1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
"""
Provide basic method to process data describing tables
Created by Eugeniy E. Mikhailov 2024/05/27
The basic idea that we will have an *input* table
with data description and we (re)generate *output* table
based on the input table with processed rows.
If output table already have processed rows with entries different from NA
such rows are skipped.
Super handy for bulk processing data files where only a few parameters changed.
"""
import pandas as pd
import warnings
def loadInOutTables(inputFileName=None, outputFileName=None, comment=None):
if not inputFileName:
return None, None
if not comment:
comment = '#'
tIn = pd.read_csv(inputFileName, comment=comment)
tIn.columns = tIn.columns.str.removeprefix(' '); # clean up leading white space in columns names
try:
tOut=pd.read_csv(outputFileName, comment=comment)
except Exception:
tOut=tIn.copy(deep=True)
return tIn, tOut
def ilocRowOrAdd(tbl, row):
# Find similar 'row' in 'tbl', NA in both set treated as a hit.
# if similar row not found, insert it.
tSub = tbl[row.keys()]
res = (tSub == row) | (tSub.isna() & row.isna() )
res = res.all(axis=1) # which rows coincide
if res.any():
# we have a similar row
i = res[res].index[0]
else:
# we need to create new row since tbl does not has it
i=len(tbl)
updateTblRowAt(tbl, i, row)
return i
def updateTblRowAt(tbl, i, row):
for k in row.keys():
tbl.at[i, k] = row[k]
return
def isRedoNeeded(row, cols2check):
# redo is required if *all* required entries in cols2check are NA
# or we are missing columns in cols2check list
for c in cols2check:
if c not in row.keys():
return True
if row[cols2check].isna().all():
return True
return False
def reflowTable(tIn, tOut, process_row_func=None, postProcessedColums=None, extraInfo=None, redo=False):
# update tOut in place based on the inputs specified in tIn
# effectively maps unprocess rows in to process_row_func
# - postProcessedColums is a list of column names which need to be generated
# - extraInfo is dictionary of additional parameter supplied to process_row_func
# - process_row_func expected to behave like:
# rowOut = process_row_func(rowIn, extraInfo=userInfo)
# - redo controls if reflow is needed unconditionally (i.e. force reflow)
if not process_row_func:
warnings.warn("process_row_func is not provided, exiting reflowTable")
return
if not postProcessedColums:
warnings.warn("postProcessedColums are not provided, exiting reflowTable")
return
for index, rowIn in tIn.iterrows():
iOut = ilocRowOrAdd(tOut, rowIn)
rowOutBefore = tOut.iloc[iOut]
if not (redo or isRedoNeeded(rowOut, postProcessedColums) ):
continue
# processing data describing row
rowOut = process_row_func(rowOutBefore, extraInfo=extraInfo)
updateTblRowAt(tOut, iOut, rowOut)
|