1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
"""
Created by Eugeniy E. Mikhailov 2024/07/18
"""
from qolab.hardware.basic import BasicInstrument
from qolab.hardware.scpi import SCPI_PROPERTY
from ._basic import ScopeSCPI, calcSparsingAndNumPoints
from qolab.data.trace import Trace, TraceXY
import numpy as np
import scipy.signal
from pyvisa.errors import VisaIOError
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)8s %(name)s: %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class RigolDS1054z(ScopeSCPI):
"""Rigol 1054 scope"""
vertDivOnScreen = 8
horizDivOnScreen = 12
def __init__(self, resource, *args, **kwds):
super().__init__(resource, *args, **kwds)
self.config["Device model"] = "Rigol DS1054z"
self.resource.read_termination = "\n"
self.numberOfChannels = 4
self.maxRequiredPoints = 1200
self.resource.timeout = 500 # timeout in ms
# desired number of points per channel, can return twice more
TimePerDiv = SCPI_PROPERTY(
scpi_prfx=":TIMEBASE:MAIN:SCALE",
ptype=float,
doc="Scope Time per Division",
)
def getTimePerDiv(self):
return self.TimePerDiv
def setTimePerDiv(self, value):
self.TimePerDiv = value
TrigDelay = SCPI_PROPERTY(
scpi_prfx=":TIMEBASE:MAIN:OFFSET",
ptype=float,
doc="Scope Time Offset or Trigger Delay",
)
@BasicInstrument.tsdb_append
def getTrigDelay(self):
return self.TrigDelay
@BasicInstrument.tsdb_append
def setTrigDelay(self, value):
self.TrigDelay = value
@BasicInstrument.tsdb_append
def getChanVoltageOffset(self, chNum):
qstr = f":CHANnel{chNum}:OFFSet?"
rstr = self.query(qstr)
return float(rstr)
@BasicInstrument.tsdb_append
def setChanVoltageOffset(self, chNum, val):
cstr = f":CHANnel{chNum}:OFFSet {val}"
self.write(cstr)
@BasicInstrument.tsdb_append
def getChanVoltsPerDiv(self, chNum):
qstr = f":CHANnel{chNum}:SCALe?"
rstr = self.query(qstr)
return float(rstr)
@BasicInstrument.tsdb_append
def setChanVoltsPerDiv(self, chNum, vPerDiv):
cstr = f":CHANnel{chNum}:SCALe {vPerDiv}"
self.write(cstr)
@BasicInstrument.tsdb_append
def getTriggerStatus(self):
"""Get Trigger Status.
We expect TD, WAIT, RUN, AUTO, or STOP.
"""
res = self.query(":TRIGger:STATus?")
return res
@BasicInstrument.tsdb_append
def getRun(self):
"""Is acquisition running or stopped."""
if self.getTriggerStatus() != "STOP":
return True
return False
@BasicInstrument.tsdb_append
def setRun(self, isRun):
"""Either enable run or stop the acquisition."""
if isRun:
self.run()
return
self.stop()
@BasicInstrument.tsdb_append
def getTimeBaseMode(self):
"""Get he mode of the horizontal timebase.
We expect {MAIN|XY|ROLL}.
MAIN stands for normal voltage vs time mode.
XY stands X vs Y mode.
ROLL stands for rolling mode.
"""
res = self.query(":TIMebase:MODE?")
return res
@BasicInstrument.tsdb_append
def setTimeBaseMode(self, val):
"""Set trigger mode.
Takes {MAIN|XY|ROLL}.
"""
self.write(f":TIMebase:MODE? {val}")
@BasicInstrument.tsdb_append
def getRoll(self):
"""Is Roll mode enabled."""
if self.getTimeBaseMode() == "Roll":
return True
return False
@BasicInstrument.tsdb_append
def getTriggerMode(self):
"""Get trigger mode.
We expect AUTO, NORM, or SING (for Single)
"""
res = self.query(":TRIGger:SWEep?")
return res
@BasicInstrument.tsdb_append
def setTriggerMode(self, val):
"""Set trigger mode.
