%--------------------------------------------------------------- % Field of the TEM00 Gaussian mode as a function of distance % from waist and axial distance. (See e.g. Orazio Svelto, % Principles of Lasers, 4th ed. page 152, Eqn's 4.715a-4.717c) % % SYNTAX: [E,w,R,phi,zR]=SimpleGaussian([w0,lambda],z,r); % % INPUT ARGUMENTS: % w0 = Gaussian field radius at waist % z = axial distance from waist % lambda = wavelength % % z = distance from waist (Nx1 vector) % r = distance from beam axis (Nx1 vector) % % OUTPUT ARGUMENTS: % E = complex electric field normalized to the field % amplitude at the center of the waist % w = width of the beam (radius at which the field amplitude % falls to 1/e of it's value on the beam axis % R = Radius of curvature of phasefront % phi = Guoy phase % zR = Raleigh range % %--------------------------------------------------------------- % SYNTAX: [E,w,R,phi,zR]=SimpleGaussian([w0,lambda],z,r); %--------------------------------------------------------------- function [E,w,R,phi,zR]=SimpleGaussian(params,z,r); w0=params(1); %Beam field width at waist lambda=params(2); %Wavelength higherorder=0; if length(params)>=3, l=params(3); m=params(4); higherorder=1; end E=zeros(length(z),length(r)); w=zeros(length(z),1); R=zeros(length(z),1); phi=zeros(length(z),1); if higherorder==0 for s=1:length(z) [E(s,:),w(s),R(s),phi(s),zR]=SimpleGaussian_rdep([w0,z(s),lambda],r); end else for s=1:length(z) [E(s,:),w(s),R(s),phi(s),zR]=SimpleGaussian_rdep([w0,z(s),lambda,0,l,m],r); end end