function [hit_distance, hit_position, is_face_hit] = beam2face_distance(beam,face) %% return distance to face if beam hits it or infinity otherwise % for beams and faces structure description see face_beam_interaction.m % defaul returning values fot the case when beam misses the face is_face_hit = false; hit_position = [NA, NA]; hit_distance = Inf; k = beam.k; % face direction or kf kf=face.vertex2 - face.vertex1; % not a unit vector %% simple check for intersection of two vectors % if beam are parallel no intersection is possible % we do this via simulated cross product calculation angle_tolerance = 1e-15; if ( abs( (k(1)*kf(2)-k(2)*kf(1))/norm(k)/norm(kf) ) <= angle_tolerance ) % beams never intercept return; end %% let's find the intersection of lines passing through face and light beam % we introduce parameters tb and tf % which define distance (in arb. units) along k vectors % we are solving % xb_o+ k_x*tb = v1_x+ kf_x*tf % yb_o+ k_y*tb = v1_y+ kf_y*tf % A*t = B A = [ k(1) , -kf(1); k(2), -kf(2)]; B= [ face.vertex1(1)-beam.origin(1); face.vertex1(2)-beam.origin(2) ]; t = A\B; tb=t(1); tf=t(2); % beam intersects face only if 0<=tf<=1 and tb>=0 if ( (0 <= tf) && (tf<=1) && tb >=0 ) % intersection, beam hits the face is_face_hit = true; else % beam misses the face return; end % calculating hit position hit_position=face.vertex1+kf*tf; hit_distance = tb; % distance along the light beam end