25*ci*dt
- f4=0.25*ci*dt
- f5=-0.25*ci*dt
-
- g1=1-(ga23+ci*del1_prop)*dt
- g2=-0.25*ci*dt
- g3=0.25*ci*dt
- g4=0.25*ci*dt
- g5=-0.25*ci*dt
- g6=0.25*ci*dt
- g7=0.25*ci*dt
-
- h1=1-(ga24+ci*delc_prop)*dt
- h2=0.25*ci*dt
- h3=0.25*ci*dt
- h4=0.25*ci*dt
- h5=0.25*ci*dt
-
- i1=1-(ga34-ci*(del2_prop-delc_prop))*dt
- i2=-0.25*ci*dt
- i3=0.25*ci*dt
- i4=0.25*ci*dt
- i5=-0.25*ci*dt
- i6=0.25*ci*dt
- i7=0.25*ci*dt
-
- j1=1-W12*dt
- j2=W21*dt
- j3=W31*dt
- j4=0.25*ci*dt
- j5=-0.25*ci*dt
- j6=0.25*ci*dt
- j7=-0.25*ci*dt
- j8=W41*dt
-
- k1=1-(W32+W31)*dt
- k2=W43*dt
- k3=-0.25*ci*dt
- k4=-0.25*ci*dt
- k5=0.25*ci*dt
- k6=0.25*ci*dt
- k7=-0.25*ci*dt
- k8=-0.25*ci*dt
- k9=0.25*ci*dt
- k10=0.25*ci*dt
-
- l1=1-(W43+W42+W41)*dt
- l2=-0.25*ci*dt
- l3=0.25*ci*dt
- l4=-0.25*ci*dt
- l5=0.25*ci*dt
-
- NSkip=int(NFrame/NWrite)
-
- fname='MovieParameters4level_v2.txt'
-! write (*,*)'Enter file name to save parameters'
-! read (*,3)fname
-3 format(a150)
- open(9,name=fname)
- write (9,133)Nframe,zpts,beta,NSkip,dt
-! write (*,*)'Nframe,zpts,beta,NSkip,dt'
-! write (*,133)Nframe,zpts,beta,NSkip,dt
-
-133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2)
- close (9)
-
- fname='Movie4level_v2.dat'
-! write (*,*)'Enter file name to save movie'
-! read (*,3)fname
-
- open(9,name=fname)
- fname='Movie4level_EndPoints_v2.dat'
-! write (*,*)'Enter file name to save endpoints'
-! read (*,3)fname
-
- open(10,name=fname)
-
- do 60 n=1,Nframe
-! write (*,*)'n = ',n
- t=float(n-1)*dt
- Om1(1)=Om1peak
- Om2(1)=Om2peak*exp(-(t-tshift)**2/(tp*tp))
- Omc(1)=Omcpeak
- Om_vac(1)=Om2(1)
- if (int(n/10).eq.0) write(fname,130)'Movie',n
- if (int(n/10).ge.1.and.int(n/100).eq.0) write (fname,131)'Movie',n
- if (int(n/10).ge.1.and.int(n/100).gt.0) write (fname,132)'Movie',n
-130 format(a5,i1)
-131 format(a5,i2)
-132 format(a5,i3)
-! write (*,125)fname
-125 format(1x,a12)
-! open(9,name=fname)
-
- do 345 m=1,zpts
- rho11_last(m)=rho11(m)
- rho12_last(m)=rho12(m)
- rho13_last(m)=rho13(m)
- rho14_last(m)=rho14(m)
- rho21_last(m)=rho21(m)
- rho22_last(m)=rho22(m)
- rho23_last(m)=rho23(m)
- rho24_last(m)=rho24(m)
- rho31_last(m)=rho31(m)
- rho32_last(m)=rho32(m)
- rho33_last(m)=rho33(m)
- rho34_last(m)=rho34(m)
- rho41_last(m)=rho41(m)
- rho42_last(m)=rho42(m)
- rho43_last(m)=rho43(m)
- rho44_last(m)=rho44(m)
-345 continue
-
- do 50 m=zpts,2,-1
- z(m)=float(m)*dz
-
- Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1)
-
- Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1)
-
- Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1)
-
- rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m)
- rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m)
- rho11(m)=rho11(m)+j8*rho44_last(m)
-
- rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m)
- rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m)
- rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m)
-
- rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m))
- rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m))
- rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m)
-
- rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)+f3*conjg(Omc(m))*rho12_last(m)
- rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m)
-
- rho21(m)=conjg(rho12(m))
-
-! rho22(m) needs to be calculated lower down
-
- rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m))
- rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m)
- rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m)
-
- rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*conjg(Omc(m))*(rho44_last(m)-rho22_last(m))
- rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*conjg(Omc(m-1))*(rho44_last(m)-rho22_last(m))
-
- rho31(m)=conjg(rho13(m))
-
- rho32(m)=conjg(rho23(m))
-
- rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m)
- rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m)
- rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m)
-
- rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m)
- rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m)
-
- rho41(m)=conjg(rho14(m))
-
- rho42(m)=conjg(rho24(m))
-
- rho43(m)=conjg(rho34(m))
-
- rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m)
- rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m)
-
- rho22(m)=1-rho11(m)-rho33(m)-rho44(m)
-
-
- rho11_last(m)=rho11(m)
- rho12_last(m)=rho12(m)
- rho13_last(m)=rho13(m)
- rho14_last(m)=rho14(m)
- rho21_last(m)=rho21(m)
- rho22_last(m)=rho22(m)
- rho23_last(m)=rho23(m)
- rho24_last(m)=rho24(m)
- rho31_last(m)=rho31(m)
- rho32_last(m)=rho32(m)
- rho33_last(m)=rho33(m)
- rho34_last(m)=rho34(m)
- rho41_last(m)=rho41(m)
- rho42_last(m)=rho42(m)
- rho43_last(m)=rho43(m)
- rho44_last(m)=rho44(m)
-
-
- Om_vac(m)=a1*Om_vac(m-1)
-
- if (mod(n,Nskip).eq.0) write (9,120)z(m),Om2(m),Om_vac(m),Omc(m)
-
-50 continue
- if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t
- if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t
- write (10,139) t,cdabs(Om2(zpts)),cdabs(Om_vac(zpts)) !EndPoint File
- Omold=Om2(zpts)
- Omold_vac=Om_vac(zpts)
-
-60 continue
- close(9)
- close(10)
-139 format(1x,f12.6,',',F12.6,',',F12.6)
-! write (*,*)'Medium pulse out at ',tpeak/(beta*1e-6),' microseconds'
-! write (*,*)'Vacuum pulse out at ',tpeak_vac/(beta*1e-6),' microseconds'
- write (*,*)Omcpeak,(tpeak-tpeak_vac)/(beta*1e-9)
-120 format(1x,f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6)
- t_end=secnds(0.E0)
- t_elapsed=t_end-t_start
- write(*,*)'T elapsed = ',t_elapsed
- stop
- end
-
-!
- subroutine IMatConstruct(Om,Imat)
-!
-! NOTE: This subroutine actually calculates -Imat because we need to solve LPsi=-Imat.
- implicit none
- integer i,nmat
- parameter (nmat=3)
- real*8 Om
- complex*8 Imat(nmat)
-
- Imat(1)=-cmplx(0.,-0.5*Om)
- Imat(2)=-cmplx(0.,0.5*Om)
- Imat(3)=cmplx(0.,0.)
- return
- end
-
-
-!
- subroutine LMatConstruct(Om,del,L)
-!
-
- implicit none
- integer nmat
- parameter (nmat=3)
- real*8 del,ga12,Om,W21
- complex*8 L(nmat,nmat)
- common/para/ga12,W21
-
-
- L(1,1)=cmplx (-ga12,-del)
- L(1,3)=cmplx(0.,Om)
- L(2,2)=cmplx(-ga12,del)
- L(2,3)=cmplx(0.,-Om)
- L(3,1)=cmplx(0.,0.5*Om)
- L(3,2)=cmplx(0.,-0.5*Om)
- L(3,3)=cmplx(-W21,0.)
- return
- end
-
-!
- subroutine MatCheck(L,Linv)
-!
-
- implicit none
- integer i,j,k,nmat
- parameter (nmat=3)
- complex*8 L(nmat,nmat),Linv(nmat,nmat),Res(nmat,nmat)
-
- write (*,*)'L = '
- do 10 i=1,nmat
- write (*,120)(L(i,j),j=1,nmat)
-10 continue
- write (*,*)'Linv = '
- do 20 i=1,nmat
- write (*,120)(Linv(i,j),j=1,nmat)
-20 continue
- write (*,*)'Res = '
- do 50 i=1,nmat
- do 40 j=1,nmat
- Res(i,j)=cmplx(0.,0.)
- do 30 k=1,nmat
- Res(i,j)=Res(i,j)+Linv(i,k)*L(k,j)
-30 continue
-40 continue
- write (*,120)(Res(i,j),j=1,nmat)
-50 continue
-120 format(1x,3(f8.4,'+i',f8.4,' '))
-
- return
- end
-
-!
- subroutine plotit(x,y,nmat,npts)
-!
-! See MATLAB routine that will do this plotting.
-
- implicit none
- integer i,n,nmat,npts
- real*8 x(npts)
- complex*8 y(nmat,npts)
-
- write (*,*)'For now, we are just going to write the file'
- open(9, FILE='TwoLevelPulseProp.txt')
- do 10 n=1,npts
- write (9,100)x(n),(y(i,n),i=1,3)
-! write(*,100)x(n),(y(i,n),i=1,3)
-10 continue
-100 format(1x,f9.6,',',3(f9.6,',',f9.6,','))
-
-
- return
- end
-
-
-
-
-
-!********************************************************
-! Numerical Recipes
-!********************************************************
-
-
- SUBROUTINE ludcmp(a,n,np,indx,d)
- implicit none
-
- INTEGER n,np,indx(n),NMAX
- REAL*8 d,TINY
- PARAMETER (NMAX=500,TINY=1.0e-20)
- INTEGER i,imax,j,k
- REAL aamax,dum,vv(NMAX)
-! My changed variables
- complex*8 sum,dum2
- complex*8 a(np,np)
-
-
- d=1.
- do 12 i=1,n
- aamax=0.
- do 11 j=1,n
- if (cabs(a(i,j)).gt.aamax) aamax=cabs(a(i,j))
-11 continue
- if (aamax.eq.0.) pause 'singular matrix in ludcmp'
- vv(i)=1./aamax
-12 continue
- do 19 j=1,n
- do 14 i=1,j-1
- sum=a(i,j)
- do 13 k=1,i-1
- sum=sum-a(i,k)*a(k,j)
-13 continue
- a(i,j)=sum
-14 continue
- aamax=0.
- do 16 i=j,n
- sum=a(i,j)
- do 15 k=1,j-1
- sum=sum-a(i,k)*a(k,j)
-15 continue
- a(i,j)=sum
- dum=vv(i)*cabs(sum)
- if (dum.ge.aamax) then
- imax=i
- aamax=dum
- endif
-16 continue
- if (j.ne.imax)then
- do 17 k=1,n
- dum2=a(imax,k)
- a(imax,k)=a(j,k)
- a(j,k)=dum2
-17 continue
- d=-d
- vv(imax)=vv(j)
- endif
- indx(j)=imax
- if (cabs(a(j,j)).eq.0.) a(j,j)=cmplx(TINY,TINY)
- if(j.ne.n)then
- dum2=1./a(j,j)
- do 18 i=j+1,n
- a(i,j)=a(i,j)*dum2
-18 continue
- endif
-19 continue
- return
- END
-
- SUBROUTINE lubksb(a,n,np,indx,b)
- implicit none
- INTEGER n,np,indx(n)
- INTEGER i,ii,j,ll
-
-! My changed variables
- complex*8 sum
- complex*8 b(n)
- complex*8 a(np,np)
- ii=0
- do 12 i=1,n
- ll=indx(i)
- sum=b(ll)
- b(ll)=b(i)
- if (ii.ne.0)then
- do 11 j=ii,i-1
- sum=sum-a(i,j)*b(j)
-11 continue
- else if (sum.ne.0.) then
- ii=i
- endif
- b(i)=sum
-12 continue
- do 14 i=n,1,-1
- sum=b(i)
- do 13 j=i+1,n
- sum=sum-a(i,j)*b(j)
-13 continue
- b(i)=sum/a(i,i)
-14 continue
- return
- END
-
+ program FourLevelPulseProp_v3_Double +! +! Written by: Dr. Frank A. Narducci +! Written on: May 12, 2008 +! +! This program calculates the propagation of a pulse of arbitrary strength +! through a two level medium. The equations used are the full equations +! based on the Risken-Numedal discretization technique. +! +! This program only "watches" the evolution of the pulse in the cell. This is +! due to the constraint that the cell is very small relative to the pulse lengths +! that we want to use. If we watched the pulse outside the cell and then increased the +! resolution within the cell, the increased burden outside the cell because huge. +! +! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16 + implicit none +! +! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision + complex ci +! +! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a +! three level system +! +! Four Level Notes: Valid to first order in dt +! +! Version 3: Make a step function in the coupling field. + + character*150 fname + integer nmat,npts,Nfrac,Nframe,Nframemax,NSkip,NWrite,tpts,zpts + parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve + !REMEMBER TO CHANGE NMAT IN LMatConstruct Routine + parameter (tpts=10,zpts=tpts+1) !Caution: funny things happened when tpts=200 (and presumably greater) + !tpts is the number of temporal points in the cell + parameter (Nframemax=2000000) + parameter ( NWrite=100) !number of frames to actually write + integer i,j,k,m,n + complex*16 a1,a2,a3,a4,a5,a6 + complex*16 b1,b2,b3,b4,b5,b6,b7 + complex*16 c1,c2,c3,c4,c5,c6 + complex*16 d1,d2,d3,d4,d5,d6,d7 + complex*16 e1,e2,e3,e4,e5 + complex*16 f1,f2,f3,f4,f5 + complex*16 g1,g2,g3,g4,g5,g6,g7 + complex*16 h1,h2,h3,h4,h5 + complex*16 i1,i2,i3,i4,i5,i6,i7 + complex*16 j1,j2,j3,j4,j5,j6,j7,j8 + complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10 + complex*16 l1,l2,l3,l4,l5 + + complex *16 Omold, Omold_vac + real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,beta,c,delmax,del1_prop,del2_prop,delc_prop + real*8 dt,dz,eta + real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34 + real*8 Ga2,Ga4,Om_crit + real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tp,tshift,t_end,t_start,t_elapsed + real*8 tpeak,tpeak_vac + real*8 epsil,hbar,lambda + real*8 del(npts) + real*8 t,z(zpts) + complex*16 yplot(nmat,npts) + complex*16 Imat(nmat) + + + complex*16 Om1(zpts),Om2(zpts),Omc(zpts),Om_vac(zpts) + complex*16 rho11(zpts),rho12(zpts),rho13(zpts),rho14(zpts),rho21(zpts),rho22(zpts),rho23(zpts),rho24(zpts) + complex*16 rho31(zpts),rho32(zpts),rho33(zpts),rho34(zpts),rho41(zpts),rho42(zpts),rho43(zpts),rho44(zpts) + complex*16 rho11_last(zpts),rho12_last(zpts),rho13_last(zpts),rho14_last(zpts) + complex*16 rho21_last(zpts),rho22_last(zpts),rho23_last(zpts),rho24_last(zpts) + complex*16 rho31_last(zpts),rho32_last(zpts),rho33_last(zpts),rho34_last(zpts) + complex*16 rho41_last(zpts),rho42_last(zpts),rho43_last(zpts),rho44_last(zpts) + + !No Om_last because we never need the previous spatial point + complex*16 L(nmat,nmat),Linv(nmat,nmat),Ltemp(nmat,nmat) + + common/para/ga12,W21 + + + real*8 d !used by NR Routines + integer indx(nmat) + +! +! Fundamental numbers +! + ci=cmplx(0.,1.) + pi=acos(-1.0) + c=3e8 + hbar=1.055e-34 + epsil=8.85e-12 + +! +! Atomic numbers (based on Rubidium 85) +! + beta=2*pi*3e6 !in Hz + W41=0 + W42=0. + W43=0 + W32=1. + W31=1. + W21=.001 + W12=W21 + W34=0 + ga12=0.5*(W21+W12) + ga13=0.5*(W31+W12+W32) + ga14=0.5*(W41+W42+W12) + ga23=0.5*(W32+W31+W21) + ga24=0.5*(W21+W41+W42+W43) + ga34=0.5*(W31+W41+W32+W42+W43) + lambda=780.24e-9 + +! +! Atomic parameters +! + write (*,*)'New version from moved folder' +! write (*,*)'Enter density in m^-1' +! read (*,*)eta + eta=6.9e11 + alpha1=3*eta*lambda*lambda/(2*pi) + alpha1tilde=alpha1*c/beta + alpha2=3*eta*lambda*lambda/(2*pi) + alpha2tilde=alpha2*c/beta + alphac=3*eta*lambda*lambda/(2*pi) + alphactilde=alphac*c/beta + +! +! Initialize matrices and set up Identity Matrix +! + do 20 i=1,nmat + do 10 j=1,nmat + L(i,j)=cmplx(0.,0.) + Linv(i,j)=cmplx(0.,0.) +10 continue !j loop + Imat(i)=cmplx(0.,0.) + Linv(i,i)=cmplx(1.,0.) !contains identity matrix +20 continue + + +! +! User defined numbers +! +! write (*,*)'Enter peak scaled Rabi frequency for the pump at entrance of cell' +! read (*,*)Om1peak + Om1peak=1 +! write (*,*)'Enter peak scaled Rabi frequency for the probe at entrance of cell' +! read (*,*)Om2peak + Om2peak=1e-2 +! write (*,*)'Enter maximum detuning in MHz for dispersion lineshape plot' +! read (*,*) delmax + delmax=0 + Ga4=(W41+W42+W43) + Ga2=W21 + Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4)) + Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4 + Om_crit=sqrt(Om_crit/2) + write (*,*)'Om_crit = ',Om_crit + +! write (*,*)'Enter peak scaled Rabi frequency for the coupling field at entrance of cell' +! read (*,*)Omcpeak + Omcpeak=0. + +! +! First plot the dispersion lineshape +! +! do 40 n=1,npts +! del(n)=-delmax+2*float(n)*delmax/npts +! call LMatConstruct(Ompeak,del(n),L) !construct the L matrix +! call LMatConstruct(Ompeak,del(n),Ltemp) !Need a temporary because L gets destroyed +! call ImatConstruct(Ompeak,Imat) !Need to call in loop because it gets destroyed +! !See also note in subroutine +! call ludcmp(L,nmat,nmat,indx,d) +! call lubksb(L,nmat,nmat,indx,Imat) !Imat now contains psi +! do 35 i=1,nmat +! yplot(i,n)=Imat(i) +!35 continue +! if (.false.) call MatCheck(Ltemp,Linv) +!40 continue +! call plotit(del,yplot,nmat,npts) +! +! Now that the user has an idea of the dispersion, do the full propagation problem +! write (*,*)'Enter detuning of center frequency of the coupling pulse in MHz' +! read (*,*)delc_prop !del_prop is the detuning used for the propagation + delc_prop=0 + delc_prop=2*pi*1e6*delc_prop/beta !Now dimensionless + +! write (*,*)'Enter detuning of center frequency of the pump pulse in MHz' +! read (*,*)del2_prop !del_prop is the detuning used for the propagation + del2_prop=0; + del2_prop=2*pi*1e6*del2_prop/beta !Now dimensionless +! write (*,*)'Enter detuning of center frequency of the probe pulse in MHz' +! read (*,*)del1_prop !del_prop is the detuning used for the propagation + del1_prop=0. + del1_prop=2*pi*1e6*del1_prop/beta !Now dimensionless + + +! write (*,*) 'Enter pulse width in nsec' +! read (*,*)tp + tp=1e-6 + tp=beta*tp !Now dimensionless +! write (*,*)'Enter length of cell in m' +! read (*,*)Lcell + Lcell=100; + Lcell=beta*Lcell/c !Now dimensionless + t_start=secnds(0.E0) + write (*,*)'t_start = ',t_start +! XXXXXXX +! +! Set up initial pulse. +! + tshift=2*tp + tmax=Lcell !Length of time to pass cell (no c because we're dimensionless) + dt=tmax/tpts + dz=dt !(no c because we're dimensionless) +! write (*,*)'tp = ',tp + Nframe=zpts+int(6*tp/dt)+1 !Change the number 4 to anything you want to see longer pulse evolution + if (Nframe.ge.Nframemax) write (*,*)'Error!!!!Nframe>Nframemax' +! write (*,*)'Nframe,tpts = ',Nframe,tpts +! +! Initialize matrices +! + Omold=cmplx(0.,0.) + Omold_vac=cmplx(0.,0.) + tpeak=-1 + tpeak_vac=-1 + write (*,*)'Nframe= ', Nframe +! pause +! do 110 n=1,Nframe + + do 100 m=1,zpts + Om1(m)=cmplx(0.,0.) + Om2(m)=cmplx(0.,0.) + Omc(m)=cmplx(0.,0.) + + Om_vac(m)=cmplx(0.,0.) + rho11(m)=cmplx(1.,0.) !Change this to change the initial condition + rho12(m)=cmplx(0.,0.) + rho13(m)=cmplx(0.,0.) + rho14(m)=cmplx(0.,0.) + rho21(m)=cmplx(0.,0.) + rho22(m)=cmplx(0.,0.) + rho23(m)=cmplx(0.,0.) + rho24(m)=cmplx(0.,0.) + rho31(m)=cmplx(0.,0.) + rho32(m)=cmplx(0.,0.) + rho33(m)=cmplx(0.,0.) + rho34(m)=cmplx(0.,0.) + rho41(m)=cmplx(0.,0.) + rho42(m)=cmplx(0.,0.) + rho43(m)=cmplx(0.,0.) + rho44(m)=cmplx(0.,0.) + +100 continue +!110 continue + + + +! Propagation co-efficients +! + + a1=1. + a2=0.5*ci*alpha1tilde*dt + a3=0.5*ci*alpha1tilde*dt + a4=0. + a5=0. + a6=0. + + b1=1. + b2=0.5*ci*alpha2tilde*dt + b2=0.5*ci*alpha2tilde*dt + b4=0. + b5=0. + b6=0. + b7=0. + + c1=1. + c2=0.5*ci*alphactilde*dt + c3=0.5*ci*alphactilde*dt + c4=0. + c5=0. + c6=0. + + d1=1-(ga12-ci*(del2_prop-del1_prop))*dt + d2=0.25*ci*dt + d3=-0.25*ci*dt + d4=-0.25*ci*dt + d5=0.25*ci*dt + d6=-0.25*ci*dt + d7=-0.25*ci*dt + + e1=1-(ga13+ci*del1_prop)*dt + e2=0.25*ci*dt + e3=-0.25*ci*dt + e4=0.25*ci*dt + e5=-0.25*ci*dt + + f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt + f2=0.25*ci*dt + f3=-0.25*ci*dt + f4=0.25*ci*dt + f5=-0.25*ci*dt + + g1=1-(ga23+ci*del1_prop)*dt + g2=-0.25*ci*dt + g3=0.25*ci*dt + g4=0.25*ci*dt + g5=-0.25*ci*dt + g6=0.25*ci*dt + g7=0.25*ci*dt + + h1=1-(ga24+ci*delc_prop)*dt + h2=0.25*ci*dt + h3=0.25*ci*dt + h4=0.25*ci*dt + h5=0.25*ci*dt + + i1=1-(ga34-ci*(del2_prop-delc_prop))*dt + i2=-0.25*ci*dt + i3=0.25*ci*dt + i4=0.25*ci*dt + i5=-0.25*ci*dt + i6=0.25*ci*dt + i7=0.25*ci*dt + + j1=1-W12*dt + j2=W21*dt + j3=W31*dt + j4=0.25*ci*dt + j5=-0.25*ci*dt + j6=0.25*ci*dt + j7=-0.25*ci*dt + j8=W41*dt + + k1=1-(W32+W31)*dt + k2=W43*dt + k3=-0.25*ci*dt + k4=-0.25*ci*dt + k5=0.25*ci*dt + k6=0.25*ci*dt + k7=-0.25*ci*dt + k8=-0.25*ci*dt + k9=0.25*ci*dt + k10=0.25*ci*dt + + l1=1-(W43+W42+W41)*dt + l2=-0.25*ci*dt + l3=0.25*ci*dt + l4=-0.25*ci*dt + l5=0.25*ci*dt + + NSkip=int(NFrame/NWrite) + + fname='MovieParameters4level_v2.txt' +! write (*,*)'Enter file name to save parameters' +! read (*,3)fname +3 format(a150) + open(9,name=fname) + write (9,133)Nframe,zpts,beta,NSkip,dt +! write (*,*)'Nframe,zpts,beta,NSkip,dt' +! write (*,133)Nframe,zpts,beta,NSkip,dt + +133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2) + close (9) + + fname='Movie4level_v2.dat' +! write (*,*)'Enter file name to save movie' +! read (*,3)fname + + open(9,name=fname) + fname='Movie4level_EndPoints_v2.dat' +! write (*,*)'Enter file name to save endpoints' +! read (*,3)fname + + open(10,name=fname) + + do 60 n=1,Nframe +! write (*,*)'n = ',n + t=float(n-1)*dt + Om1(1)=Om1peak + Om2(1)=Om2peak*exp(-(t-tshift)**2/(tp*tp)) + Omc(1)=Omcpeak + Om_vac(1)=Om2(1) + if (int(n/10).eq.0) write(fname,130)'Movie',n + if (int(n/10).ge.1.and.int(n/100).eq.0) write (fname,131)'Movie',n + if (int(n/10).ge.1.and.int(n/100).gt.0) write (fname,132)'Movie',n +130 format(a5,i1) +131 format(a5,i2) +132 format(a5,i3) +! write (*,125)fname +125 format(1x,a12) +! open(9,name=fname) + + do 345 m=1,zpts + rho11_last(m)=rho11(m) + rho12_last(m)=rho12(m) + rho13_last(m)=rho13(m) + rho14_last(m)=rho14(m) + rho21_last(m)=rho21(m) + rho22_last(m)=rho22(m) + rho23_last(m)=rho23(m) + rho24_last(m)=rho24(m) + rho31_last(m)=rho31(m) + rho32_last(m)=rho32(m) + rho33_last(m)=rho33(m) + rho34_last(m)=rho34(m) + rho41_last(m)=rho41(m) + rho42_last(m)=rho42(m) + rho43_last(m)=rho43(m) + rho44_last(m)=rho44(m) +345 continue + + do 50 m=zpts,2,-1 + z(m)=float(m)*dz + + Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1) + + Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1) + + Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1) + + rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m) + rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m) + rho11(m)=rho11(m)+j8*rho44_last(m) + + rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m) + rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m) + rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m) + + rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m)) + rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m)) + rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m) + + rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)+f3*conjg(Omc(m))*rho12_last(m) + rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m) + + rho21(m)=conjg(rho12(m)) + +! rho22(m) needs to be calculated lower down + + rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m)) + rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m) + rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m) + + rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*conjg(Omc(m))*(rho44_last(m)-rho22_last(m)) + rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*conjg(Omc(m-1))*(rho44_last(m)-rho22_last(m)) + + rho31(m)=conjg(rho13(m)) + + rho32(m)=conjg(rho23(m)) + + rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m) + rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m) + rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m) + + rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m) + rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m) + + rho41(m)=conjg(rho14(m)) + + rho42(m)=conjg(rho24(m)) + + rho43(m)=conjg(rho34(m)) + + rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m) + rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m) + + rho22(m)=1-rho11(m)-rho33(m)-rho44(m) + + + rho11_last(m)=rho11(m) + rho12_last(m)=rho12(m) + rho13_last(m)=rho13(m) + rho14_last(m)=rho14(m) + rho21_last(m)=rho21(m) + rho22_last(m)=rho22(m) + rho23_last(m)=rho23(m) + rho24_last(m)=rho24(m) + rho31_last(m)=rho31(m) + rho32_last(m)=rho32(m) + rho33_last(m)=rho33(m) + rho34_last(m)=rho34(m) + rho41_last(m)=rho41(m) + rho42_last(m)=rho42(m) + rho43_last(m)=rho43(m) + rho44_last(m)=rho44(m) + + + Om_vac(m)=a1*Om_vac(m-1) + + if (mod(n,Nskip).eq.0) write (9,120)z(m),Om2(m),Om_vac(m),Omc(m) + +50 continue + if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t + if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t + write (10,139) t,cdabs(Om2(zpts)),cdabs(Om_vac(zpts)) !EndPoint File + Omold=Om2(zpts) + Omold_vac=Om_vac(zpts) + +60 continue + close(9) + close(10) +139 format(1x,f12.6,',',F12.6,',',F12.6) +! write (*,*)'Medium pulse out at ',tpeak/(beta*1e-6),' microseconds' +! write (*,*)'Vacuum pulse out at ',tpeak_vac/(beta*1e-6),' microseconds' + write (*,*)Omcpeak,(tpeak-tpeak_vac)/(beta*1e-9) +120 format(1x,f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6) + t_end=secnds(0.E0) + t_elapsed=t_end-t_start + write(*,*)'T elapsed = ',t_elapsed + stop + end + +! + subroutine IMatConstruct(Om,Imat) +! +! NOTE: This subroutine actually calculates -Imat because we need to solve LPsi=-Imat. + implicit none + integer i,nmat + parameter (nmat=3) + real*8 Om + complex*8 Imat(nmat) + + Imat(1)=-cmplx(0.,-0.5*Om) + Imat(2)=-cmplx(0.,0.5*Om) + Imat(3)=cmplx(0.,0.) + return + end + + +! + subroutine LMatConstruct(Om,del,L) +! + + implicit none + integer nmat + parameter (nmat=3) + real*8 del,ga12,Om,W21 + complex*8 L(nmat,nmat) + common/para/ga12,W21 + + + L(1,1)=cmplx (-ga12,-del) + L(1,3)=cmplx(0.,Om) + L(2,2)=cmplx(-ga12,del) + L(2,3)=cmplx(0.,-Om) + L(3,1)=cmplx(0.,0.5*Om) + L(3,2)=cmplx(0.,-0.5*Om) + L(3,3)=cmplx(-W21,0.) + return + end + +! + subroutine MatCheck(L,Linv) +! + + implicit none + integer i,j,k,nmat + parameter (nmat=3) + complex*8 L(nmat,nmat),Linv(nmat,nmat),Res(nmat,nmat) + + write (*,*)'L = ' + do 10 i=1,nmat + write (*,120)(L(i,j),j=1,nmat) +10 continue + write (*,*)'Linv = ' + do 20 i=1,nmat + write (*,120)(Linv(i,j),j=1,nmat) +20 continue + write (*,*)'Res = ' + do 50 i=1,nmat + do 40 j=1,nmat + Res(i,j)=cmplx(0.,0.) + do 30 k=1,nmat + Res(i,j)=Res(i,j)+Linv(i,k)*L(k,j) +30 continue +40 continue + write (*,120)(Res(i,j),j=1,nmat) +50 continue +120 format(1x,3(f8.4,'+i',f8.4,' ')) + + return + end + +! + subroutine plotit(x,y,nmat,npts) +! +! See MATLAB routine that will do this plotting. + + implicit none + integer i,n,nmat,npts + real*8 x(npts) + complex*8 y(nmat,npts) + + write (*,*)'For now, we are just going to write the file' + open(9, FILE='TwoLevelPulseProp.txt') + do 10 n=1,npts + write (9,100)x(n),(y(i,n),i=1,3) +! write(*,100)x(n),(y(i,n),i=1,3) +10 continue +100 format(1x,f9.6,',',3(f9.6,',',f9.6,',')) + + + return + end + + + + + +!******************************************************** +! Numerical Recipes +!******************************************************** + + + SUBROUTINE ludcmp(a,n,np,indx,d) + implicit none + + INTEGER n,np,indx(n),NMAX + REAL*8 d,TINY + PARAMETER (NMAX=500,TINY=1.0e-20) + INTEGER i,imax,j,k + REAL aamax,dum,vv(NMAX) +! My changed variables + complex*8 sum,dum2 + complex*8 a(np,np) + + + d=1. + do 12 i=1,n + aamax=0. + do 11 j=1,n + if (cabs(a(i,j)).gt.aamax) aamax=cabs(a(i,j)) +11 continue + if (aamax.eq.0.) pause 'singular matrix in ludcmp' + vv(i)=1./aamax +12 continue + do 19 j=1,n + do 14 i=1,j-1 + sum=a(i,j) + do 13 k=1,i-1 + sum=sum-a(i,k)*a(k,j) +13 continue + a(i,j)=sum +14 continue + aamax=0. + do 16 i=j,n + sum=a(i,j) + do 15 k=1,j-1 + sum=sum-a(i,k)*a(k,j) +15 continue + a(i,j)=sum + dum=vv(i)*cabs(sum) + if (dum.ge.aamax) then + imax=i + aamax=dum + endif +16 continue + if (j.ne.imax)then + do 17 k=1,n + dum2=a(imax,k) + a(imax,k)=a(j,k) + a(j,k)=dum2 +17 continue + d=-d + vv(imax)=vv(j) + endif + indx(j)=imax + if (cabs(a(j,j)).eq.0.) a(j,j)=cmplx(TINY,TINY) + if(j.ne.n)then + dum2=1./a(j,j) + do 18 i=j+1,n + a(i,j)=a(i,j)*dum2 +18 continue + endif +19 continue + return + END + + SUBROUTINE lubksb(a,n,np,indx,b) + implicit none + INTEGER n,np,indx(n) + INTEGER i,ii,j,ll + +! My changed variables + complex*8 sum + complex*8 b(n) + complex*8 a(np,np) + ii=0 + do 12 i=1,n + ll=indx(i) + sum=b(ll) + b(ll)=b(i) + if (ii.ne.0)then + do 11 j=ii,i-1 + sum=sum-a(i,j)*b(j) +11 continue + else if (sum.ne.0.) then + ii=i + endif + b(i)=sum +12 continue + do 14 i=n,1,-1 + sum=b(i) + do 13 j=i+1,n + sum=sum-a(i,j)*b(j) +13 continue + b(i)=sum/a(i,i) +14 continue + return + END + diff --git a/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f b/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f index 0d9547a..2a08309 100644 --- a/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f +++ b/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f @@ -1,704 +1,704 @@ - program FourLevelPulseProp_v3_Double
-!
