1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
"""
Provide basic class to operate scope
Created by Eugeniy E. Mikhailov 2021/11/29
"""
from hardware.scope import ScopeSCPI
from data.trace import Trace
import re
import numpy as np
class SDS1104X(ScopeSCPI):
""" Siglent SDS1104x scope """
vertDivOnScreen = 10
horizDivOnScreen = 14
def __init__(self, resource):
super().__init__(resource)
self.resource.read_termination='\n'
self.numberOfChannels = 4
self.maxRequiredPoints = 1000; # desired number of points per channel, can return twice more
def response2numStr(self, strIn, firstSeparator=None, unit=None):
# A typical reply of Siglent is in the form 'TDIV 2.00E-08S'
# i.e. "<prefix><firstSeparator><numberString><unit>
# prefix='TDIV', firstSeparator=' ', numberString='2.00E-08', unit='S'
# this function parses the reply
spltStr = re.split(firstSeparator, strIn)
prefix = spltStr[0]
rstr = spltStr[1]
spltStr = re.split(unit, rstr)
numberString = spltStr[0]
unit = spltStr[1]
return (prefix, numberString, unit)
def mean(self, chNum):
# get mean on a specific channel calculated by scope
# PAVA stands for PArameter VAlue
qstr = f'C{chNum}:PAVA? MEAN'
rstr = self.query(qstr);
# reply is in the form 'C1:PAVA MEAN,3.00E-02V'
prefix, numberString, unit = self.response2numStr(rstr, firstSeparator=',', unit='V')
return(float(numberString))
def getAvailableNumberOfPoints(self, chNum):
if chNum != 1 and chNum != 3:
# for whatever reason 'SAMPLE_NUM' fails for channel 2 and 4
chNum = 1
qstr = f'SAMPLE_NUM? C{chNum}'
rstr = self.query(qstr)
# reply is in the form 'SANU 7.00E+01pts'
prefix, numberString, unit = self.response2numStr(rstr, firstSeparator=' ', unit='pts')
return(int(float(numberString)))
def getSampleRate(self):
rstr = self.query('SAMPLE_RATE?');
# expected reply is like 'SARA 1.00E+09Sa/s'
prefix, numberString, unit = self.response2numStr(rstr, firstSeparator=' ', unit='Sa/s')
return(int(float(numberString)))
def calcSparsingAndNumPoints(self, availableNpnts=None, maxRequiredPoints=None):
if availableNpnts is None:
# using channel 1 to get availableNpnts
availableNpnts = self.getAvailableNumberOfPoints(1)
if maxRequiredPoints is None:
maxRequiredPoints = self.maxRequiredPoints
if availableNpnts <= maxRequiredPoints*2:
Npnts = availableNpnts
sparsing = 1
else:
sparsing = int(np.floor(availableNpnts/maxRequiredPoints))
Npnts = int(np.floor(availableNpnts/sparsing))
return(sparsing, Npnts, availableNpnts, maxRequiredPoints)
def getRawWaveform(self, chNum, availableNpnts=None, maxRequiredPoints=None):
(sparsing, Npnts, availableNpnts, maxRequiredPoints) = self.calcSparsingAndNumPoints(availableNpnts, maxRequiredPoints)
if sparsing == 1 and Npnts == availableNpnts:
# we are getting all of it
cstr = f'WAVEFORM_SETUP NP,0,FP,0,SP,{sparsing}'
# technically when we know Npnts and sparsing
# we can use command from the follow up 'else' clause
else:
cstr = f'WAVEFORM_SETUP SP,{sparsing},NP,{Npnts},FP,0'
# Note: it is not enough to provide sparsing (SP),
# number of points (NP) needed to be calculated properly too!
# From the manual
# WAVEFORM_SETUP SP,<sparsing>,NP,<number>,FP,<point>
# SP Sparse point. It defines the interval between data points.
# For example:
# SP = 0 sends all data points.
# SP = 1 sends all data points.
# SP = 4 sends every 4th data point
# NP — Number of points. It indicates how many points should be transmitted.
# For example:
# NP = 0 sends all data points.
# NP = 50 sends a maximum of 50 data points.
# FP — First point. It specifies the address of the first data point to be sent.
# For example:
# FP = 0 corresponds to the first data point.
# FP = 1 corresponds to the second data point
self.write(cstr)
qstr = f'C{chNum}:WAVEFORM? DAT2'
wfRaw=self.query_binary_values(qstr, datatype='b', header_fmt='ieee', container=np.array, chunk_size=(Npnts+100))
# expected full reply: 'C1:WF DAT2,#9000000140.........'
return(wfRaw, availableNpnts, Npnts)
def getChanVoltsPerDiv(self, chNum):
qstr = f'C{chNum}:VDIV?'
