diff options
Diffstat (limited to 'beam_tracing/prism_disk_coupling.m')
-rw-r--r-- | beam_tracing/prism_disk_coupling.m | 152 |
1 files changed, 0 insertions, 152 deletions
diff --git a/beam_tracing/prism_disk_coupling.m b/beam_tracing/prism_disk_coupling.m deleted file mode 100644 index d89806c..0000000 --- a/beam_tracing/prism_disk_coupling.m +++ /dev/null @@ -1,152 +0,0 @@ -function prism_disk_coupling(prism_angle_in_degrees, n_disk, n_prism, coupling_description) -%% Calculates incident angle for proper coupling into the disc via prism -% prism_angle_in_degrees - angle of the prism faces in degrees -% coupling_description - short annotation of the situation -% for example: -% coupling_description='Rutile prism, MgF_{2} disk, p-polarization'; - -prism_angle = prism_angle_in_degrees*pi/180; - -%% critical angle for beam from prism to disk -% recall n_d*sin(theta_disk)=n_prism*sin(theta_prism) where angles are counted from normal to the face -% and we want theta_disk to be 90 degrees for the total internal reflection -theta_prism=asin(n_disk/n_prism); -% convert to degrees -theta_prism_in_degrees=theta_prism*180/pi - -%% now lets see what angle it does with other face of the prism -theta_prism_2=(prism_angle - theta_prism); -theta_prism_in_degrees_2=theta_prism_2*180/pi - -%% now we calculate refracted angle out of the prism into the air with respect to the normal -% positive means above the normal -asin_arg=n_prism*sin(theta_prism_2); -if (abs(asin_arg)>1) error('quiting: at the right prism face we experienced total internal reflection'); end -theta_air=asin(asin_arg); -% convert to degrees -theta_air_in_degrees=theta_air*180/pi - -%% angle in the air relative to horizon -theta_air_rlh=(theta_air+( pi/2 - prism_angle) ); -theta_air_rlh_in_degrees=theta_air_rlh*180/pi - -%% Lets make a picture -% 1st face of the prism lays at y=0 and spans from x=-1 to x=1 -x_face_1=linspace(-1,1); -y_face_1=0*x_face_1; -% 2nd face to the right of origin and at angle prism_angle with respect to negative x direction -x_face_2=linspace(1,0); -y_face_2=(1-x_face_2)*tan(prism_angle); -% 3rd face to the left of origin and at angle prism_angle with respect to negative x direction -x_face_3=linspace(-1,0); -y_face_3=(x_face_3+1)*tan(prism_angle); - -%% draw prism -figure(1); hold off; -plot(x_face_1, y_face_1, 'k-', x_face_2, y_face_2, 'k-', x_face_3, y_face_3, 'k-'); -hold on - -%% disk center will be located in point (0,-R); -R=.25; -dc_x=0; dc_y=-R; -x_disk=dc_x+R*cos(linspace(0,2*pi)); -y_disk=dc_y+R*sin(linspace(0,2*pi)); -plot(x_disk,y_disk,'k-') - - -%% beam trace inside the prism -% crossing of the beam with 1st (right) face of the prism -% we are solving cot(theta_prism)*x=tan(prism_angle)*(1-x) -x_cross_1=tan(prism_angle)/(tan(prism_angle)+cot(theta_prism)); -y_cross_1=x_cross_1*cot(theta_prism); -x_beam_prism_1=linspace(0,x_cross_1); -y_beam_prism_1=x_beam_prism_1*cot(theta_prism); -plot(x_beam_prism_1, y_beam_prism_1, 'r-'); - -%% beam out of prism -x_out_strt=x_cross_1; -y_out_strt=x_cross_1*cot(theta_prism); - -if (abs(theta_air_rlh)<pi/2) x_out_stop=1; else x_out_stop=0; end -x_out_1=linspace(x_out_strt, x_out_stop); -y_out_1=y_out_strt+tan(theta_air_rlh)*(x_out_1-x_out_strt); -plot(x_out_1, y_out_1, 'r-'); - -%% draw normal at the point of 1st face intersection -theta_norm_rlh=pi/2-prism_angle; -% coordinates of normal outside the prism -x_norm_out=linspace(x_cross_1,1); -y_norm_out=y_cross_1+(x_norm_out-x_cross_1)*tan(theta_norm_rlh); - -% coordinates of normal inside the prism -x_norm_in=linspace(x_cross_1,0); -y_norm_in=y_cross_1+(x_norm_in-x_cross_1)*tan(theta_norm_rlh); -plot(x_norm_out, y_norm_out, 'b-', x_norm_in, y_norm_in, 'b-'); - -%% arc to show theta_air -R_arc=.1; -phi_arc=linspace(theta_air_rlh,theta_norm_rlh); -x_arc_air=x_cross_1+R_arc*cos(phi_arc); -y_arc_air=y_cross_1+R_arc*sin(phi_arc); -plot(x_arc_air, y_arc_air, 'b-'); -%% annotation theta_air_in_degrees -str=sprintf('theta_{a}=%.1f',theta_air_in_degrees); -str=strcat('\',str,'^{o}'); -text(x_arc_air(end)+.05,y_arc_air(end), str); - -%% normal at the disk contact -y_norm_in=linspace(0.,0.5); -x_norm_in=y_norm_in*0; -plot(x_norm_in, y_norm_in, 'b-'); - -%% arc to show theta_prism -R_arc=.1; -phi_arc=linspace(pi/2-theta_prism,pi/2); -x_arc_prism=R_arc*cos(phi_arc); -y_arc_prism=R_arc*sin(phi_arc); -plot(x_arc_prism, y_arc_prism, 'b-'); -%% annotation theta_air_in_degrees -str=sprintf('theta_{p}=%.1f',theta_prism_in_degrees); -str=strcat('\',str,'^{o}'); -text(x_arc_prism(1)+0.05, y_arc_prism(1), str); - -%% arc to show theta_prism_2 -R_arc=.1; -phi_arc=linspace(theta_norm_rlh+theta_prism_2+pi,theta_norm_rlh+pi); -x_arc_prism_2=x_cross_1+R_arc*cos(phi_arc); -y_arc_prism_2=y_cross_1+R_arc*sin(phi_arc); -plot(x_arc_prism_2, y_arc_prism_2, 'b-'); -%% annotation theta_air_in_degrees -str=sprintf('theta_{p2}=%.1f',theta_prism_in_degrees_2); -str=strcat('\',str,'^{o}'); -text(x_arc_prism_2(1)+.05,y_arc_prism_2(1), str); - -%% arc to show prism angle -R_arc=.1; -phi_arc=linspace(pi, pi-prism_angle); -x_arc=1+R_arc*cos(phi_arc); -y_arc=0+R_arc*sin(phi_arc); -plot(x_arc, y_arc, 'b-'); -%% annotate prism angle -str=sprintf('theta_{prism}=%.1f',prism_angle_in_degrees); -str=strcat('\',str,'^{o}'); -text(.52, 0.06, str); - - -%% General annotation -str=sprintf('n_{disk}=%.3f',n_disk); -text(-0.9,1.1, str); - -str=sprintf('n_{prism}=%.3f',n_prism); -text(-0.9,1.2, str); - -text(-0.9, 1.3, coupling_description); - -% force same aspect ratio for axis -axis([-1,1,-0.5,1.5],'equal'); - -%% output of the plot to the file -print('prism_disk_coupling.eps','-depsc2'); -print('prism_disk_coupling.png'); - -end |