-! Written by: Dr. Frank A. Narducci
-! Written on: May 12, 2008
-!
-! This program calculates the propagation of a pulse of arbitrary strength
-! through a two level medium. The equations used are the full equations
-! based on the Risken-Numedal discretization technique.
-!
-! This program only "watches" the evolution of the pulse in the cell. This is
-! due to the constraint that the cell is very small relative to the pulse lengths
-! that we want to use. If we watched the pulse outside the cell and then increased the
-! resolution within the cell, the increased burden outside the cell because huge.
-!
-! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16
- implicit none
-!
-! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision
- complex ci
-!
-! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a
-! three level system
-!
-! Four Level Notes: Valid to first order in dt
-!
-! Version 3: Make a step function in the coupling field.
-
- character*150 fname
- integer nmat,npts,Nfrac,Nframe,Nframemax,NSkip,NWrite,tpts,zpts
- parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve
- !REMEMBER TO CHANGE NMAT IN LMatConstruct Routine
- parameter (tpts=100,zpts=tpts+1) !Caution: funny things happened when tpts=200 (and presumably greater)
- !tpts is the number of temporal points in the cell
- parameter (Nframemax=2000000)
- parameter ( NWrite=100) !number of frames to actually write
- integer i,j,k,m,n
- complex*16 a1,a2,a3,a4,a5,a6
- complex*16 b1,b2,b3,b4,b5,b6,b7
- complex*16 c1,c2,c3,c4,c5,c6
- complex*16 d1,d2,d3,d4,d5,d6,d7
- complex*16 e1,e2,e3,e4,e5
- complex*16 f1,f2,f3,f4,f5
- complex*16 g1,g2,g3,g4,g5,g6,g7
- complex*16 h1,h2,h3,h4,h5
- complex*16 i1,i2,i3,i4,i5,i6,i7
- complex*16 j1,j2,j3,j4,j5,j6,j7
- complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10
- complex*16 l1,l2,l3,l4,l5
-
- complex *16 Omold, Omold_vac
- real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,beta,c,delmax,del1_prop,del2_prop,delc_prop
- real*8 dt,dz,eta
- real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34
- real*8 Ga2,Ga4,Om_crit
- real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tp,tshift,t_end,t_start,t_elapsed
- real*8 tpeak,tpeak_vac
- real*8 epsil,hbar,lambda
- real*8 del(npts)
- real*8 t,z(zpts)
- complex*16 yplot(nmat,npts)
- complex*16 Imat(nmat)
-
-
- complex*16 Om1(zpts),Om2(zpts),Omc(zpts),Om_vac(zpts)
- complex*16 rho11(zpts),rho12(zpts),rho13(zpts),rho14(zpts),rho21(zpts),rho22(zpts),rho23(zpts),rho24(zpts)
- complex*16 rho31(zpts),rho32(zpts),rho33(zpts),rho34(zpts),rho41(zpts),rho42(zpts),rho43(zpts),rho44(zpts)
- complex*16 rho11_last(zpts),rho12_last(zpts),rho13_last(zpts),rho14_last(zpts)
- complex*16 rho21_last(zpts),rho22_last(zpts),rho23_last(zpts),rho24_last(zpts)
- complex*16 rho31_last(zpts),rho32_last(zpts),rho33_last(zpts),rho34_last(zpts)
- complex*16 rho41_last(zpts),rho42_last(zpts),rho43_last(zpts),rho44_last(zpts)
-
- !No Om_last because we never need the previous spatial point
- complex*16 L(nmat,nmat),Linv(nmat,nmat),Ltemp(nmat,nmat)
-
- common/para/ga12,W21
-
-
- real*8 d !used by NR Routines
- integer indx(nmat)
-
-!
-! Fundamental numbers
-!
- ci=cmplx(0.,1.)
- pi=acos(-1.0)
- c=3e8
- hbar=1.055e-34
- epsil=8.85e-12
-
-!
-! Atomic numbers (based on Rubidium 85)
-!
- beta=2*pi*3e6 !in Hz
- W41=0
- W42=1
- W43=0
- W32=1.
- W31=1.
- W21=.001
- W12=W21
- W34=0
- ga12=0.5*(W21+W12)
- ga13=0.5*(W31+W12+W32)
- ga14=0.5*(W41+W42+W12)
- ga23=0.5*(W32+W31+W21)
- ga24=0.5*(W21+W41+W42+W43)
- ga34=0.5*(W31+W41+W32+W42+W43)
- lambda=780.24e-9
-
-!
-! Atomic parameters
-!
-! write (*,*)'Enter density in m^-1'
-! read (*,*)eta
- eta=6.9e13
- alpha1=3*eta*lambda*lambda/(2*pi)
- alpha1tilde=alpha1*c/beta
- alpha2=3*eta*lambda*lambda/(2*pi)
- alpha2tilde=alpha2*c/beta
- alphac=3*eta*lambda*lambda/(2*pi)
- alphactilde=alphac*c/beta
-
-!
-! Initialize matrices and set up Identity Matrix
-!
- do 20 i=1,nmat
- do 10 j=1,nmat
- L(i,j)=cmplx(0.,0.)
- Linv(i,j)=cmplx(0.,0.)
-10 continue !j loop
- Imat(i)=cmplx(0.,0.)
- Linv(i,i)=cmplx(1.,0.) !contains identity matrix
-20 continue
-
-
-!
-! User defined numbers
-!
-! write (*,*)'Enter peak scaled Rabi frequency for the pump at entrance of cell'
-! read (*,*)Om1peak
- Om1peak=1
-! write (*,*)'Enter peak scaled Rabi frequency for the probe at entrance of cell'
-! read (*,*)Om2peak
- Om2peak=.01
-! write (*,*)'Enter maximum detuning in MHz for dispersion lineshape plot'
-! read (*,*) delmax
- delmax=0
- Ga4=(W41+W42+W43)
- Ga2=W21
- Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4))
- Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4
- Om_crit=sqrt(Om_crit/2)
-! write (*,*)'Om_crit = ',Om_crit
-! write (*,*)'Enter peak scaled Rabi frequency for the coupling field at entrance of cell'
-! read (*,*)Omcpeak
- Ompeak=0.1
-
-!
-! First plot the dispersion lineshape
-!
-! do 40 n=1,npts
-! del(n)=-delmax+2*float(n)*delmax/npts
-! call LMatConstruct(Ompeak,del(n),L) !construct the L matrix
-! call LMatConstruct(Ompeak,del(n),Ltemp) !Need a temporary because L gets destroyed
-! call ImatConstruct(Ompeak,Imat) !Need to call in loop because it gets destroyed
-! !See also note in subroutine
-! call ludcmp(L,nmat,nmat,indx,d)
-! call lubksb(L,nmat,nmat,indx,Imat) !Imat now contains psi
-! do 35 i=1,nmat
-! yplot(i,n)=Imat(i)
-!35 continue
-! if (.false.) call MatCheck(Ltemp,Linv)
-!40 continue
-! call plotit(del,yplot,nmat,npts)
-!
-! Now that the user has an idea of the dispersion, do the full propagation problem
-! write (*,*)'Enter detuning of center frequency of the coupling pulse in MHz'
-! read (*,*)delc_prop !del_prop is the detuning used for the propagation
- delc_prop=0
- delc_prop=2*pi*1e6*delc_prop/beta !Now dimensionless
-
-! write (*,*)'Enter detuning of center frequency of the pump pulse in MHz'
-! read (*,*)del2_prop !del_prop is the detuning used for the propagation
- del2_prop=0.
- del2_prop=2*pi*1e6*del2_prop/beta !Now dimensionless
-! write (*,*)'Enter detuning of center frequency of the probe pulse in MHz'
-! read (*,*)del1_prop !del_prop is the detuning used for the propagation
- del1_prop=0.
- del1_prop=2*pi*1e6*del1_prop/beta !Now dimensionless
-
-
-! write (*,*) 'Enter pulse width in nsec'
-! read (*,*)tp
- tp=1e-6
- tp=beta*tp !Now dimensionless
-! write (*,*)'Enter length of cell in m'
-! read (*,*)Lcell
- Lcell=1;
- Lcell=beta*Lcell/c !Now dimensionless
- t_start=secnds(0.E0)
-! XXXXXXX
-!
-! Set up initial pulse.
-!
- tshift=2*tp
- tmax=Lcell !Length of time to pass cell (no c because we're dimensionless)
- dt=tmax/tpts
- dz=dt !(no c because we're dimensionless)
-! write (*,*)'tp = ',tp
- Nframe=zpts+int(4*tp/dt)+1 !Change the number 4 to anything you want to see longer pulse evolution
- if (Nframe.ge.Nframemax) write (*,*)'Error!!!!Nframe>Nframemax'
-! write (*,*)'Nframe,tpts = ',Nframe,tpts
-!
-! Initialize matrices
-!
- Omold=cmplx(0.,0.)
- Omold_vac=cmplx(0.,0.)
- tpeak=-1
- tpeak_vac=-1
-! do 110 n=1,Nframe
- do 100 m=1,zpts
- Om1(m)=cmplx(0.,0.)
- Om2(m)=cmplx(0.,0.)
- Omc(m)=cmplx(0.,0.)
-
- Om_vac(m)=cmplx(0.,0.)
- rho11(m)=cmplx(1.,0.) !Change this to change the initial condition
- rho12(m)=cmplx(0.,0.)
- rho13(m)=cmplx(0.,0.)
- rho14(m)=cmplx(0.,0.)
- rho21(m)=cmplx(0.,0.)
- rho22(m)=cmplx(0.,0.)
- rho23(m)=cmplx(0.,0.)
- rho24(m)=cmplx(0.,0.)
- rho31(m)=cmplx(0.,0.)
- rho32(m)=cmplx(0.,0.)
- rho33(m)=cmplx(0.,0.)
- rho34(m)=cmplx(0.,0.)
- rho41(m)=cmplx(0.,0.)
- rho42(m)=cmplx(0.,0.)
- rho43(m)=cmplx(0.,0.)
- rho44(m)=cmplx(0.,0.)
-
-100 continue
-!110 continue
-
-
-
-! Propagation co-efficients
-!
-
- a1=1.
- a2=0.5*ci*alpha1tilde*dt
- a3=0.5*ci*alpha1tilde*dt
- a4=0.
- a5=0.
- a6=0.
-
- b1=1.
- b2=0.5*ci*alpha2tilde*dt
- b2=0.5*ci*alpha2tilde*dt
- b4=0.
- b5=0.
- b6=0.
- b7=0.
-
- c1=1.
- c2=0.5*ci*alphactilde*dt
- c3=0.5*ci*alphactilde*dt
- c4=0.
- c5=0.
- c6=0.
-
- d1=1-(ga12-ci*(del2_prop-del1_prop))*dt
- d2=0.25*ci*dt
- d3=-0.25*ci*dt
- d4=-0.25*ci*dt
- d5=0.25*ci*dt
- d6=-0.25*ci*dt
- d7=-0.25*ci*dt
-
- e1=1-(ga13+ci*del1_prop)*dt
- e2=0.25*ci*dt
- e3=-0.25*ci*dt
- e4=0.25*ci*dt
- e5=-0.25*ci*dt
-
- f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt
- f2=0.25*ci*dt
- f3=-0.25*ci*dt
- f4=0.25*ci*dt
- f5=-0.25*ci*dt
-
- g1=1-(ga23+ci*del1_prop)*dt
- g2=-0.25*ci*dt
- g3=0.25*ci*dt
- g4=0.25*ci*dt
- g5=-0.25*ci*dt
- g6=0.25*ci*dt
- g7=0.25*ci*dt
-
- h1=1-(ga24+ci*delc_prop)*dt
- h2=0.25*ci*dt
- h3=0.25*ci*dt
- h4=0.25*ci*dt
- h5=0.25*ci*dt
-
- i1=1-(ga34-ci*(del2_prop-delc_prop))*dt
- i2=-0.25*ci*dt
- i3=0.25*ci*dt
- i4=0.25*ci*dt
- i5=-0.25*ci*dt
- i6=0.25*ci*dt
- i7=0.25*ci*dt
-
- j1=1-W12*dt
- j2=W12*dt
- j3=W31*dt
- j4=0.25*ci*dt
- j5=-0.25*ci*dt
- j6=0.25*ci*dt
- j7=-0.25*ci*dt
-
- k1=1-(W32+W31+W34)*dt
- k2=W43*dt
- k3=-0.25*ci*dt
- k4=-0.25*ci*dt
- k5=0.25*ci*dt
- k6=0.25*ci*dt
- k7=-0.25*ci*dt
- k8=-0.25*ci*dt
- k9=0.25*ci*dt
- k10=0.25*ci*dt
-
- l1=1-(W43+W42+W41)*dt
- l2=-0.25*ci*dt
- l3=0.25*ci*dt
- l4=-0.25*ci*dt
- l5=0.25*ci*dt
-
-
-
-
-
-
- NSkip=int(NFrame/NWrite)
-
- fname='MovieParameters4level_v2.txt'
-! write (*,*)'Enter file name to save parameters'
-! read (*,3)fname
-3 format(a150)
- open(9,name=fname)
- write (9,133)Nframe,zpts,beta,NSkip,dt
-! write (*,*)'Nframe,zpts,beta,NSkip,dt'
-! write (*,133)Nframe,zpts,beta,NSkip,dt
-
-133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2)
- close (9)
-
- fname='Movie4level_v2.dat'
-! write (*,*)'Enter file name to save movie'
-! read (*,3)fname
-
- open(9,name=fname)
- fname='Movie4level_EndPoints_v2.dat'
-! write (*,*)'Enter file name to save endpoints'
-! read (*,3)fname
-
- open(10,name=fname)
-
- do 60 n=1,Nframe
- t=float(n-1)*dt
- Om1(1)=Om1peak
- Om2(1)=Om2peak*exp(-(t-tshift)**2/(tp*tp))
- Omc(1)=Omcpeak*exp(-(t-tshift)**2/(tp*tp))
- Om_vac(1)=Om2(1)
- if (int(n/10).eq.0) write(fname,130)'Movie',n
- if (int(n/10).ge.1.and.int(n/100).eq.0) write (fname,131)'Movie',n
- if (int(n/10).ge.1.and.int(n/100).gt.0) write (fname,132)'Movie',n
-130 format(a5,i1)
-131 format(a5,i2)
-132 format(a5,i3)
-! write (*,125)fname
-125 format(1x,a12)
-! open(9,name=fname)
-
- do 345 m=1,zpts
- rho11_last(m)=rho11(m)
- rho12_last(m)=rho12(m)
- rho13_last(m)=rho13(m)
- rho14_last(m)=rho14(m)
- rho21_last(m)=rho21(m)
- rho22_last(m)=rho22(m)
- rho23_last(m)=rho23(m)
- rho24_last(m)=rho24(m)
- rho31_last(m)=rho31(m)
- rho32_last(m)=rho32(m)
- rho33_last(m)=rho33(m)
- rho34_last(m)=rho34(m)
- rho41_last(m)=rho41(m)
- rho42_last(m)=rho42(m)
- rho43_last(m)=rho43(m)
- rho44_last(m)=rho44(m)
-345 continue
-
- do 50 m=zpts,2,-1
- z(m)=float(m)*dz
-
- Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1)
-
- Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1)
-
- Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1)
-
- rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m)
- rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m)
-
- rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m)
- rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m)
- rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m)
-
- rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m))
- rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m))
- rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m)
-
- rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)*f3*conjg(Omc(m))*rho12_last(m)
- rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m)
-
- rho21(m)=conjg(rho12(m))
-
-! rho22(m) needs to be calculated lower down
-
- rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m))
- rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m)
- rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m)
-
- rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*Omc(m)*(rho44_last(m)-rho22_last(m))
- rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*Omc(m-1)*(rho44_last(m)-rho22_last(m))
-
- rho31(m)=conjg(rho13(m))
-
- rho32(m)=conjg(rho23(m))
-
- rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m)
- rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m)
- rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m)
-
- rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m)
- rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m)
-
- rho41(m)=conjg(rho14(m))
-
- rho42(m)=conjg(rho24(m))
-
- rho43(m)=conjg(rho34(m))
-
- rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m)
- rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m)
-
- rho22(m)=1-rho11(m)-rho33(m)-rho44(m)
-
-
- rho11_last(m)=rho11(m)
- rho12_last(m)=rho12(m)
- rho13_last(m)=rho13(m)
- rho14_last(m)=rho14(m)
- rho21_last(m)=rho21(m)
- rho22_last(m)=rho22(m)
- rho23_last(m)=rho23(m)
- rho24_last(m)=rho24(m)
- rho31_last(m)=rho31(m)
- rho32_last(m)=rho32(m)
- rho33_last(m)=rho33(m)
- rho34_last(m)=rho34(m)
- rho41_last(m)=rho41(m)
- rho42_last(m)=rho42(m)
- rho43_last(m)=rho43(m)
- rho44_last(m)=rho44(m)
-
-
- Om_vac(m)=a1*Om_vac(m-1)
-
- if (mod(n,Nskip).eq.0) write (9,120)z(m),Om2(m),Om_vac(m),Omc(m)
-
-50 continue
- if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t
- if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t
- write (10,139) t,cdabs(Om2(zpts)),cdabs(Om_vac(zpts)) !EndPoint File
- Omold=Om2(zpts)
- Omold_vac=Om_vac(zpts)
-
-60 continue
- close(9)
- close(10)
-139 format(1x,f12.6,',',F12.6,',',F12.6)
-! write (*,*)'Medium pulse out at ',tpeak/(beta*1e-6),' microseconds'
-! write (*,*)'Vacuum pulse out at ',tpeak_vac/(beta*1e-6),' microseconds'
- write (*,*)Omcpeak,(tpeak-tpeak_vac)/(beta*1e-9)
-120 format(1x,f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6)
- t_end=secnds(0.E0)
- t_elapsed=t_end-t_start
-! write(*,*)'T elapsed = ',t_elapsed
- stop
- end
-
-!
