""" Provide basic method to process data describing tables Created by Eugeniy E. Mikhailov 2024/05/27 The basic idea that we will have an *input* table with data description and we (re)generate *output* table based on the input table with processed rows. If output table already have processed rows with entries different from NA such rows are skipped. Super handy for bulk processing data files where only a few parameters changed. """ import pandas as pd def loadInOutTables(inputFileName=None, outputFileName=None, comment=None): if not inputFileName: return None, None if not comment: comment = '#' tIn = pd.read_csv(inputFileName, comment=comment) tIn.columns = tIn.columns.str.removeprefix(' '); # clean up leading white space in columns names try: tOut=pd.read_csv(results_file) except Exception: tOut=tIn.copy(deep=True) return tIn, tOut def ilocRowOrAdd(tbl, row): # Find similar 'row' in 'tbl', NA in both set treated as a hit. # if similar row not found, insert it. tSub = tbl[row.keys()] res = (tSub == row) | (tSub.isna() & row.isna() ) res = res.all(axis=1) # which rows coincide if res.any(): # we have a similar row i = res[res].index[0] else: # we need to create new row since tbl does not has it i=len(tbl) updateTblRowAt(tbl, i, row) return i def updateTblRowAt(tbl, i, row): for k in row.keys(): tbl.at[i, k] = row[k] return def isRedoNeeded(row, cols2check): # redo is required if all required entries in cols2check are NA # or we are missing columns in cols2check list for c in cols2check: if c not in row.keys(): return True if row[cols2check].isna().all(): return True return False