% Illustrates the use of SimpleGaussian.m by plotting interesting features % of a TEM_00 Hermite Gaussian beam. In Figure 1, the script plots % the amplitude and phase of a TEM_00 beam near the focus. The amplitude % of the two quadratures amplitude*sin(phase) and amplitude*cos(phase) are % shown in a Figure 2. z=[-0.2:0.003:0.2]; r=[-1e-3:6e-6:1e-3]; lambda=1e-6; w01=100e-6; w02=200e-6; dr=5e-5; [E1,w1,R1,phi1,zr]=SimpleGaussian([w01,lambda],z,r); theta1=angle(E1); I1=E1.*conj(E1); Inorm1=I1; zpts=size(I1,1); rpts=size(I1,2); for s=1:zpts Inorm1(s,:)=I1(s,:)./max(I1(s,:));%I1(s,pos(r,0,1)); end figure(1); subplot(121); h1=pcolor(r,z,sqrt(Inorm1)); set(h1,'EdgeColor','none'); hold on; caxis([0 1]); sidebar=colorbar; contour(r,z,sqrt(Inorm1),1,'w','linewidth',2); title('amplitude'); hold off; subplot(122); h2=pcolor(r,z,theta1); set(h2,'EdgeColor','none'); hold on; title('phase (and 1/e envelope)'); caxis([-pi pi]); sidebar=colorbar('ytick',[-2*pi,-3*pi/2,-pi,-pi/2,0,pi/2,pi,3*pi/2,2*pi],... 'yticklabel',{'-2pi','-3pi/2','-pi','-pi/2','0','pi/2','pi','3pi/2','2pi'}); contour(r,z,sqrt(Inorm1),1,'w','linewidth',2); hold off; figure(2); subplot(121); h1=pcolor(r,z,Inorm1.*cos(theta1)); set(h1,'EdgeColor','none'); hold on; sidebar=colorbar; contour(r,z,sqrt(Inorm1),1,'w','linewidth',1); caxis([-1.0 1.0]); title('I phase and 1/e amplitude envelope'); hold off; subplot(122); h2=pcolor(r,z,Inorm1.*sin(theta1)); set(h2,'EdgeColor','none'); hold on; sidebar=colorbar; contour(r,z,sqrt(Inorm1),1,'w','linewidth',1); caxis([-1.0 1.0]); title('Q phase and 1/e amplitude envelope'); hold off;