- subroutine IMatConstruct(Om,Imat)
-!
-! NOTE: This subroutine actually calculates -Imat because we need to solve LPsi=-Imat.
- implicit none
- integer i,nmat
- parameter (nmat=3)
- real*8 Om
- complex*8 Imat(nmat)
-
- Imat(1)=-cmplx(0.,-0.5*Om)
- Imat(2)=-cmplx(0.,0.5*Om)
- Imat(3)=cmplx(0.,0.)
- return
- end
-
-
-!
- subroutine LMatConstruct(Om,del,L)
-!
-
- implicit none
- integer nmat
- parameter (nmat=3)
- real*8 del,ga12,Om,W21
- complex*8 L(nmat,nmat)
- common/para/ga12,W21
-
-
- L(1,1)=cmplx (-ga12,-del)
- L(1,3)=cmplx(0.,Om)
- L(2,2)=cmplx(-ga12,del)
- L(2,3)=cmplx(0.,-Om)
- L(3,1)=cmplx(0.,0.5*Om)
- L(3,2)=cmplx(0.,-0.5*Om)
- L(3,3)=cmplx(-W21,0.)
- return
- end
-
-!
- subroutine MatCheck(L,Linv)
-!
-
- implicit none
- integer i,j,k,nmat
- parameter (nmat=3)
- complex*8 L(nmat,nmat),Linv(nmat,nmat),Res(nmat,nmat)
-
- write (*,*)'L = '
- do 10 i=1,nmat
- write (*,120)(L(i,j),j=1,nmat)
-10 continue
- write (*,*)'Linv = '
- do 20 i=1,nmat
- write (*,120)(Linv(i,j),j=1,nmat)
-20 continue
- write (*,*)'Res = '
- do 50 i=1,nmat
- do 40 j=1,nmat
- Res(i,j)=cmplx(0.,0.)
- do 30 k=1,nmat
- Res(i,j)=Res(i,j)+Linv(i,k)*L(k,j)
-30 continue
-40 continue
- write (*,120)(Res(i,j),j=1,nmat)
-50 continue
-120 format(1x,3(f8.4,'+i',f8.4,' '))
-
- return
- end
-
-!
- subroutine plotit(x,y,nmat,npts)
-!
-! See MATLAB routine that will do this plotting.
-
- implicit none
- integer i,n,nmat,npts
- real*8 x(npts)
- complex*8 y(nmat,npts)
-
- write (*,*)'For now, we are just going to write the file'
- open(9, FILE='TwoLevelPulseProp.txt')
- do 10 n=1,npts
- write (9,100)x(n),(y(i,n),i=1,3)
-! write(*,100)x(n),(y(i,n),i=1,3)
-10 continue
-100 format(1x,f9.6,',',3(f9.6,',',f9.6,','))
-
-
- return
- end
-
-
-
-
-
-!********************************************************
-! Numerical Recipes
-!********************************************************
-
-
- SUBROUTINE ludcmp(a,n,np,indx,d)
- implicit none
-
- INTEGER n,np,indx(n),NMAX
- REAL*8 d,TINY
- PARAMETER (NMAX=500,TINY=1.0e-20)
- INTEGER i,imax,j,k
- REAL aamax,dum,vv(NMAX)
-! My changed variables
- complex*8 sum,dum2
- complex*8 a(np,np)
-
-
- d=1.
- do 12 i=1,n
- aamax=0.
- do 11 j=1,n
- if (cabs(a(i,j)).gt.aamax) aamax=cabs(a(i,j))
-11 continue
- if (aamax.eq.0.) pause 'singular matrix in ludcmp'
- vv(i)=1./aamax
-12 continue
- do 19 j=1,n
- do 14 i=1,j-1
- sum=a(i,j)
- do 13 k=1,i-1
- sum=sum-a(i,k)*a(k,j)
-13 continue
- a(i,j)=sum
-14 continue
- aamax=0.
- do 16 i=j,n
- sum=a(i,j)
- do 15 k=1,j-1
- sum=sum-a(i,k)*a(k,j)
-15 continue
- a(i,j)=sum
- dum=vv(i)*cabs(sum)
- if (dum.ge.aamax) then
- imax=i
- aamax=dum
- endif
-16 continue
- if (j.ne.imax)then
- do 17 k=1,n
- dum2=a(imax,k)
- a(imax,k)=a(j,k)
- a(j,k)=dum2
-17 continue
- d=-d
- vv(imax)=vv(j)
- endif
- indx(j)=imax
- if (cabs(a(j,j)).eq.0.) a(j,j)=cmplx(TINY,TINY)
- if(j.ne.n)then
- dum2=1./a(j,j)
- do 18 i=j+1,n
- a(i,j)=a(i,j)*dum2
-18 continue
- endif
-19 continue
- return
- END
-
- SUBROUTINE lubksb(a,n,np,indx,b)
- implicit none
- INTEGER n,np,indx(n)
- INTEGER i,ii,j,ll
-
-! My changed variables
- complex*8 sum
- complex*8 b(n)
- complex*8 a(np,np)
- ii=0
- do 12 i=1,n
- ll=indx(i)
- sum=b(ll)
- b(ll)=b(i)
- if (ii.ne.0)then
- do 11 j=ii,i-1
- sum=sum-a(i,j)*b(j)
-11 continue
- else if (sum.ne.0.) then
- ii=i
- endif
- b(i)=sum
-12 continue
- do 14 i=n,1,-1
- sum=b(i)
- do 13 j=i+1,n
- sum=sum-a(i,j)*b(j)
-13 continue
- b(i)=sum/a(i,i)
-14 continue
- return
- END
-
+ program FourLevelPulseProp_v3_Double +! +! Written by: Dr. Frank A. Narducci +! Written on: May 12, 2008 +! +! This program calculates the propagation of a pulse of arbitrary strength +! through a two level medium. The equations used are the full equations +! based on the Risken-Numedal discretization technique. +! +! This program only "watches" the evolution of the pulse in the cell. This is +! due to the constraint that the cell is very small relative to the pulse lengths +! that we want to use. If we watched the pulse outside the cell and then increased the +! resolution within the cell, the increased burden outside the cell because huge. +! +! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16 + implicit none +! +! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision + complex ci +! +! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a +! three level system +! +! Four Level Notes: Valid to first order in dt +! +! Version 3: Make a step function in the coupling field. + + character*150 fname + integer nmat,npts,Nfrac,Nframe,Nframemax,NSkip,NWrite,tpts,zpts + parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve + !REMEMBER TO CHANGE NMAT IN LMatConstruct Routine + parameter (tpts=100,zpts=tpts+1) !Caution: funny things happened when tpts=200 (and presumably greater) + !tpts is the number of temporal points in the cell + parameter (Nframemax=2000000) + parameter ( NWrite=100) !number of frames to actually write + integer i,j,k,m,n + complex*16 a1,a2,a3,a4,a5,a6 + complex*16 b1,b2,b3,b4,b5,b6,b7 + complex*16 c1,c2,c3,c4,c5,c6 + complex*16 d1,d2,d3,d4,d5,d6,d7 + complex*16 e1,e2,e3,e4,e5 + complex*16 f1,f2,f3,f4,f5 + complex*16 g1,g2,g3,g4,g5,g6,g7 + complex*16 h1,h2,h3,h4,h5 + complex*16 i1,i2,i3,i4,i5,i6,i7 + complex*16 j1,j2,j3,j4,j5,j6,j7 + complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10 + complex*16 l1,l2,l3,l4,l5 + + complex *16 Omold, Omold_vac + real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,beta,c,delmax,del1_prop,del2_prop,delc_prop + real*8 dt,dz,eta + real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34 + real*8 Ga2,Ga4,Om_crit + real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tp,tshift,t_end,t_start,t_elapsed + real*8 tpeak,tpeak_vac + real*8 epsil,hbar,lambda + real*8 del(npts) + real*8 t,z(zpts) + complex*16 yplot(nmat,npts) + complex*16 Imat(nmat) + + + complex*16 Om1(zpts),Om2(zpts),Omc(zpts),Om_vac(zpts) + complex*16 rho11(zpts),rho12(zpts),rho13(zpts),rho14(zpts),rho21(zpts),rho22(zpts),rho23(zpts),rho24(zpts) + complex*16 rho31(zpts),rho32(zpts),rho33(zpts),rho34(zpts),rho41(zpts),rho42(zpts),rho43(zpts),rho44(zpts) + complex*16 rho11_last(zpts),rho12_last(zpts),rho13_last(zpts),rho14_last(zpts) + complex*16 rho21_last(zpts),rho22_last(zpts),rho23_last(zpts),rho24_last(zpts) + complex*16 rho31_last(zpts),rho32_last(zpts),rho33_last(zpts),rho34_last(zpts) + complex*16 rho41_last(zpts),rho42_last(zpts),rho43_last(zpts),rho44_last(zpts) + + !No Om_last because we never need the previous spatial point + complex*16 L(nmat,nmat),Linv(nmat,nmat),Ltemp(nmat,nmat) + + common/para/ga12,W21 + + + real*8 d !used by NR Routines + integer indx(nmat) + +! +! Fundamental numbers +! + ci=cmplx(0.,1.) + pi=acos(-1.0) + c=3e8 + hbar=1.055e-34 + epsil=8.85e-12 + +! +! Atomic numbers (based on Rubidium 85) +! + beta=2*pi*3e6 !in Hz + W41=0 + W42=1 + W43=0 + W32=1. + W31=1. + W21=.001 + W12=W21 + W34=0 + ga12=0.5*(W21+W12) + ga13=0.5*(W31+W12+W32) + ga14=0.5*(W41+W42+W12) + ga23=0.5*(W32+W31+W21) + ga24=0.5*(W21+W41+W42+W43) + ga34=0.5*(W31+W41+W32+W42+W43) + lambda=780.24e-9 + +! +! Atomic parameters +! +! write (*,*)'Enter density in m^-1' +! read (*,*)eta + eta=6.9e13 + alpha1=3*eta*lambda*lambda/(2*pi) + alpha1tilde=alpha1*c/beta + alpha2=3*eta*lambda*lambda/(2*pi) + alpha2tilde=alpha2*c/beta + alphac=3*eta*lambda*lambda/(2*pi) + alphactilde=alphac*c/beta + +! +! Initialize matrices and set up Identity Matrix +! + do 20 i=1,nmat + do 10 j=1,nmat + L(i,j)=cmplx(0.,0.) + Linv(i,j)=cmplx(0.,0.) +10 continue !j loop + Imat(i)=cmplx(0.,0.) + Linv(i,i)=cmplx(1.,0.) !contains identity matrix +20 continue + + +! +! User defined numbers +! +! write (*,*)'Enter peak scaled Rabi frequency for the pump at entrance of cell' +! read (*,*)Om1peak + Om1peak=1 +! write (*,*)'Enter peak scaled Rabi frequency for the probe at entrance of cell' +! read (*,*)Om2peak + Om2peak=.01 +! write (*,*)'Enter maximum detuning in MHz for dispersion lineshape plot' +! read (*,*) delmax + delmax=0 + Ga4=(W41+W42+W43) + Ga2=W21 + Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4)) + Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4 + Om_crit=sqrt(Om_crit/2) +! write (*,*)'Om_crit = ',Om_crit +! write (*,*)'Enter peak scaled Rabi frequency for the coupling field at entrance of cell' +! read (*,*)Omcpeak + Ompeak=0.1 + +! +! First plot the dispersion lineshape +! +! do 40 n=1,npts +! del(n)=-delmax+2*float(n)*delmax/npts +! call LMatConstruct(Ompeak,del(n),L) !construct the L matrix +! call LMatConstruct(Ompeak,del(n),Ltemp) !Need a temporary because L gets destroyed +! call ImatConstruct(Ompeak,Imat) !Need to call in loop because it gets destroyed +! !See also note in subroutine +! call ludcmp(L,nmat,nmat,indx,d) +! call lubksb(L,nmat,nmat,indx,Imat) !Imat now contains psi +! do 35 i=1,nmat +! yplot(i,n)=Imat(i) +!35 continue +! if (.false.) call MatCheck(Ltemp,Linv) +!40 continue +! call plotit(del,yplot,nmat,npts) +! +! Now that the user has an idea of the dispersion, do the full propagation problem +! write (*,*)'Enter detuning of center frequency of the coupling pulse in MHz' +! read (*,*)delc_prop !del_prop is the detuning used for the propagation + delc_prop=0 + delc_prop=2*pi*1e6*delc_prop/beta !Now dimensionless + +! write (*,*)'Enter detuning of center frequency of the pump pulse in MHz' +! read (*,*)del2_prop !del_prop is the detuning used for the propagation + del2_prop=0. + del2_prop=2*pi*1e6*del2_prop/beta !Now dimensionless +! write (*,*)'Enter detuning of center frequency of the probe pulse in MHz' +! read (*,*)del1_prop !del_prop is the detuning used for the propagation + del1_prop=0. + del1_prop=2*pi*1e6*del1_prop/beta !Now dimensionless + + +! write (*,*) 'Enter pulse width in nsec' +! read (*,*)tp + tp=1e-6 + tp=beta*tp !Now dimensionless +! write (*,*)'Enter length of cell in m' +! read (*,*)Lcell + Lcell=1; + Lcell=beta*Lcell/c !Now dimensionless + t_start=secnds(0.E0) +! XXXXXXX +! +! Set up initial pulse. +! + tshift=2*tp + tmax=Lcell !Length of time to pass cell (no c because we're dimensionless) + dt=tmax/tpts + dz=dt !