Takes AUTO, NORMal, or SINGle
"""
self.write(f":TRIGger:SWEep {val}")
@BasicInstrument.tsdb_append
def getMemoryDepth(self):
"""Memory depth per channel.
Returns
-------
Number corresponding to memory depth or AUTO
"""
res = self.query(":ACQuire:MDEPth?")
return res
@BasicInstrument.tsdb_append
def setMemoryDepth(self, val):
"""Set memory depth per channel.
For 1 channel regime valid settings are
{AUTO|12000|120000|1200000|12000000|24000000}
Wherein, 24000000 (pts) is an optional memory depth.
For 2 channel regime divide numbers by 2, i.e.
{AUTO|6000|60000|600000|6000000|12000000}
For 4 channel regime divide numbers by 4, i.e.
{AUTO|3000|30000|300000|3000000|6000000}
For 8 channel regime valid settings are
{AUTO|12000|120000|1200000|12000000|24000000}.
Wherein, 24000000 (pts) is an optional memory depth.
For 16 channel regime valid settings are
{AUTO|6000|60000| 600000|6000000|12000000}.
Wherein, 12000000 (pts) is an optional memory depth.
"""
self.write(f":ACQuire:MDEPth {val}")
@BasicInstrument.tsdb_append
def getSampleRate(self):
"""Get sample rate.
Returns
-------
Sample rate in units of Samples/Second
"""
res = self.query(":ACQuire:SRATe?")
return float(res)
def stop(self):
self.write(":STOP")
def run(self):
self.write(":RUN")
def getRawWaveform(
self, chNum, availableNpnts=None, maxRequiredPoints=None, decimate=True
):
"""
Get raw channel waveform in binary format.
Parameters
----------
chNum : int
Scope channel to use: 1, 2, 3, or 4
availableNpnts : int or None (default)
Available number of points. Do not set it if you want it auto detected.
maxRequiredPoints : int
Maximum number of required points, if we ask less than available
we well get sparse set which proportionally fills all available time range.
decimate : False or True (default)
Decimate should be read as apply the low pass filter or not, technically
for both setting we get decimation (i.e. smaller than available
at the scope number of points). The name came from
``scipy.signal.decimate`` filtering function.
If ``decimate=True`` is used, we get all available points
and then low-pass filter them to get ``maxRequiredPoints``
The result is less noisy then, but transfer time from the instrument
is longer.
If ``decimate=False``, then it we are skipping points to get needed number
but we might see aliasing, if there is a high frequency noise
and sparing > 1. Unless you know what you doing, it is recommended
to use ``decimate=True``.
"""
# if RAW is used the scope should be in STOP state
self.write(f":WAVeform:SOURce CHAN{chNum}")
self.write(
":WAVeform:MODE RAW"
) # {NORMal|MAXimum|RAW} RAW gives maximum number of points
self.write(
":WAVeform:FORMat BYTE"
) # {WORD|BYTE|ASCii}, scope is 8 bit, BYTE is enough
preamble = self.query(":WAVeform:PREamble?").split(",")
"""
Format is
<format>,<type>,<points>,<count>,<xincrement>,<xorigin>,<xreference>,<yincrement>,<yorigin>,<yreference>
Wherein,
<format>: 0 (BYTE), 1 (WORD) or 2 (ASC).
<type>: 0 (NORMal), 1 (MAXimum) or 2 (RAW).
<points>: an integer between 1 and 12000000. After the memory depth option is
installed, <points> is an integer between 1 and 24000000.
<count>: the number of averages in the average sample mode
and 1 in other modes.
<xincrement>: the time difference between two neighboring points
in the X direction.
<xorigin>: the start time of the waveform data in the X direction.
<xreference>: the reference time of the data point in the X direction.
<yincrement>: the waveform increment in the Y direction.
<yorigin>: the vertical offset relative
to the "Vertical Reference Position" in the Y direction.
<yreference>: the vertical reference position in the Y direction.
