function [is_face_hit, hit_position, hit_distance, new_beams] = face_beam_interaction(beam, faces) %% calculates refracted and reflected beam after interaction with a face % beam - structure defining the light beam % beam.origin - array [x,y] origin/soutce of the light beam % beam.k - k vector i.e. direction [kx,ky] % beam.intensity - intensity of the beam % beam.face - if ibeam starts from face then its index is here % faces cell array of face structures % face - structure definiong the beam % face.vertex1 - [x,y] of the 1st point/vertex of the face % face.vertex2 - [x,y] of the 2nd point/vertex of the face % face.n_left - index of refraction on the left hand side % with respect to 1st -> 2nd vertex direction % face.n_right - index of refraction on the right hand side k=beam.k; %% we go over all faces to find the closest which beam hits Nfaces=size(faces)(2); hit_distance=Inf; is_face_hit = false; hit_position = [NA, NA]; closest_face_index=NA; for i=1:Nfaces if ( beam.face == i) continue; end face=faces{i}; [hit_distance_tmp, hit_position_tmp, is_face_hit_tmp] = beam2face_distance(beam,face); if ( hit_distance_tmp < hit_distance ) % this is the closer face is_face_hit=is_face_hit_tmp; hit_position=hit_position_tmp; hit_distance=hit_distance_tmp; closest_face_index=i; end end if (!is_face_hit) new_beams={}; return; end %% closest face face=faces{closest_face_index}; kf=face.vertex2 - face.vertex1; % not a unit vector hold on; % draw face t=linspace(0,1); x=face.vertex1(1)+kf(1)*t; y=face.vertex1(2)+kf(2)*t; plot(x,y,'k-'); t=linspace(0,hit_distance); % draw beam x=beam.origin(1)+k(1)*t; y=beam.origin(2)+k(2)*t; plot(x,y,'r-'); % find is beam arriving from left or right. I will use vectors cross product property. % if z component of the product 'k x kf' is positive then beam arrives from the left if ( ( k(1)*kf(2)-k(2)*kf(1) ) > 0 ) % beam coming from the left n1=face.n_left; n2=face.n_right; else % beam coming from the right n1=face.n_right; n2=face.n_left; end % normal vector to the face, looks to the left of it nf=[ kf(2), -kf(1) ] / norm(kf); % incidence angle calculation cos_theta_i = dot(k, nf) / (norm(k)*norm(nf)); sin_theta_i = - ( k(1)*nf(2)-k(2)*nf(1) ) / (norm(k)*norm(nf)); % positive angle to the right from normal before incidence to the face theta_i = atan2(sin_theta_i, cos_theta_i); % reflected beam direction theta_normal = atan2(nf(2), nf(1)); theta_reflected = theta_normal + pi - theta_i; beam_reflected.origin = hit_position; beam_reflected.k = [cos(theta_reflected), sin(theta_reflected)]; beam_reflected.face=closest_face_index; new_beams{1} = beam_reflected; % refracted beam direction % refracted angle with respect to normal sin_theta_refracted_rel2normal = n1/n2*sin(theta_i); if ( abs(sin_theta_refracted_rel2normal) >=1 ) % total internal reflection else % beam refracts theta_refracted_rel2normal = asin( sin_theta_refracted_rel2normal ); theta_refracted = theta_normal + theta_refracted_rel2normal; beam_refracted.origin = hit_position; beam_refracted.k = [cos(theta_refracted), sin(theta_refracted)]; beam_refracted.face=closest_face_index; new_beams{2} = beam_refracted; end end