(no c because we're dimensionless) +! write (*,*)'tp = ',tp + Nframe=zpts+int(4*tp/dt)+1 !Change the number 4 to anything you want to see longer pulse evolution + if (Nframe.ge.Nframemax) write (*,*)'Error!!!!Nframe>Nframemax' +! write (*,*)'Nframe,tpts = ',Nframe,tpts +! +! Initialize matrices +! + Omold=cmplx(0.,0.) + Omold_vac=cmplx(0.,0.) + tpeak=-1 + tpeak_vac=-1 +! do 110 n=1,Nframe + do 100 m=1,zpts + Om1(m)=cmplx(0.,0.) + Om2(m)=cmplx(0.,0.) + Omc(m)=cmplx(0.,0.) + + Om_vac(m)=cmplx(0.,0.) + rho11(m)=cmplx(1.,0.) !Change this to change the initial condition + rho12(m)=cmplx(0.,0.) + rho13(m)=cmplx(0.,0.) + rho14(m)=cmplx(0.,0.) + rho21(m)=cmplx(0.,0.) + rho22(m)=cmplx(0.,0.) + rho23(m)=cmplx(0.,0.) + rho24(m)=cmplx(0.,0.) + rho31(m)=cmplx(0.,0.) + rho32(m)=cmplx(0.,0.) + rho33(m)=cmplx(0.,0.) + rho34(m)=cmplx(0.,0.) + rho41(m)=cmplx(0.,0.) + rho42(m)=cmplx(0.,0.) + rho43(m)=cmplx(0.,0.) + rho44(m)=cmplx(0.,0.) + +100 continue +!110 continue + + + +! Propagation co-efficients +! + + a1=1. + a2=0.5*ci*alpha1tilde*dt + a3=0.5*ci*alpha1tilde*dt + a4=0. + a5=0. + a6=0. + + b1=1. + b2=0.5*ci*alpha2tilde*dt + b2=0.5*ci*alpha2tilde*dt + b4=0. + b5=0. + b6=0. + b7=0. + + c1=1. + c2=0.5*ci*alphactilde*dt + c3=0.5*ci*alphactilde*dt + c4=0. + c5=0. + c6=0. + + d1=1-(ga12-ci*(del2_prop-del1_prop))*dt + d2=0.25*ci*dt + d3=-0.25*ci*dt + d4=-0.25*ci*dt + d5=0.25*ci*dt + d6=-0.25*ci*dt + d7=-0.25*ci*dt + + e1=1-(ga13+ci*del1_prop)*dt + e2=0.25*ci*dt + e3=-0.25*ci*dt + e4=0.25*ci*dt + e5=-0.25*ci*dt + + f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt + f2=0.25*ci*dt + f3=-0.25*ci*dt + f4=0.25*ci*dt + f5=-0.25*ci*dt + + g1=1-(ga23+ci*del1_prop)*dt + g2=-0.25*ci*dt + g3=0.25*ci*dt + g4=0.25*ci*dt + g5=-0.25*ci*dt + g6=0.25*ci*dt + g7=0.25*ci*dt + + h1=1-(ga24+ci*delc_prop)*dt + h2=0.25*ci*dt + h3=0.25*ci*dt + h4=0.25*ci*dt + h5=0.25*ci*dt + + i1=1-(ga34-ci*(del2_prop-delc_prop))*dt + i2=-0.25*ci*dt + i3=0.25*ci*dt + i4=0.25*ci*dt + i5=-0.25*ci*dt + i6=0.25*ci*dt + i7=0.25*ci*dt + + j1=1-W12*dt + j2=W12*dt + j3=W31*dt + j4=0.25*ci*dt + j5=-0.25*ci*dt + j6=0.25*ci*dt + j7=-0.25*ci*dt + + k1=1-(W32+W31+W34)*dt + k2=W43*dt + k3=-0.25*ci*dt + k4=-0.25*ci*dt + k5=0.25*ci*dt + k6=0.25*ci*dt + k7=-0.25*ci*dt + k8=-0.25*ci*dt + k9=0.25*ci*dt + k10=0.25*ci*dt + + l1=1-(W43+W42+W41)*dt + l2=-0.25*ci*dt + l3=0.25*ci*dt + l4=-0.25*ci*dt + l5=0.25*ci*dt + + + + + + + NSkip=int(NFrame/NWrite) + + fname='MovieParameters4level_v2.txt' +! write (*,*)'Enter file name to save parameters' +! read (*,3)fname +3 format(a150) + open(9,name=fname) + write (9,133)Nframe,zpts,beta,NSkip,dt +! write (*,*)'Nframe,zpts,beta,NSkip,dt' +! write (*,133)Nframe,zpts,beta,NSkip,dt + +133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2) + close (9) + + fname='Movie4level_v2.dat' +! write (*,*)'Enter file name to save movie' +! read (*,3)fname + + open(9,name=fname) + fname='Movie4level_EndPoints_v2.dat' +! write (*,*)'Enter file name to save endpoints' +! read (*,3)fname + + open(10,name=fname) + + do 60 n=1,Nframe + t=float(n-1)*dt + Om1(1)=Om1peak + Om2(1)=Om2peak*exp(-(t-tshift)**2/(tp*tp)) + Omc(1)=Omcpeak*exp(-(t-tshift)**2/(tp*tp)) + Om_vac(1)=Om2(1) + if (int(n/10).eq.0) write(fname,130)'Movie',n + if (int(n/10).ge.1.and.int(n/100).eq.0) write (fname,131)'Movie',n + if (int(n/10).ge.1.and.int(n/100).gt.0) write (fname,132)'Movie',n +130 format(a5,i1) +131 format(a5,i2) +132 format(a5,i3) +! write (*,125)fname +125 format(1x,a12) +! open(9,name=fname) + + do 345 m=1,zpts + rho11_last(m)=rho11(m) + rho12_last(m)=rho12(m) + rho13_last(m)=rho13(m) + rho14_last(m)=rho14(m) + rho21_last(m)=rho21(m) + rho22_last(m)=rho22(m) + rho23_last(m)=rho23(m) + rho24_last(m)=rho24(m) + rho31_last(m)=rho31(m) + rho32_last(m)=rho32(m) + rho33_last(m)=rho33(m) + rho34_last(m)=rho34(m) + rho41_last(m)=rho41(m) + rho42_last(m)=rho42(m) + rho43_last(m)=rho43(m) + rho44_last(m)=rho44(m) +345 continue + + do 50 m=zpts,2,-1 + z(m)=float(m)*dz + + Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1) + + Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1) + + Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1) + + rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m) + rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m) + + rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m) + rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m) + rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m) + + rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m)) + rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m)) + rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m) + + rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)*f3*conjg(Omc(m))*rho12_last(m) + rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m) + + rho21(m)=conjg(rho12(m)) + +! rho22(m) needs to be calculated lower down + + rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m)) + rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m) + rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m) + + rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*Omc(m)*(rho44_last(m)-rho22_last(m)) + rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*Omc(m-1)*(rho44_last(m)-rho22_last(m)) + + rho31(m)=conjg(rho13(m)) + + rho32(m)=conjg(rho23(m)) + + rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m) + rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m) + rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m) + + rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m) + rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m) + + rho41(m)=conjg(rho14(m)) + + rho42(m)=conjg(rho24(m)) + + rho43(m)=conjg(rho34(m)) + + rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m) + rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m) + + rho22(m)=1-rho11(m)-rho33(m)-rho44(m) + + + rho11_last(m)=rho11(m) + rho12_last(m)=rho12(m) + rho13_last(m)=rho13(m) + rho14_last(m)=rho14(m) + rho21_last(m)=rho21(m) + rho22_last(m)=rho22(m) + rho23_last(m)=rho23(m) + rho24_last(m)=rho24(m) + rho31_last(m)=rho31(m) + rho32_last(m)=rho32(m) + rho33_last(m)=rho33(m) + rho34_last(m)=rho34(m) + rho41_last(m)=rho41(m) + rho42_last(m)=rho42(m) + rho43_last(m)=rho43(m) + rho44_last(m)=rho44(m) + + + Om_vac(m)=a1*Om_vac(m-1) + + if (mod(n,Nskip).eq.0) write (9,120)z(m),Om2(m),Om_vac(m),Omc(m) + +50 continue + if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t + if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t + write (10,139) t,cdabs(Om2(zpts)),cdabs(Om_vac(zpts)) !EndPoint File + Omold=Om2(zpts) + Omold_vac=Om_vac(zpts) + +60 continue + close(9) + close(10) +139 format(1x,f12.6,',',F12.6,',',F12.6) +! write (*,*)'Medium pulse out at ',tpeak/(beta*1e-6),' microseconds' +! write (*,*)'Vacuum pulse out at ',tpeak_vac/(beta*1e-6),' microseconds' + write (*,*)Omcpeak,(tpeak-tpeak_vac)/(beta*1e-9) +120 format(1x,f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6) + t_end=secnds(0.E0) + t_elapsed=t_end-t_start +! write(*,*)'T elapsed = ',t_elapsed + stop + end + +! + subroutine IMatConstruct(Om,Imat) +! +! NOTE: This subroutine actually calculates -Imat because we need to solve LPsi=-Imat. + implicit none + integer i,nmat + parameter (nmat=3) + real*8 Om + complex*8 Imat(nmat) + + Imat(1)=-cmplx(0.,-0.5*Om) + Imat(2)=-cmplx(0.,0.5*Om) + Imat(3)=cmplx(0.,0.) + return + end + + +! + subroutine LMatConstruct(Om,del,L) +! + + implicit none + integer nmat + parameter (nmat=3) + real*8 del,ga12,Om,W21 + complex*8 L(nmat,nmat) + common/para/ga12,W21 + + + L(1,1)=cmplx (-ga12,-del) + L(1,3)=cmplx(0.,Om) + L(2,2)=cmplx(-ga12,del) + L(2,3)=cmplx(0.,-Om) + L(3,1)=cmplx(0.,0.5*Om) + L(3,2)=cmplx(0.,-0.5*Om) + L(3,3)=cmplx(-W21,0.) + return + end + +! + subroutine MatCheck(L,Linv) +! + + implicit none + integer i,j,k,nmat + parameter (nmat=3) + complex*8 L(nmat,nmat),Linv(nmat,nmat),Res(nmat,nmat) + + write (*,*)'L = ' + do 10 i=1,nmat + write (*,120)(L(i,j),j=1,nmat) +10 continue + write (*,*)'Linv = ' + do 20 i=1,nmat + write (*,120)(Linv(i,j),j=1,nmat) +20 continue + write (*,*)'Res = ' + do 50 i=1,nmat + do 40 j=1,nmat + Res(i,j)=cmplx(0.,0.) + do 30 k=1,nmat + Res(i,j)=Res(i,j)+Linv(i,k)*L(k,j) +30 continue +40 continue + write (*,120)(Res(i,j),j=1,nmat) +50 continue +120 format(1x,3(f8.4,'+i',f8.4,' ')) + + return + end + +! + subroutine plotit(x,y,nmat,npts) +! +! See MATLAB routine that will do this plotting. + + implicit none + integer i,n,nmat,npts + real*8 x(npts) + complex*8 y(nmat,npts) + + write (*,*)'For now, we are just going to write the file' + open(9, FILE='TwoLevelPulseProp.txt') + do 10 n=1,npts + write (9,100)x(n),(y(i,n),i=1,3) +! write(*,100)x(n),(y(i,n),i=1,3) +10 continue +100 format(1x,f9.6,',',3(f9.6,',',f9.6,',')) + + + return + end + + + + + +!******************************************************** +! Numerical Recipes +!******************************************************** + + + SUBROUTINE ludcmp(a,n,np,indx,d) + implicit none + + INTEGER n,np,indx(n),NMAX + REAL*8 d,TINY + PARAMETER (NMAX=500,TINY=1.0e-20) + INTEGER i,imax,j,k + REAL aamax,dum,vv(NMAX) +! My changed variables + complex*8 sum,dum2 + complex*8 a(np,np) + + + d=1. + do 12 i=1,n + aamax=0. + do 11 j=1,n + if (cabs(a(i,j)).gt.aamax) aamax=cabs(a(i,j)) +11 continue + if (aamax.eq.0.) pause 'singular matrix in ludcmp' + vv(i)=1./aamax +12 continue + do 19 j=1,n + do 14 i=1,j-1 + sum=a(i,j) + do 13 k=1,i-1 + sum=sum-a(i,k)*a(k,j) +13 continue + a(i,j)=sum +14 continue + aamax=0. + do 16 i=j,n + sum=a(i,j) + do 15 k=1,j-1 + sum=sum-a(i,k)*a(k,j) +15 continue + a(i,j)=sum + dum=vv(i)*cabs(sum) + if (dum.ge.aamax) then + imax=i + aamax=dum + endif +16 continue + if (j.ne.imax)then + do 17 k=1,n + dum2=a(imax,k) + a(imax,k)=a(j,k) + a(j,k)=dum2 +17 continue + d=-d + vv(imax)=vv(j) + endif + indx(j)=imax + if (cabs(a(j,j)).eq.0.) a(j,j)=cmplx(TINY,TINY) + if(j.ne.n)then + dum2=1./a(j,j) + do 18 i=j+1,n + a(i,j)=a(i,j)*dum2 +18 continue + endif +19 continue + return + END + + SUBROUTINE lubksb(a,n,np,indx,b) + implicit none + INTEGER n,np,indx(n) + INTEGER i,ii,j,ll + +! My changed variables + complex*8 sum + complex*8 b(n) + complex*8 a(np,np) + ii=0 + do 12 i=1,n + ll=indx(i) + sum=b(ll) + b(ll)=b(i) + if (ii.ne.0)then + do 11 j=ii,i-1 + sum=sum-a(i,j)*b(j) +11 continue + else if (sum.ne.0.) then + ii=i + endif + b(i)=sum +12 continue + do 14 i=n,1,-1 + sum=b(i) + do 13 j=i+1,n + sum=sum-a(i,j)*b(j) +13 continue + b(i)=sum/a(i,i) +14 continue + return + END + diff --git a/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f.bak b/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f.bak index cda5337..905c861 100644 --- a/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f.bak +++ b/code_from_navy/fortran/FourLevelPrograms/FourLevelPulseProp_v3_Double.f.bak @@ -1,703 +1,703 @@ - program FourLevelPulseProp_v3_Double
-!
-! Written by: Dr. Frank A. Narducci
-! Written on: May 12, 2008
-!
-! This program calculates the propagation of a pulse of arbitrary strength
-! through a two level medium. The equations used are the full equations
-! based on the Risken-Numedal discretization technique.
-!
-! This program only "watches" the evolution of the pulse in the cell. This is
-! due to the constraint that the cell is very small relative to the pulse lengths
-! that we want to use. If we watched the pulse outside the cell and then increased the
-! resolution within the cell, the increased burden outside the cell because huge.
-!
-! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16
- implicit none
-!
-! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision
- complex ci
-!
-! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a
-! three level system
-!
-! Four Level Notes: Valid to first order in dt
-!
-! Version 3: Make a step function in the coupling field.