"""
rawChanCfg = {
"format": int(preamble[0]),
"type": int(preamble[1]),
"availableNpnts": int(preamble[2]),
"Navrg": int(preamble[3]),
"xincrement": float(preamble[4]),
"xorigin": float(preamble[5]),
"xreference": int(preamble[6]),
"yincrement": float(preamble[7]),
"yorigin": int(preamble[8]),
"yreference": int(preamble[9]),
}
logger.info(f"rawChanCfg: {rawChanCfg}")
availableNpnts = rawChanCfg["availableNpnts"]
wfRaw = np.zeros(availableNpnts, dtype=np.uint8)
maxreadable = 250_000 # the maximum number of bytes readable in one go
chunk_size = 70_000 # unfortunately large chunk size prone to read errors
errCnt = 0
strt = 1
stp = min(chunk_size, availableNpnts)
errorFreeChunkSize = []
errorProneChunkSize = []
while strt <= availableNpnts:
stp = strt - 1 + chunk_size
stp = min(stp, availableNpnts)
chunk_size = stp - strt + 1
# reading requested number of points in chunks
self.write(f":WAVeform:STARt {strt}")
self.write(f":WAVeform:STOP {stp}")
qstr = ":WAVeform:DATA?"
try:
wfRawChunk = self.query_binary_values(
qstr,
datatype="b",
header_fmt="ieee",
container=np.array,
chunk_size=(chunk_size + 100),
)
if len(wfRawChunk) == 0:
logger.info("Got empty chunk. Redoing.")
continue # we need to repeat chunk read
if len(wfRawChunk) != chunk_size:
logger.info(
"Expected chunk with length"
+ f" {chunk_size} but got {len(wfRawChunk)}"
)
logger.info(
f"Current pointers are {strt=} {stp=} with {chunk_size=}"
)
logger.info("Redoing, chunk reading.")
continue # we need to repeat chunk read
wfRaw[strt - 1 : stp] = wfRawChunk
"""
All this craziness with tuning chunk_size
and catching VisaIOError
is because Rigol usbtmc connection is buggy.
It present itself as high speed device over USB,
but set incompatible packet size of 64
while the USB standard dictates 512.
In linux dmesg complains:
'bulk endpoint 0x3 has invalid maxpacket 64'
"""
strt += chunk_size
errorFreeChunkSize.append(chunk_size)
chunk_size = min(maxreadable, int(chunk_size * 1.1))
except VisaIOError as err:
logger.info(f"Detected recoverable {err}")
errCnt += 1
errorProneChunkSize.append(chunk_size)
logger.debug(
f"Visa error count is {errCnt} while reading raw chunk the scope"
)
logger.debug(f"Current pointers are {strt=} {stp=} with {chunk_size=}")
if len(errorFreeChunkSize) > 10:
chunk_size = int(np.mean(errorFreeChunkSize))
else:
chunk_size = max(1, int(np.mean(errorProneChunkSize) * 0.8))
logger.debug(f"New {chunk_size=}")
logger.debug("Redoing, chunk reading.")
