summaryrefslogtreecommitdiff
path: root/liouville.m
blob: 2f6a28e5de34cc980fb7d72d8975a7e10bb9108a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
1;
clear all; 
t0 = clock (); % we will use this latter to calculate elapsed time


% load useful functions;
useful_functions;

% some physical constants
useful_constants;

% load atom energy levels and decay description
four_levels;
%three_levels;
%two_levels;

% load EM field description
field_description;

Nfreq=length(modulation_freq);



%tune probe frequency
detuning_p=0;
N_detun_steps=100;
detuning_p_min=-1;
detuning_p_max=-detuning_p_min;
detuning_freq=zeros(1,N_detun_steps+1);
kappa_p      =zeros(1,N_detun_steps+1);
kappa_m      =zeros(1,N_detun_steps+1);
detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps;

% now we create Liouville indexes list
[N, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c]=unfold_density_matrix(Nlevels,Nfreq);
rhoLiouville=zeros(N,1);

% calculate E_field independent properties of athe atom
% to be used as sub matrix templates for Liouville operator matrix
[L0m, polarizability_m]=L0_and_polarization_submatrices( ...
		Nlevels, ...
		H0, g_decay, g_dephasing, dipole_elements ...
		);
for detuning_p_cntr=1:N_detun_steps+1;
	wp0=w12;
	detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1);
	wp=wp0+detuning_p;
	wm=wd-(wp-wd);
	%modulation_freq=[0,  wp, wd, wm,   -wp, -wd, -wm,  wp-wd, wd-wp];
	%E_field        =[0,  Ep, Ed, Em,   Epc, Edc, Emc,  0,     0    ];
	modulation_freq=[0,  wp, wd, -wp, -wd,  wp-wd, wd-wp];
	E_field        =[0,  Ep, Ed,  Epc, Edc, 0,     0    ];
	Nfreq=length(modulation_freq);

	% now we create Liouville indexes list
	[N, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c]=unfold_density_matrix(Nlevels,Nfreq);

	% Liouville operator matrix construction
	L=Liouville_operator_matrix( 
			N, 
			L0m, polarizability_m,
			E_field, 
			modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c
			);


	%use the fact that sum(rho_ii)=1 to constrain solution
	[rhoLiouville_dot, L]=constrain_rho_and_match_L(
			N, L,
			modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c);


	%solving for density matrix vector
	rhoLiouville=L\rhoLiouville_dot;


	%rho_0=rhoOfFreq(rhoLiouville, 1, Nlevels, Nfreq); % 0 frequency, 
	%rho_p=rhoOfFreq(rhoLiouville, 2, Nlevels, Nfreq); % probe frequency
	%rho_d=rhoOfFreq(rhoLiouville, 3, Nlevels, Nfreq); % drive frequency
	%rho_m=rhoOfFreq(rhoLiouville, 4, Nlevels, Nfreq); % opposite sideband frequency

	kappa_p(detuning_p_cntr)=susceptibility(freq2index(wp,modulation_freq), rhoLiouville, dipole_elements, Nlevels, Nfreq);
	%kappa_m(detuning_p_cntr)=susceptibility(4, rhoLiouville, dipole_elements, Nlevels, Nfreq);
	detuning_freq(detuning_p_cntr)=detuning_p;

	%kappa_p_re=real(kappa_p);
	%kappa_p_im=imag(kappa_p);
endfor
figure(1); plot(detuning_freq, real(kappa_p)); title("probe dispersion");
figure(2); plot(detuning_freq, imag(kappa_p)); title("probe absorption");
%figure(3); plot(detuning_freq, real(kappa_m)); title("off resonant sideband dispersion");
%figure(4); plot(detuning_freq, imag(kappa_m)); title("off resonant absorption");

elapsed_time = etime (clock (), t0)

% vim: ts=2:sw=2:fdm=indent