rstr = self.query(qstr)
# expected reply to query: 'C1:VDIV 1.04E+00V'
prefix, numberString, unit = self.response2numStr(rstr, firstSeparator=' ', unit='V')
return(float(numberString))
def getChanOffset(self, chNum):
qstr = f'C{chNum}:OFST?'
rstr = self.query(qstr)
# expected reply to query: 'C1:OFST -1.27E+00V'
prefix, numberString, unit = self.response2numStr(rstr, firstSeparator=' ', unit='V')
return(float(numberString))
def getTimePerDiv(self):
qstr = f'TDIV?'
rstr = self.query(qstr)
# expected reply to query: 'TDIV 2.00E-08S'
prefix, numberString, unit = self.response2numStr(rstr, firstSeparator=' ', unit='S')
return(float(numberString))
def getTrigDelay(self):
qstr = f'TRIG_DELAY?'
rstr = self.query(qstr)
# expected reply to query: 'TRDL -0.00E+00S'
prefix, numberString, unit = self.response2numStr(rstr, firstSeparator=' ', unit='S')
return(float(numberString))
def getWaveform(self, chNum, availableNpnts=None, maxRequiredPoints=None):
wfRaw, availableNpnts, Npnts = self.getRawWaveform(chNum, availableNpnts=availableNpnts, maxRequiredPoints=maxRequiredPoints)
VoltageOffset = self.getChanOffset(chNum)
VoltsPerDiv = self.getChanVoltsPerDiv(chNum)
return( wfRaw * VoltsPerDiv * self.vertDivOnScreen/250 -VoltageOffset, availableNpnts )
def getTimeTrace(self, availableNpnts=None, maxRequiredPoints=None):
(sparsing, Npnts, availableNpnts, maxRequiredPoints) = self.calcSparsingAndNumPoints(availableNpnts, maxRequiredPoints)
sampleRate = self.getSampleRate()
timePerDiv = self.getTimePerDiv()
trigDelay = self.getTrigDelay()
if Npnts is None and sparsing is None:
# using channel 1 as reference
Npnts = self.getAvailableNumberOfPoints(1)
t = np.arange(Npnts) / sampleRate * sparsing;
t = t - timePerDiv * self.horizDivOnScreen/2 - trigDelay
return(t)
def getTrace(self, chNum, availableNpnts=None, maxRequiredPoints=None):
wfVoltage, availableNpnts = self.getWaveform( chNum, availableNpnts=availableNpnts, maxRequiredPoints=maxRequiredPoints)
t = self.getTimeTrace(availableNpnts=availableNpnts, maxRequiredPoints=maxRequiredPoints)
tr = Trace( f'Ch{chNum}' )
tr.xlabel = 'Time'
tr.xunit = 'S'
tr.ylabel = 'Voltage'
tr.yunit = 'V'
tr.x = t
tr.y = wfVoltage
return( tr )
if __name__ == '__main__':
import pyvisa
print("testing")
rm = pyvisa.ResourceManager()
print(rm.list_resources())
instr=rm.open_resource('TCPIP::192.168.0.61::INSTR')
scope = SDS1104X(instr)
print(f'ID: {scope.idn}')
print(f'Ch1 mean: {scope.mean(1)}')
print(f'Ch1 available points: {scope.getAvailableNumberOfPoints(1)}')
print(f'Sample Rate: {scope.getSampleRate()}')
print(f'Time per Div: {scope.getTimePerDiv()}')
print(f'Ch1 Volts per Div: {scope.getChanVoltsPerDiv(1)}')
print(f'Ch1 Voltage Offset: {scope.getChanOffset(1)}')
ch1 = scope.getTrace(1)
|