Nlevels_with_MOR Eugeniy Mikhailov, M. Guidry License GPL. Solving split 3-level atom with field propagation along spatial axis Z with Doppler broadening. * * -------- |a> * / / \ \ * EdL / / \ \ * / / \ \ * |c> ----------/--- \ \ EpR * / EpL \ \ * |C> -------------- \ \ * EdR \ \ * \ \ * ------\------ |b> * \ * ------------- |B> * * We are solving dE/dz+(1/c)*dE/dt=i*eta*rho_ij, where j level is higher then i. Note that E is actually a Rabi frequency of electromagnetic field not the EM field in xmds terms it looks like dE_dz = i*eta*rhoij - 1/c*L[E], here we moved t dependence to Fourier space VERY IMPORTANT: all Rabi frequency should be given in [1/s], if you want to normalize it to something else look drho/dt equation. No need to renormalizes eta as long as its express through the upper level decay rate in the same units as Rabi frequency. section double eta = 0; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)] // --------- Atom and cell properties ------------------------- // range of Maxwell distribution atomic velocities const double mass = (86.909180527 * 1.660538921e-27); // atom mass in [kg] // above mass expression is written as (expression is isotopic_mass * atomic_mass_unit) // Average sqrt(v^2) in Maxwell distribution for one dimension // Maxwell related parameters will be calculated in section double v_thermal_averaged=0; // Maxwell distribution velocities range to take in account in [m/s] double V_maxwell_min = 0, V_maxwell_max = 0; // repopulation rate (atoms flying in/out the laser beam) in [1/s] //const double gt=0.01 *(2*M_PI*1e6); // Natural linewidth of j's level in [1/s] //const double Ga=3.0 *(2*M_PI*1e6); //const double G4=3.0 *(2*M_PI*1e6); complex g = Gamma_super; complex gbc = (2*M_PI)*1e3; // 1/s untits const complex Split = 0; const complex noise = 0; complex Gab, GAB, Gca, GCA, Gcb, GCB; // total decay of i-th level branching ratios. Rij branching of i-th level to j-th //const double Rab=0.5, Rac=0.5; complex EdLac, EdRac, EpLac, EpRac; // inner use variables double probability_v; // will be used as p(v) in Maxwell distribution ]]> 0 to provide range for Maxwell velocity distribution\n"); v_thermal_averaged=sqrt(k_boltzmann*Temperature/mass); // Maxwell distribution velocities range to take in account in [m/s] // there is almost zero probability for higher velocity p(4*v_av) = 3.3e-04 * p(0) V_maxwell_min = -4*v_thermal_averaged; V_maxwell_max = -V_maxwell_min; // eta constant in the wave equation for Rabi frequency. Units are [1/(m s)] eta = 3*lambda*lambda*Ndens*Gamma_super/8.0/M_PI; ]]> z EdL EdR EpL EpR probability_v probability_v_norm Maxwell_distribution_probabilities EdLa EdRa EpLa EpRa E_field Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm rbb_av rBB_av rcc_av rCC_av raa_av rcb_av rab_av rca_av rCB_av rAB_av rCA_av density_matrix Maxwell_distribution_probabilities Maxwell_distribution_probabilities_norm rbb rBB rcc rCC raa rcb rab rca rCB rAB rCA E_field_avgd 100 100 density_matrix E_field_avgd Lt E_field density_matrix E_field_avgd IdL_out IpL_out IdR_out IpR_out density_matrix_averaged rbb_out rBB_out rcc_out rCC_out raa_out rcb_re_out rcb_im_out rCB_re_out rCB_im_out rab_re_out rab_im_out rAB_re_out rAB_im_out rca_re_out rca_im_out rCA_re_out rCA_im_out