-
- character*150 fname
- integer nmat,npts,Nfrac,Nframe,Nframemax,NSkip,NWrite,tpts,zpts
- parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve
- !REMEMBER TO CHANGE NMAT IN LMatConstruct Routine
- parameter (tpts=100,zpts=tpts+1) !Caution: funny things happened when tpts=200 (and presumably greater)
- !tpts is the number of temporal points in the cell
- parameter (Nframemax=2000000)
- parameter ( NWrite=100) !number of frames to actually write
- integer i,j,k,m,n
- complex*16 a1,a2,a3,a4,a5,a6
- complex*16 b1,b2,b3,b4,b5,b6,b7
- complex*16 c1,c2,c3,c4,c5,c6
- complex*16 d1,d2,d3,d4,d5,d6,d7
- complex*16 e1,e2,e3,e4,e5
- complex*16 f1,f2,f3,f4,f5
- complex*16 g1,g2,g3,g4,g5,g6,g7
- complex*16 h1,h2,h3,h4,h5
- complex*16 i1,i2,i3,i4,i5,i6,i7
- complex*16 j1,j2,j3,j4,j5,j6,j7
- complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10
- complex*16 l1,l2,l3,l4,l5
-
- complex *16 Omold, Omold_vac
- real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,beta,c,delmax,del1_prop,del2_prop,delc_prop
- real*8 dt,dz,eta
- real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34
- real*8 Ga2,Ga4,Om_crit
- real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tp,tshift,t_end,t_start,t_elapsed
- real*8 tpeak,tpeak_vac
- real*8 epsil,hbar,lambda
- real*8 del(npts)
- real*8 t,z(zpts)
- complex*16 yplot(nmat,npts)
- complex*16 Imat(nmat)
-
-
- complex*16 Om1(zpts),Om2(zpts),Omc(zpts),Om_vac(zpts)
- complex*16 rho11(zpts),rho12(zpts),rho13(zpts),rho14(zpts),rho21(zpts),rho22(zpts),rho23(zpts),rho24(zpts)
- complex*16 rho31(zpts),rho32(zpts),rho33(zpts),rho34(zpts),rho41(zpts),rho42(zpts),rho43(zpts),rho44(zpts)
- complex*16 rho11_last(zpts),rho12_last(zpts),rho13_last(zpts),rho14_last(zpts)
- complex*16 rho21_last(zpts),rho22_last(zpts),rho23_last(zpts),rho24_last(zpts)
- complex*16 rho31_last(zpts),rho32_last(zpts),rho33_last(zpts),rho34_last(zpts)
- complex*16 rho41_last(zpts),rho42_last(zpts),rho43_last(zpts),rho44_last(zpts)
-
- !No Om_last because we never need the previous spatial point
- complex*16 L(nmat,nmat),Linv(nmat,nmat),Ltemp(nmat,nmat)
-
- common/para/ga12,W21
-
-
- real*8 d !used by NR Routines
- integer indx(nmat)
-
-!
-! Fundamental numbers
-!
- ci=cmplx(0.,1.)
- pi=acos(-1.0)
- c=3e8
- hbar=1.055e-34
- epsil=8.85e-12
-
-!
-! Atomic numbers (based on Rubidium 85)
-!
- beta=2*pi*3e6 !in Hz
- W41=0
- W42=1
- W43=0
- W32=1.
- W31=1.
- W21=.001
- W12=W21
- W34=0
- ga12=0.5*(W21+W12)
- ga13=0.5*(W31+W12+W32)
- ga14=0.5*(W41+W42+W12)
- ga23=0.5*(W32+W31+W21)
- ga24=0.5*(W21+W41+W42+W43)
- ga34=0.5*(W31+W41+W32+W42+W43)
- lambda=780.24e-9
-
-!
-! Atomic parameters
-!
-! write (*,*)'Enter density in m^-1'
-! read (*,*)eta
- eta=6.9e13
- alpha1=3*eta*lambda*lambda/(2*pi)
- alpha1tilde=alpha1*c/beta
- alpha2=3*eta*lambda*lambda/(2*pi)
- alpha2tilde=alpha2*c/beta
- alphac=3*eta*lambda*lambda/(2*pi)
- alphactilde=alphac*c/beta
-
-!
-! Initialize matrices and set up Identity Matrix
-!
- do 20 i=1,nmat
- do 10 j=1,nmat
- L(i,j)=cmplx(0.,0.)
- Linv(i,j)=cmplx(0.,0.)
-10 continue !j loop
- Imat(i)=cmplx(0.,0.)
- Linv(i,i)=cmplx(1.,0.) !contains identity matrix
-20 continue
-
-
-!
-! User defined numbers
-!
-! write (*,*)'Enter peak scaled Rabi frequency for the pump at entrance of cell'
-! read (*,*)Om1peak
- Om1peak=1
-! write (*,*)'Enter peak scaled Rabi frequency for the probe at entrance of cell'
-! read (*,*)Om2peak
- Om2peak=.01
-! write (*,*)'Enter maximum detuning in MHz for dispersion lineshape plot'
-! read (*,*) delmax
- delmax=0
- Ga4=(W41+W42+W43)
- Ga2=W21
- Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4))
- Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4
- Om_crit=sqrt(Om_crit/2)
-! write (*,*)'Om_crit = ',Om_crit
-! write (*,*)'Enter peak scaled Rabi frequency for the coupling field at entrance of cell'
- read (*,*)Omcpeak
-
-!
-! First plot the dispersion lineshape
-!
-! do 40 n=1,npts
-! del(n)=-delmax+2*float(n)*delmax/npts
-! call LMatConstruct(Ompeak,del(n),L) !construct the L matrix
-! call LMatConstruct(Ompeak,del(n),Ltemp) !Need a temporary because L gets destroyed
-! call ImatConstruct(Ompeak,Imat) !Need to call in loop because it gets destroyed
-! !See also note in subroutine
-! call ludcmp(L,nmat,nmat,indx,d)
-! call lubksb(L,nmat,nmat,indx,Imat) !Imat now contains psi
-! do 35 i=1,nmat
-! yplot(i,n)=Imat(i)
-!35 continue
-! if (.false.) call MatCheck(Ltemp,Linv)
-!40 continue
-! call plotit(del,yplot,nmat,npts)
-!
-! Now that the user has an idea of the dispersion, do the full propagation problem
-! write (*,*)'Enter detuning of center frequency of the coupling pulse in MHz'
-! read (*,*)delc_prop !del_prop is the detuning used for the propagation
- delc_prop=0
- delc_prop=2*pi*1e6*delc_prop/beta !Now dimensionless
-
-! write (*,*)'Enter detuning of center frequency of the pump pulse in MHz'
-! read (*,*)del2_prop !del_prop is the detuning used for the propagation
- del2_prop=0.
- del2_prop=2*pi*1e6*del2_prop/beta !Now dimensionless
-! write (*,*)'Enter detuning of center frequency of the probe pulse in MHz'
-! read (*,*)del1_prop !del_prop is the detuning used for the propagation
- del1_prop=0.
- del1_prop=2*pi*1e6*del1_prop/beta !Now dimensionless
-
-
-! write (*,*) 'Enter pulse width in nsec'
-! read (*,*)tp
- tp=1e-6
- tp=beta*tp !Now dimensionless
-! write (*,*)'Enter length of cell in m'
-! read (*,*)Lcell
- Lcell=1;
- Lcell=beta*Lcell/c !Now dimensionless
- t_start=secnds(0.E0)
-! XXXXXXX
-!
-! Set up initial pulse.
-!
- tshift=2*tp
- tmax=Lcell !Length of time to pass cell (no c because we're dimensionless)
- dt=tmax/tpts
- dz=dt !(no c because we're dimensionless)
-! write (*,*)'tp = ',tp
- Nframe=zpts+int(4*tp/dt)+1 !Change the number 4 to anything you want to see longer pulse evolution
- if (Nframe.ge.Nframemax) write (*,*)'Error!!!!Nframe>Nframemax'
-! write (*,*)'Nframe,tpts = ',Nframe,tpts
-!
-! Initialize matrices
-!
- Omold=cmplx(0.,0.)
- Omold_vac=cmplx(0.,0.)
- tpeak=-1
- tpeak_vac=-1
-! do 110 n=1,Nframe
- do 100 m=1,zpts
- Om1(m)=cmplx(0.,0.)
- Om2(m)=cmplx(0.,0.)
- Omc(m)=cmplx(0.,0.)
-
- Om_vac(m)=cmplx(0.,0.)
- rho11(m)=cmplx(1.,0.) !Change this to change the initial condition
- rho12(m)=cmplx(0.,0.)
- rho13(m)=cmplx(0.,0.)
- rho14(m)=cmplx(0.,0.)
- rho21(m)=cmplx(0.,0.)
- rho22(m)=cmplx(0.,0.)
- rho23(m)=cmplx(0.,0.)
- rho24(m)=cmplx(0.,0.)
- rho31(m)=cmplx(0.,0.)
- rho32(m)=cmplx(0.,0.)
- rho33(m)=cmplx(0.,0.)
- rho34(m)=cmplx(0.,0.)
- rho41(m)=cmplx(0.,0.)
- rho42(m)=cmplx(0.,0.)
- rho43(m)=cmplx(0.,0.)
- rho44(m)=cmplx(0.,0.)
-
-100 continue
-!110 continue
-
-
-
-! Propagation co-efficients
-!
-
- a1=1.
- a2=0.5*ci*alpha1tilde*dt
- a3=0.5*ci*alpha1tilde*dt
- a4=0.
- a5=0.
- a6=0.
-
- b1=1.
- b2=0.5*ci*alpha2tilde*dt
- b2=0.5*ci*alpha2tilde*dt
- b4=0.
- b5=0.
- b6=0.
- b7=0.
-
- c1=1.
- c2=0.5*ci*alphactilde*dt
- c3=0.5*ci*alphactilde*dt
- c4=0.
- c5=0.
- c6=0.
-
- d1=1-(ga12-ci*(del2_prop-del1_prop))*dt
- d2=0.25*ci*dt
- d3=-0.25*ci*dt
- d4=-0.25*ci*dt
- d5=0.25*ci*dt
- d6=-0.25*ci*dt
- d7=-0.25*ci*dt
-
- e1=1-(ga13+ci*del1_prop)*dt
- e2=0.25*ci*dt
- e3=-0.25*ci*dt
- e4=0.25*ci*dt
- e5=-0.25*ci*dt
-
- f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt
- f2=0.25*ci*dt
- f3=-0.25*ci*dt
- f4=0.25*ci*dt
- f5=-0.25*ci*dt
-
- g1=1-(ga23+ci*del1_prop)*dt
- g2=-0.25*ci*dt
- g3=0.25*ci*dt
- g4=0.25*ci*dt
- g5=-0.25*ci*dt
- g6=0.25*ci*dt
- g7=0.25*ci*dt
-
- h1=1-(ga24+ci*delc_prop)*dt
- h2=0.25*ci*dt
- h3=0.25*ci*dt
- h4=0.25*ci*dt
- h5=0.25*ci*dt
-
- i1=1-(ga34-ci*(del2_prop-delc_prop))*dt
- i2=-0.25*ci*dt
- i3=0.25*ci*dt
- i4=0.25*ci*dt
- i5=-0.25*ci*dt
- i6=0.25*ci*dt
- i7=0.25*ci*dt
-
- j1=1-W12*dt
- j2=W12*dt
- j3=W31*dt
- j4=0.25*ci*dt
- j5=-0.25*ci*dt
- j6=0.25*ci*dt
- j7=-0.25*ci*dt
-
- k1=1-(W32+W31+W34)*dt
- k2=W43*dt
- k3=-0.25*ci*dt
- k4=-0.25*ci*dt
- k5=0.25*ci*dt
- k6=0.25*ci*dt
- k7=-0.25*ci*dt
- k8=-0.25*ci*dt
- k9=0.25*ci*dt
- k10=0.25*ci*dt
-
- l1=1-(W43+W42+W41)*dt
- l2=-0.25*ci*dt
- l3=0.25*ci*dt
- l4=-0.25*ci*dt
- l5=0.25*ci*dt
-
-
-
-
-
-
- NSkip=int(NFrame/NWrite)
-
- fname='MovieParameters4level_v2.txt'
-! write (*,*)'Enter file name to save parameters'
-! read (*,3)fname
-3 format(a150)
- open(9,name=fname)
- write (9,133)Nframe,zpts,beta,NSkip,dt
-! write (*,*)'Nframe,zpts,beta,NSkip,dt'
-! write (*,133)Nframe,zpts,beta,NSkip,dt
-
-133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2)
- close (9)
-
- fname='Movie4level_v2.dat'
-! write (*,*)'Enter file name to save movie'
-! read (*,3)fname
-
- open(9,name=fname)
- fname='Movie4level_EndPoints_v2.dat'
-! write (*,*)'Enter file name to save endpoints'
-! read (*,3)fname
-
- open(10,name=fname)
-
- do 60 n=1,Nframe
- t=float(n-1)*dt
- Om1(1)=Om1peak
- Om2(1)=Om2peak*exp(-(t-tshift)**2/(tp*tp))
- Omc(1)=Omcpeak*exp(-(t-tshift)**2/(tp*tp))
- Om_vac(1)=Om2(1)
- if (int(n/10).eq.0) write(fname,130)'Movie',n
- if (int(n/10).ge.1.and.int(n/100).eq.0) write (fname,131)'Movie',n
- if (int(n/10).ge.1.and.int(n/100).gt.0) write (fname,132)'Movie',n
-130 format(a5,i1)
-131 format(a5,i2)
-132 format(a5,i3)
-! write (*,125)fname
-125 format(1x,a12)
-! open(9,name=fname)
-
- do 345 m=1,zpts
- rho11_last(m)=rho11(m)
- rho12_last(m)=rho12(m)
- rho13_last(m)=rho13(m)
- rho14_last(m)=rho14(m)
- rho21_last(m)=rho21(m)
- rho22_last(m)=rho22(m)
- rho23_last(m)=rho23(m)
- rho24_last(m)=rho24(m)
- rho31_last(m)=rho31(m)
- rho32_last(m)=rho32(m)
- rho33_last(m)=rho33(m)
- rho34_last(m)=rho34(m)
- rho41_last(m)=rho41(m)
- rho42_last(m)=rho42(m)
- rho43_last(m)=rho43(m)
- rho44_last(m)=rho44(m)
-345 continue
-
- do 50 m=zpts,2,-1
- z(m)=float(m)*dz
-
- Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1)
-
- Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1)
-
- Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1)
-
- rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m)
- rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m)
-
- rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m)
- rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m)
- rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m)
-
- rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m))
- rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m))
- rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m)
-
- rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)*f3*conjg(Omc(m))*rho12_last(m)
- rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m)
-
- rho21(m)=conjg(rho12(m))
-
-! rho22(m) needs to be calculated lower down
-
- rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m))
- rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m)
- rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m)
-
- rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*Omc(m)*(rho44_last(m)-rho22_last(m))
- rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*Omc(m-1)*(rho44_last(m)-rho22_last(m))
-
- rho31(m)=conjg(rho13(m))
-
- rho32(m)=conjg(rho23(m))
-
- rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m)
- rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m)
- rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m)
-
- rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m)
- rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m)
-
- rho41(m)=conjg(rho14(m))
-
- rho42(m)=conjg(rho24(m))
-
- rho43(m)=conjg(rho34(m))
-
- rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m)
- rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m)
-
- rho22(m)=1-rho11(m)-rho33(m)-rho44(m)
-
-
- rho11_last(m)=rho11(m)
- rho12_last(m)=rho12(m)
- rho13_last(m)=rho13(m)
- rho14_last(m)=rho14(m)
- rho21_last(m)=rho21(m)
- rho22_last(m)=rho22(m)
- rho23_last(m)=rho23(m)
- rho24_last(m)=rho24(m)
- rho31_last(m)=rho31(m)
- rho32_last(m)=rho32(m)
- rho33_last(m)=rho33(m)
- rho34_last(m)=rho34(m)
- rho41_last(m)=rho41(m)
- rho42_last(m)=rho42(m)
- rho43_last(m)=rho43(m)
- rho44_last(m)=rho44(m)
-
-
- Om_vac(m)=a1*Om_vac(m-1)
-
- if (mod(n,Nskip).eq.0) write (9,120)z(m),Om2(m),Om_vac(m),Omc(m)
-
-50 continue
- if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t
- if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t
- write (10,139) t,cdabs(Om2(zpts)),cdabs(Om_vac(zpts)) !EndPoint File
- Omold=Om2(zpts)
- Omold_vac=Om_vac(zpts)
-
-60 continue
- close(9)
- close(10)
-139 format(1x,f12.6,',',F12.6,',',F12.6)
-! write (*,*)'Medium pulse out at ',tpeak/(beta*1e-6),' microseconds'
-! write (*,*)'Vacuum pulse out at ',tpeak_vac/(beta*1e-6),' microseconds'
- write (*,*)Omcpeak,(tpeak-tpeak_vac)/(beta*1e-9)
-120 format(1x,f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6)
- t_end=secnds(0.E0)
- t_elapsed=t_end-t_start
-! write(*,*)'T elapsed = ',t_elapsed
- stop
- end
-
-!
- subroutine IMatConstruct(Om,Imat)
-!
-! NOTE: This subroutine actually calculates -Imat because we need to solve LPsi=-Imat.
- implicit none
- integer i,nmat
- parameter (nmat=3)
- real*8 Om
- complex*8 Imat(nmat)
-
- Imat(1)=-cmplx(0.,-0.5*Om)
- Imat(2)=-cmplx(0.,0.5*Om)
- Imat(3)=cmplx(0.,0.)
- return
- end
-
-
-!
- subroutine LMatConstruct(Om,del,L)
-!