pass # we repeat this loop iteration again
logger.debug(f"final {chunk_size=}")
if maxRequiredPoints is None:
maxRequiredPoints = self.maxRequiredPoints
(
sparsing,
Npnts,
availableNpnts,
maxRequiredPoints,
) = calcSparsingAndNumPoints(
availableNpnts=availableNpnts, maxRequiredPoints=maxRequiredPoints
)
rawChanCfg["Npnts"] = Npnts
rawChanCfg["sparsing"] = sparsing
if not decimate and sparsing > 1:
wfRaw = wfRaw[::sparsing]
trRaw = Trace(f"Ch{chNum}")
trRaw.values = wfRaw.reshape(wfRaw.size, 1)
if decimate and sparsing != 1:
numtaps = 3
# not sure it is the best case
trRaw.values = scipy.signal.decimate(
trRaw.values, sparsing, numtaps, axis=0
)
trRaw.config["unit"] = "Count"
trRaw.config["tags"]["Decimate"] = decimate
trRaw.config["tags"]["rawChanConfig"] = rawChanCfg
return (trRaw, rawChanCfg)
def getTimeTrace(self, rawChanCfg):
timePerDiv = self.getTimePerDiv()
trigDelay = self.getTrigDelay()
availableNpnts = rawChanCfg["availableNpnts"]
sparsing = rawChanCfg["sparsing"]
Npnts = rawChanCfg["Npnts"]
ind = np.linspace(0, Npnts - 1, Npnts)
dx = rawChanCfg["xincrement"]
xorig = rawChanCfg["xorigin"]
tval = (ind - rawChanCfg["xreference"]) * dx * sparsing + xorig
t = Trace("time")
t.values = tval.reshape(tval.size, 1)
t.config["unit"] = "S"
t.config["tags"]["TimePerDiv"] = timePerDiv
t.config["tags"]["TrigDelay"] = trigDelay
t.config["tags"]["SampleRate"] = int(1 / dx)
t.config["tags"]["AvailableNPnts"] = availableNpnts
t.config["tags"]["Npnts"] = Npnts
t.config["tags"]["Sparsing"] = sparsing
return t
def getWaveform(
self, chNum, availableNpnts=None, maxRequiredPoints=None, decimate=True
):
"""
For decimate use see ``getRawWaveform``.
In short decimate=True is slower but more precise.
"""
trRaw, rawChanCfg = self.getRawWaveform(
chNum,
availableNpnts=availableNpnts,
maxRequiredPoints=maxRequiredPoints,
decimate=decimate,
)
VoltageOffset = self.getChanVoltageOffset(chNum)
VoltsPerDiv = self.getChanVoltsPerDiv(chNum)
tr = trRaw
tr.values = (
np.array(trRaw.values, dtype=int) - rawChanCfg["yreference"] - rawChanCfg["yorigin"]
) * rawChanCfg["yincrement"]
tr.config["unit"] = "Volt"
tr.config["tags"]["VoltageOffset"] = VoltageOffset
tr.config["tags"]["VoltsPerDiv"] = VoltsPerDiv
return (tr, rawChanCfg)
def getTrace(
self, chNum, availableNpnts=None, maxRequiredPoints=None, decimate=True
):
old_run_status = self.getRun()
if old_run_status: # avoid unnecessary status change
self.setRun(False) # stop if currently running
# to get synchronous channels
wfVoltage, rawChanCfg = self.getWaveform(
chNum,
availableNpnts=availableNpnts,
maxRequiredPoints=maxRequiredPoints,
decimate=decimate,
)
t = self.getTimeTrace(rawChanCfg)
tr = TraceXY(f"Ch{chNum}")
tr.x = t
tr.y = wfVoltage
# restore scope to the before acquisition mode
if old_run_status: # avoid unnecessary status change
self.setRun(old_run_status) # start running if it was old run state
return tr
if __name__ == "__main__":
import pyvisa
print("testing")
rm = pyvisa.ResourceManager()
print(rm.list_resources())
# instr = rm.open_resource("TCPIP::192.168.0.62::INSTR")
instr = rm.open_resource("USB0::0x1AB1::0x04CE::DS1ZA170502787::0::INSTR")
scope = RigolDS1054z(instr)
print(f"ID: {scope.idn}")
print(f"TimePerDiv = {scope.TimePerDiv}")
# print(f'Ch1 mean: {scope.mean(1)}')
print(f"Ch1 available points: {scope.getAvailableNumberOfPoints(1)}")
print(f"Sample Rate: {scope.getSampleRate()}")
print(f"Time per Div: {scope.getTimePerDiv()}")
print(f"Ch1 Volts per Div: {scope.getChanVoltsPerDiv(1)}")
print(f"Ch1 Voltage Offset: {scope.getChanVoltageOffset(1)}")
print("------ Header start -------------")
print(str.join("\n", scope.getHeader()))
print("------ Header ends -------------")
ch1 = scope.getTrace(1)
traces = scope.getAllTraces()
|