1; clear all; t0 = clock (); % we will use this latter to calculate elapsed time % load useful functions; useful_functions; % some physical constants useful_constants; % load atom energy levels and decay description four_levels; %three_levels; %two_levels; % load EM field description field_description; Nfreq=length(modulation_freq); %tune probe frequency detuning_p=0; N_detun_steps=100; detuning_p_min=-1; detuning_p_max=-detuning_p_min; detuning_freq=zeros(1,N_detun_steps+1); kappa_p =zeros(1,N_detun_steps+1); kappa_m =zeros(1,N_detun_steps+1); wp0=w12; wp=wp0+detuning_p_min; wm=wd-(wp-wd); %modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; %E_field =[0, Ep, Ed, Em, Epc, Edc, Emc, 0, 0 ]; modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; E_field =[0, Ep, Ed, Epc, Edc, 0, 0 ]; Nfreq=length(modulation_freq); % now we create Liouville indexes list [N, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c]=unfold_density_matrix(Nlevels,Nfreq); rhoLiouville=zeros(N,1); % calculate E_field independent properties of athe atom % to be used as sub matrix templates for Liouville operator matrix [L0m, polarizability_m]=L0_and_polarization_submatrices( ... Nlevels, ... H0, g_decay, g_dephasing, dipole_elements ... ); % Liouville operator matrix construction L=Liouville_operator_matrix( N, L0m, polarizability_m, E_field, modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c ); %use the fact that sum(rho_ii)=1 to constrain solution [rhoLiouville_dot, L]=constrain_rho_and_match_L( N, L, modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c); %solving for density matrix vector rhoLiouville=L\rhoLiouville_dot; L_new=L; rhoLiouville_new=rhoLiouville; % uncomment to update reference file % save 'L_and_rhoL_referenced.mat' L diff_with_reference=sum(sum(abs(L_new-L))) elapsed_time = etime (clock (), t0)