-
- implicit none
- integer nmat
- parameter (nmat=3)
- real*8 del,ga12,Om,W21
- complex*8 L(nmat,nmat)
- common/para/ga12,W21
-
-
- L(1,1)=cmplx (-ga12,-del)
- L(1,3)=cmplx(0.,Om)
- L(2,2)=cmplx(-ga12,del)
- L(2,3)=cmplx(0.,-Om)
- L(3,1)=cmplx(0.,0.5*Om)
- L(3,2)=cmplx(0.,-0.5*Om)
- L(3,3)=cmplx(-W21,0.)
- return
- end
-
-!
- subroutine MatCheck(L,Linv)
-!
-
- implicit none
- integer i,j,k,nmat
- parameter (nmat=3)
- complex*8 L(nmat,nmat),Linv(nmat,nmat),Res(nmat,nmat)
-
- write (*,*)'L = '
- do 10 i=1,nmat
- write (*,120)(L(i,j),j=1,nmat)
-10 continue
- write (*,*)'Linv = '
- do 20 i=1,nmat
- write (*,120)(Linv(i,j),j=1,nmat)
-20 continue
- write (*,*)'Res = '
- do 50 i=1,nmat
- do 40 j=1,nmat
- Res(i,j)=cmplx(0.,0.)
- do 30 k=1,nmat
- Res(i,j)=Res(i,j)+Linv(i,k)*L(k,j)
-30 continue
-40 continue
- write (*,120)(Res(i,j),j=1,nmat)
-50 continue
-120 format(1x,3(f8.4,'+i',f8.4,' '))
-
- return
- end
-
-!
- subroutine plotit(x,y,nmat,npts)
-!
-! See MATLAB routine that will do this plotting.
-
- implicit none
- integer i,n,nmat,npts
- real*8 x(npts)
- complex*8 y(nmat,npts)
-
- write (*,*)'For now, we are just going to write the file'
- open(9, FILE='TwoLevelPulseProp.txt')
- do 10 n=1,npts
- write (9,100)x(n),(y(i,n),i=1,3)
-! write(*,100)x(n),(y(i,n),i=1,3)
-10 continue
-100 format(1x,f9.6,',',3(f9.6,',',f9.6,','))
-
-
- return
- end
-
-
-
-
-
-!********************************************************
-! Numerical Recipes
-!********************************************************
-
-
- SUBROUTINE ludcmp(a,n,np,indx,d)
- implicit none
-
- INTEGER n,np,indx(n),NMAX
- REAL*8 d,TINY
- PARAMETER (NMAX=500,TINY=1.0e-20)
- INTEGER i,imax,j,k
- REAL aamax,dum,vv(NMAX)
-! My changed variables
- complex*8 sum,dum2
- complex*8 a(np,np)
-
-
- d=1.
- do 12 i=1,n
- aamax=0.
- do 11 j=1,n
- if (cabs(a(i,j)).gt.aamax) aamax=cabs(a(i,j))
-11 continue
- if (aamax.eq.0.) pause 'singular matrix in ludcmp'
- vv(i)=1./aamax
-12 continue
- do 19 j=1,n
- do 14 i=1,j-1
- sum=a(i,j)
- do 13 k=1,i-1
- sum=sum-a(i,k)*a(k,j)
-13 continue
- a(i,j)=sum
-14 continue
- aamax=0.
- do 16 i=j,n
- sum=a(i,j)
- do 15 k=1,j-1
- sum=sum-a(i,k)*a(k,j)
-15 continue
- a(i,j)=sum
- dum=vv(i)*cabs(sum)
- if (dum.ge.aamax) then
- imax=i
- aamax=dum
- endif
-16 continue
- if (j.ne.imax)then
- do 17 k=1,n
- dum2=a(imax,k)
- a(imax,k)=a(j,k)
- a(j,k)=dum2
-17 continue
- d=-d
- vv(imax)=vv(j)
- endif
- indx(j)=imax
- if (cabs(a(j,j)).eq.0.) a(j,j)=cmplx(TINY,TINY)
- if(j.ne.n)then
- dum2=1./a(j,j)
- do 18 i=j+1,n
- a(i,j)=a(i,j)*dum2
-18 continue
- endif
-19 continue
- return
- END
-
- SUBROUTINE lubksb(a,n,np,indx,b)
- implicit none
- INTEGER n,np,indx(n)
- INTEGER i,ii,j,ll
-
-! My changed variables
- complex*8 sum
- complex*8 b(n)
- complex*8 a(np,np)
- ii=0
- do 12 i=1,n
- ll=indx(i)
- sum=b(ll)
- b(ll)=b(i)
- if (ii.ne.0)then
- do 11 j=ii,i-1
- sum=sum-a(i,j)*b(j)
-11 continue
- else if (sum.ne.0.) then
- ii=i
- endif
- b(i)=sum
-12 continue
- do 14 i=n,1,-1
- sum=b(i)
- do 13 j=i+1,n
- sum=sum-a(i,j)*b(j)
-13 continue
- b(i)=sum/a(i,i)
-14 continue
- return
- END
-
+ program FourLevelPulseProp_v3_Double +! +! Written by: Dr. Frank A. Narducci +! Written on: May 12, 2008 +! +! This program calculates the propagation of a pulse of arbitrary strength +! through a two level medium. The equations used are the full equations +! based on the Risken-Numedal discretization technique. +! +! This program only "watches" the evolution of the pulse in the cell. This is +! due to the constraint that the cell is very small relative to the pulse lengths +! that we want to use. If we watched the pulse outside the cell and then increased the +! resolution within the cell, the increased burden outside the cell because huge. +! +! v2 Notes: This program is based on the dimensionless equatiosn derived on 5/16 + implicit none +! +! Double Notes: This program is the same as TwoLevelPulseProp_v2 but with double precision + complex ci +! +! ThreeLevel Notes: This program is the same as TwoLevelPulseProp_v2_Double but now for a +! three level system +! +! Four Level Notes: Valid to first order in dt +! +! Version 3: Make a step function in the coupling field. + + character*150 fname + integer nmat,npts,Nfrac,Nframe,Nframemax,NSkip,NWrite,tpts,zpts + parameter (nmat=3,npts=100) !matrix size, number of detuning points in dispersion curve + !REMEMBER TO CHANGE NMAT IN LMatConstruct Routine + parameter (tpts=100,zpts=tpts+1) !Caution: funny things happened when tpts=200 (and presumably greater) + !tpts is the number of temporal points in the cell + parameter (Nframemax=2000000) + parameter ( NWrite=100) !number of frames to actually write + integer i,j,k,m,n + complex*16 a1,a2,a3,a4,a5,a6 + complex*16 b1,b2,b3,b4,b5,b6,b7 + complex*16 c1,c2,c3,c4,c5,c6 + complex*16 d1,d2,d3,d4,d5,d6,d7 + complex*16 e1,e2,e3,e4,e5 + complex*16 f1,f2,f3,f4,f5 + complex*16 g1,g2,g3,g4,g5,g6,g7 + complex*16 h1,h2,h3,h4,h5 + complex*16 i1,i2,i3,i4,i5,i6,i7 + complex*16 j1,j2,j3,j4,j5,j6,j7 + complex*16 k1,k2,k3,k4,k5,k6,k7,k8,k9,k10 + complex*16 l1,l2,l3,l4,l5 + + complex *16 Omold, Omold_vac + real*8 alpha1,alpha2,alpha1tilde,alpha2tilde,alphac,alphactilde,beta,c,delmax,del1_prop,del2_prop,delc_prop + real*8 dt,dz,eta + real*8 W12,W21,W31,W32,W41,W42,W43,W34,ga12,ga13,ga14,ga23,ga24,ga34 + real*8 Ga2,Ga4,Om_crit + real*8 Lcell,Om1peak,Om2peak,Omcpeak,pi,tmax,tp,tshift,t_end,t_start,t_elapsed + real*8 tpeak,tpeak_vac + real*8 epsil,hbar,lambda + real*8 del(npts) + real*8 t,z(zpts) + complex*16 yplot(nmat,npts) + complex*16 Imat(nmat) + + + complex*16 Om1(zpts),Om2(zpts),Omc(zpts),Om_vac(zpts) + complex*16 rho11(zpts),rho12(zpts),rho13(zpts),rho14(zpts),rho21(zpts),rho22(zpts),rho23(zpts),rho24(zpts) + complex*16 rho31(zpts),rho32(zpts),rho33(zpts),rho34(zpts),rho41(zpts),rho42(zpts),rho43(zpts),rho44(zpts) + complex*16 rho11_last(zpts),rho12_last(zpts),rho13_last(zpts),rho14_last(zpts) + complex*16 rho21_last(zpts),rho22_last(zpts),rho23_last(zpts),rho24_last(zpts) + complex*16 rho31_last(zpts),rho32_last(zpts),rho33_last(zpts),rho34_last(zpts) + complex*16 rho41_last(zpts),rho42_last(zpts),rho43_last(zpts),rho44_last(zpts) + + !No Om_last because we never need the previous spatial point + complex*16 L(nmat,nmat),Linv(nmat,nmat),Ltemp(nmat,nmat) + + common/para/ga12,W21 + + + real*8 d !used by NR Routines + integer indx(nmat) + +! +! Fundamental numbers +! + ci=cmplx(0.,1.) + pi=acos(-1.0) + c=3e8 + hbar=1.055e-34 + epsil=8.85e-12 + +! +! Atomic numbers (based on Rubidium 85) +! + beta=2*pi*3e6 !in Hz + W41=0 + W42=1 + W43=0 + W32=1. + W31=1. + W21=.001 + W12=W21 + W34=0 + ga12=0.5*(W21+W12) + ga13=0.5*(W31+W12+W32) + ga14=0.5*(W41+W42+W12) + ga23=0.5*(W32+W31+W21) + ga24=0.5*(W21+W41+W42+W43) + ga34=0.5*(W31+W41+W32+W42+W43) + lambda=780.24e-9 + +! +! Atomic parameters +! +! write (*,*)'Enter density in m^-1' +! read (*,*)eta + eta=6.9e13 + alpha1=3*eta*lambda*lambda/(2*pi) + alpha1tilde=alpha1*c/beta + alpha2=3*eta*lambda*lambda/(2*pi) + alpha2tilde=alpha2*c/beta + alphac=3*eta*lambda*lambda/(2*pi) + alphactilde=alphac*c/beta + +! +! Initialize matrices and set up Identity Matrix +! + do 20 i=1,nmat + do 10 j=1,nmat + L(i,j)=cmplx(0.,0.) + Linv(i,j)=cmplx(0.,0.) +10 continue !j loop + Imat(i)=cmplx(0.,0.) + Linv(i,i)=cmplx(1.,0.) !contains identity matrix +20 continue + + +! +! User defined numbers +! +! write (*,*)'Enter peak scaled Rabi frequency for the pump at entrance of cell' +! read (*,*)Om1peak + Om1peak=1 +! write (*,*)'Enter peak scaled Rabi frequency for the probe at entrance of cell' +! read (*,*)Om2peak + Om2peak=.01 +! write (*,*)'Enter maximum detuning in MHz for dispersion lineshape plot' +! read (*,*) delmax + delmax=0 + Ga4=(W41+W42+W43) + Ga2=W21 + Om_crit=sqrt(Om1peak**4+4*Om1peak*Om1peak*(Ga4*Ga4+Ga2*Ga4)) + Om_crit=Om_crit-Om1peak*Om1peak-2*Ga2*Ga4 + Om_crit=sqrt(Om_crit/2) +! write (*,*)'Om_crit = ',Om_crit +! write (*,*)'Enter peak scaled Rabi frequency for the coupling field at entrance of cell' + read (*,*)Omcpeak + +! +! First plot the dispersion lineshape +! +! do 40 n=1,npts +! del(n)=-delmax+2*float(n)*delmax/npts +! call LMatConstruct(Ompeak,del(n),L) !construct the L matrix +! call LMatConstruct(Ompeak,del(n),Ltemp) !Need a temporary because L gets destroyed +! call ImatConstruct(Ompeak,Imat) !Need to call in loop because it gets destroyed +! !See also note in subroutine +! call ludcmp(L,nmat,nmat,indx,d) +! call lubksb(L,nmat,nmat,indx,Imat) !Imat now contains psi +! do 35 i=1,nmat +! yplot(i,n)=Imat(i) +!35 continue +! if (.false.) call MatCheck(Ltemp,Linv) +!40 continue +! call plotit(del,yplot,nmat,npts) +! +! Now that the user has an idea of the dispersion, do the full propagation problem +! write (*,*)'Enter detuning of center frequency of the coupling pulse in MHz' +! read (*,*)delc_prop !del_prop is the detuning used for the propagation + delc_prop=0 + delc_prop=2*pi*1e6*delc_prop/beta !Now dimensionless + +! write (*,*)'Enter detuning of center frequency of the pump pulse in MHz' +! read (*,*)del2_prop !del_prop is the detuning used for the propagation + del2_prop=0. + del2_prop=2*pi*1e6*del2_prop/beta !Now dimensionless +! write (*,*)'Enter detuning of center frequency of the probe pulse in MHz' +! read (*,*)del1_prop !del_prop is the detuning used for the propagation + del1_prop=0. + del1_prop=2*pi*1e6*del1_prop/beta !Now dimensionless + + +! write (*,*) 'Enter pulse width in nsec' +! read (*,*)tp + tp=1e-6 + tp=beta*tp !Now dimensionless +! write (*,*)'Enter length of cell in m' +! read (*,*)Lcell + Lcell=1; + Lcell=beta*Lcell/c !Now dimensionless + t_start=secnds(0.E0) +! XXXXXXX +! +! Set up initial pulse. +! + tshift=2*tp + tmax=Lcell !Length of time to pass cell (no c because we're dimensionless) + dt=tmax/tpts + dz=dt !(no c because we're dimensionless) +! write (*,*)'tp = ',tp + Nframe=zpts+int(4*tp/dt)+1 !Change the number 4 to anything you want to see longer pulse evolution + if (Nframe.ge.Nframemax) write (*,*)'Error!!!!Nframe>Nframemax' +! write (*,*)'Nframe,tpts = ',Nframe,tpts +! +! Initialize matrices +! + Omold=cmplx(0.,0.) + Omold_vac=cmplx(0.,0.) + tpeak=-1 + tpeak_vac=-1 +! do 110 n=1,Nframe + do 100 m=1,zpts + Om1(m)=cmplx(0.,0.) + Om2(m)=cmplx(0.,0.) + Omc(m)=cmplx(0.,0.) + + Om_vac(m)=cmplx(0.,0.) + rho11(m)=cmplx(1.,0.) !Change this to change the initial condition + rho12(m)=cmplx(0.,0.) + rho13(m)=cmplx(0.,0.) + rho14(m)=cmplx(0.,0.) + rho21(m)=cmplx(0.,0.) + rho22(m)=cmplx(0.,0.) + rho23(m)=cmplx(0.,0.) + rho24(m)=cmplx(0.,0.) + rho31(m)=cmplx(0.,0.) + rho32(m)=cmplx(0.,0.) + rho33(m)=cmplx(0.,0.) + rho34(m)=cmplx(0.,0.) + rho41(m)=cmplx(0.,0.) + rho42(m)=cmplx(0.,0.) + rho43(m)=cmplx(0.,0.) + rho44(m)=cmplx(0.,0.) + +100 continue +!110 continue + + + +! Propagation co-efficients +! + + a1=1. + a2=0.5*ci*alpha1tilde*dt + a3=0.5*ci*alpha1tilde*dt + a4=0. + a5=0. + a6=0. + + b1=1. + b2=0.5*ci*alpha2tilde*dt + b2=0.5*ci*alpha2tilde*dt + b4=0. + b5=0. + b6=0. + b7=0. + + c1=1. + c2=0.5*ci*alphactilde*dt + c3=0.5*ci*alphactilde*dt + c4=0. + c5=0. + c6=0. + + d1=1-(ga12-ci*(del2_prop-del1_prop))*dt + d2=0.25*ci*dt + d3=-0.25*ci*dt + d4=-0.25*ci*dt + d5=0.25*ci*dt + d6=-0.25*ci*dt + d7=-0.25*ci*dt + + e1=1-(ga13+ci*del1_prop)*dt + e2=0.25*ci*dt + e3=-0.25*ci*dt + e4=0.25*ci*dt + e5=-0.25*ci*dt + + f1=1-(ga14-ci*(del2_prop-del1_prop-delc_prop))*dt + f2=0.25*ci*dt + f3=-0.25*ci*dt + f4=0.25*ci*dt + f5=-0.25*ci*dt + + g1=1-(ga23+ci*del1_prop)*dt + g2=-0.25*ci*dt + g3=0.25*ci*dt + g4=0.25*ci*dt + g5=-0.25*ci*dt + g6=0.25*ci*dt + g7=0.25*ci*dt + + h1=1-(ga24+ci*delc_prop)*dt + h2=0.25*ci*dt + h3=0.25*ci*dt + h4=0.25*ci*dt + h5=0.25*ci*dt + + i1=1-(ga34-ci*(del2_prop-delc_prop))*dt + i2=-0.25*ci*dt + i3=0.25*ci*dt + i4=0.25*ci*dt + i5=-0.25*ci*dt + i6=0.25*ci*dt + i7=0.25*ci*dt + + j1=1-W12*dt + j2=W12*dt + j3=W31*dt + j4=0.25*ci*dt + j5=-0.25*ci*dt + j6=0.25*ci*dt + j7=-0.25*ci*dt + + k1=1-(W32+W31+W34)*dt + k2=W43*dt + k3=-0.25*ci*dt + k4=-0.25*ci*dt + k5=0.25*ci*dt + k6=0.25*ci*dt + k7=-0.25*ci*dt + k8=-0.25*ci*dt + k9=0.25*ci*dt + k10=0.25*ci*dt + + l1=1-(W43+W42+W41)*dt + l2=-0.25*ci*dt + l3=0.25*ci*dt + l4=-0.25*ci*dt + l5=0.25*ci*dt + + + + + + + NSkip=int(NFrame/NWrite) + + fname='MovieParameters4level_v2.txt' +! write (*,*)'Enter file name to save parameters' +! read (*,3)fname +3 format(a150) + open(9,name=fname) + write (9,133)Nframe,zpts,beta,NSkip,dt +! write (*,*)'Nframe,zpts,beta,NSkip,dt' +! write (*,133)Nframe,zpts,beta,NSkip,dt + +133 format(1x,i10,',',i5,',',f12.2,',',i5,',',f12.2) + close (9) + + fname='Movie4level_v2.dat' +! write (*,*)'Enter file name to save movie' +! read (*,3)fname + + open(9,name=fname) + fname='Movie4level_EndPoints_v2.dat' +! write (*,*)'Enter file name to save endpoints' +! read (*,3)fname + + open(10,name=fname) + + do 60 n=1,Nframe + t=float(n-1)*dt + Om1(1)=Om1peak + Om2(1)=Om2peak*exp(-(t-tshift)**2/(tp*tp)) + Omc(1)=Omcpeak*exp(-(t-tshift)**2/(tp*tp)) + Om_vac(1)=Om2(1) + if (int(n/10).eq.0) write(fname,130)'Movie',n + if (int(n/10).ge.1.and.int(n/100).eq.0) write (fname,131)'Movie',n + if (int(n/10).ge.1.and.int(n/100).gt.0) write (fname,132)'Movie',n +130 format(a5,i1) +131 format(a5,i2) +132 format(a5,i3) +! write (*,125)fname +125 format(1x,a12) +! open(9,name=fname) + + do 345 m=1,zpts + rho11_last(m)=rho11(m) + rho12_last(m)=rho12(m) + rho13_last(m)=rho13(m) + rho14_last(m)=rho14(m) + rho21_last(m)=rho21(m) + rho22_last(m)=rho22(m) + rho23_last(m)=rho23(m) + rho24_last(m)=rho24(m) + rho31_last(m)=rho31(m) + rho32_last(m)=rho32(m) + rho33_last(m)=rho33(m) + rho34_last(m)=rho34(m) + rho41_last(m)=rho41(m) + rho42_last(m)=rho42(m) + rho43_last(m)=rho43(m) + rho44_last(m)=rho44(m) +345 continue + + do 50 m=zpts,2,-1 + z(m)=float(m)*dz + + Om1(m)=a1*Om1(m-1)+a2*rho31_last(m)+a3*rho31_last(m-1) + + Om2(m)=b1*Om2(m-1)+b2*rho32_last(m)+b3*rho32_last(m-1) + + Omc(m)=c1*Omc(m-1)+c2*rho42_last(m)+c3*rho42_last(m-1) + + rho11(m)=j1*rho11_last(m)+j2*rho22_last(m)+j3*rho33_last(m)+j4*conjg(Om1(m))*rho31_last(m) + rho11(m)=rho11(m)+j5*Om1(m)*rho13_last(m)+j6*conjg(Om1(m-1))*rho31_last(m)+j7*Om1(m-1)*rho13_last(m) + + rho12(m)=d1*rho12_last(m)+d2*conjg(Om1(m))*rho32_last(m)+d3*Om2(m)*rho13_last(m) + rho12(m)=rho12(m)+d4*Omc(m)*rho14_last(m)+d5*conjg(Om1(m-1))*rho32_last(m) + rho12(m)=rho12(m)+d6*Om2(m-1)*rho13_last(m)+d7*Omc(m-1)*rho14_last(m) + + rho13(m)=e1*rho13_last(m)+e2*conjg(Om1(m))*(rho33_last(m)-rho11_last(m)) + rho13(m)=rho13(m)+e3*conjg(Om2(m))*rho12_last(m)+e4*conjg(Om1(m-1))*(rho33_last(m)-rho11_last(m)) + rho13(m)=rho13(m)+e5*conjg(Om2(m-1))*rho12_last(m) + + rho14(m)=f1*rho14_last(m)+f2*conjg(Om1(m))*rho34_last(m)*f3*conjg(Omc(m))*rho12_last(m) + rho14(m)=rho14(m)+f4*conjg(Om1(m-1))*rho34_last(m)+f5*conjg(Omc(m-1))*rho12_last(m) + + rho21(m)=conjg(rho12(m)) + +! rho22(m) needs to be calculated lower down + + rho23(m)=g1*rho23_last(m)+g2*conjg(Om1(m))*rho21_last(m)+g3*conjg(Om2(m))*(rho33_last(m)-rho22_last(m)) + rho23(m)=rho23(m)+g4*conjg(Omc(m))*rho43_last(m)+g5*conjg(Om1(m-1))*rho21_last(m) + rho23(m)=rho23(m)+g6*conjg(Om2(m-1))*(rho33_last(m)-rho22_last(m))+g7*conjg(Omc(m-1))*rho43_last(m) + + rho24(m)=h1*rho24_last(m)+h2*conjg(Om2(m))*rho34_last(m)+h3*Omc(m)*(rho44_last(m)-rho22_last(m)) + rho24(m)=rho24(m)+h4*conjg(Om2(m-1))*rho34_last(m)+h5*Omc(m-1)*(rho44_last(m)-rho22_last(m)) + + rho31(m)=conjg(rho13(m)) + + rho32(m)=conjg(rho23(m)) + + rho33(m)=k1*rho33_last(m)+k2*rho44_last(m)+k3*conjg(Om1(m))*rho31_last(m)+k4*conjg(Om2(m))*rho32_last(m) + rho33(m)=rho33(m)+k5*Om1(m)*rho13_last(m)+k6*Om2(m)*rho23_last(m)+k7*conjg(Om1(m-1))*rho31_last(m) + rho33(m)=rho33(m)+k8*conjg(Om2(m-1))*rho32_last(m)+k9*Om1(m-1)*rho13_last(m)+k10*Om2(m-1)*rho23_last(m) + + rho34(m)=i1*rho34_last(m)+i2*conjg(Omc(m))*rho32_last(m)+i3*Om1(m)*rho14_last(m)+i4*Om2(m)*rho24_last(m) + rho34(m)=rho34(m)+i5*conjg(Omc(m-1))*rho32_last(m)+i6*Om1(m-1)*rho14_last(m)+i7*Om2(m-1)*rho24_last(m) + + rho41(m)=conjg(rho14(m)) + + rho42(m)=conjg(rho24(m)) + + rho43(m)=conjg(rho34(m)) + + rho44(m)=l1*rho44_last(m)+l2*conjg(Omc(m))*rho42_last(m)+l3*Omc(m)*rho24_last(m) + rho44(m)=rho44(m)+l4*conjg(Omc(m-1))*rho42_last(m)+l5*Omc(m-1)*rho24(m) + + rho22(m)=1-rho11(m)-rho33(m)-rho44(m) + + + rho11_last(m)=rho11(m) + rho12_last(m)=rho12(m) + rho13_last(m)=rho13(m) + rho14_last(m)=rho14(m) + rho21_last(m)=rho21(m) + rho22_last(m)=rho22(m) + rho23_last(m)=rho23(m) + rho24_last(m)=rho24(m) + rho31_last(m)=rho31(m) + rho32_last(m)=rho32(m) + rho33_last(m)=rho33(m) + rho34_last(m)=rho34(m) + rho41_last(m)=rho41(m) + rho42_last(m)=rho42(m) + rho43_last(m)=rho43(m) + rho44_last(m)=rho44(m) + + + Om_vac(m)=a1*Om_vac(m-1) + + if (mod(n,Nskip).eq.0) write (9,120)z(m),Om2(m),Om_vac(m),Omc(m) + +50 continue + if (cdabs(Om2(zpts)).gt.cdabs(Omold)) tpeak=t + if (cdabs(Om_vac(zpts)).gt.cdabs(Omold_vac)) tpeak_vac=t + write (10,139) t,cdabs(Om2(zpts)),cdabs(Om_vac(zpts)) !EndPoint File + Omold=Om2(zpts) + Omold_vac=Om_vac(zpts) + +60 continue + close(9) + close(10) +139 format(1x,f12.6,',',F12.6,',',F12.6) +! write (*,*)'Medium pulse out at ',tpeak/(beta*1e-6),' microseconds' +! write (*,*)'Vacuum pulse out at ',tpeak_vac/(beta*1e-6),' microseconds' + write (*,*)Omcpeak,(tpeak-tpeak_vac)/(beta*1e-9) +120 format(1x,f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6,',',f12.6) + t_end=secnds(0.E0) + t_elapsed=t_end-t_start +! write(*,*)'T elapsed = ',t_elapsed + stop + end + +! + subroutine IMatConstruct(Om,Imat) +! +! NOTE: This subroutine actually calculates -Imat because we need to solve LPsi=-Imat. + implicit none + integer i,nmat + parameter (nmat=3) + real*8 Om + complex*8 Imat(nmat) + + Imat(1)=-cmplx(0.,-0.5*Om) + Imat(2)=-cmplx(0.,0.5*Om) + Imat(3)=cmplx(0.,0.) + return + end + + +! + subroutine LMatConstruct(Om,del,L) +! + + implicit none + integer nmat + parameter (nmat=3) + real*8 del,ga12,Om,W21 + complex*8 L(nmat,nmat) + common/para/ga12,W21 + + + L(1,1)=cmplx (-ga12,-del) + L(1,3)=cmplx(0.,Om) + L(2,2)=cmplx(-ga12,del) + L(2,3)=cmplx(0.,-Om) + L(3,1)=cmplx(0.,0.5*Om) + L(3,2)=cmplx(0.,-0.5*Om) + L(3,3)=cmplx(-W21,0.) + return + end + +! + subroutine MatCheck(L,Linv) +! + + implicit none + integer i,j,k,nmat + parameter (nmat=3) + complex*8 L(nmat,nmat),Linv(nmat,nmat),Res(nmat,nmat) + + write (*,*)'L = ' + do 10 i=1,nmat + write (*,120)(L(i,j),j=1,nmat) +10 continue + write (*,*)'Linv = ' + do 20 i=1,nmat + write (*,120)(Linv(i,j),j=1,nmat) +20 continue + write (*,*)'Res = ' + do 50 i=1,nmat + do 40 j=1,nmat + Res(i,j)=cmplx(0.,0.) + do 30 k=1,nmat + Res(i,j)=Res(i,j)+Linv(i,k)*L(k,j) +30 continue +40 continue + write (*,120)(Res(i,j),j=1,nmat) +50 continue +120 format(1x,3(f8.4,'+i',f8.4,' ')) + + return + end + +! + subroutine plotit(x,y,nmat,npts) +! +! See MATLAB routine that will do this plotting. + + implicit none + integer i,n,nmat,npts + real*8 x(npts) + complex*8 y(nmat,npts) + + write (*,*)'For now, we are just going to write the file' + open(9, FILE='TwoLevelPulseProp.txt') + do 10 n=1,npts + write (9,100)x(n),(y(i,n),i=1,3) +! write(*,100)x(n),(y(i,n),i=1,3) +10 continue +100 format(1x,f9.6,',',3(f9.6,',',f9.6,',')) + + + return + end + + + + + +!******************************************************** +! Numerical Recipes +!******************************************************** + + + SUBROUTINE ludcmp(a,n,np,indx,d) + implicit none + + INTEGER n,np,indx(n),NMAX + REAL*8 d,TINY + PARAMETER (NMAX=500,TINY=1.0e-20) + INTEGER i,imax,j,k + REAL aamax,dum,vv(NMAX) +! My changed variables + complex*8 sum,dum2 + complex*8 a(np,np) + + + d=1. + do 12 i=1,n + aamax=0. + do 11 j=1,n + if (cabs(a(i,j)).gt.aamax) aamax=cabs(a(i,j)) +11 continue + if (aamax.eq.0.) pause 'singular matrix in ludcmp' + vv(i)=1./aamax +12 continue + do 19 j=1,n + do 14 i=1,j-1 + sum=a(i,j) + do 13 k=1,i-1 + sum=sum-a(i,k)*a(k,j) +13 continue + a(i,j)=sum +14 continue + aamax=0. + do 16 i=j,n + sum=a(i,j) + do 15 k=1,j-1 + sum=sum-a(i,k)*a(k,j) +15 continue + a(i,j)=sum + dum=vv(i)*cabs(sum) + if (dum.ge.aamax) then + imax=i + aamax=dum + endif +16 continue + if (j.ne.imax)then + do 17 k=1,n + dum2=a(imax,k) + a(imax,k)=a(j,k) + a(j,k)=dum2 +17 continue + d=-d + vv(imax)=vv(j) + endif + indx(j)=imax + if (cabs(a(j,j)).eq.0.) a(j,j)=cmplx(TINY,TINY) + if(j.ne.n)then + dum2=1./a(j,j) + do 18 i=j+1,n + a(i,j)=a(i,j)*dum2 +18 continue + endif +19 continue + return + END + + SUBROUTINE lubksb(a,n,np,indx,b) + implicit none + INTEGER n,np,indx(n) + INTEGER i,ii,j,ll + +! My changed variables + complex*8 sum + complex*8 b(n) + complex*8 a(np,np) + ii=0 + do 12 i=1,n + ll=indx(i) + sum=b(ll) + b(ll)=b(i) + if (ii.ne.0)then + do 11 j=ii,i-1 + sum=sum-a(i,j)*b(j) +11 continue + else if (sum.ne.0.) then + ii=i + endif + b(i)=sum +12 continue + do 14 i=n,1,-1 + sum=b(i) + do 13 j=i+1,n + sum=sum-a(i,j)*b(j) +13 continue + b(i)=sum/a(i,i) +14 continue + return + END + diff --git a/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v2_double.bat b/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v2_double.bat index ec2e6a3..76a6b87 100644 --- a/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v2_double.bat +++ b/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v2_double.bat @@ -1,2 +1,2 @@ -call c:/g77/g77setup.bat
-C:/g77/bin/G77 C:\FortranFiles\FourLevel\FourLevelPulseProp_v2_double.F -lslatec -o C:\FortranFiles\FourLevel\FourLevelPulseProp_v2_double.exe
\ No newline at end of file +call c:/g77/g77setup.bat +C:/g77/bin/G77 C:\FortranFiles\FourLevel\FourLevelPulseProp_v2_double.F -lslatec -o C:\FortranFiles\FourLevel\FourLevelPulseProp_v2_double.exe diff --git a/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v3_double.bat b/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v3_double.bat index a4dd2a8..0c7c618 100644 --- a/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v3_double.bat +++ b/code_from_navy/fortran/FourLevelPrograms/compilefourlevelpulseprop_v3_double.bat @@ -1,2 +1,2 @@ -call c:/g77/g77setup.bat
-C:/g77/bin/G77 C:\FortranFiles\FourLevel\FourLevelPulseProp_v3_double.F -lslatec -o C:FourLevelPulseProp_v3_double.exe
\ No newline at end of file +call c:/g77/g77setup.bat +C:/g77/bin/G77 C:\FortranFiles\FourLevel\FourLevelPulseProp_v3_double.F -lslatec -o C:FourLevelPulseProp_v3_double.exe |