function [psr_rad]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) % calculates psr in rad vs detunings of the probe field % for given laser probe and B field. % Probe field defined by field strength (Ep) and ellipticity angle (pse_el) % Magnetic field defined by magnitude (B_field) and angles theta and phi. % % Note: it is expensive to recalculate atom property for each given B_field strength % so run as many calculation for constant magnetic field as possible t0 = clock (); % we will use this latter to calculate elapsed time % load useful functions; useful_functions; % some physical constants useful_constants; basis_transformation; % load subroutines % load atom energy levels and decay description rb87_D1_line; %four_levels_with_polarization; %four_levels; %three_levels; %two_levels; % load EM field description %field_description; %Nfreq=length(modulation_freq); %tune probe frequency detuning_p=0; %detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting %detuning_freq=zeros(1,N_detun_steps+1); N_detun_steps=length(detuning_freq); kappa_p =zeros(1,N_detun_steps+1); kappa_m =zeros(1,N_detun_steps+1); %detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; fprintf (stderr, "calculating atom properties\n"); fflush (stderr); pfile='atomic_B_field.mat'; % the parent file where B_field is stored. This is the parameter for calculated L0_and_polarization_submatrices cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices are written need_update=false; [s, err_p, msg] = stat (pfile); if(err_p) %file does not exist need_update=true; else B_field_cur=B_field; load (pfile); % loading old B_field value if (B_field ~= B_field_cur) % old and current B field are different B_field=B_field_cur; need_update=true; else need_update=false; endif endif [s, err, msg] = stat (cfile); if(err) %file does not exist need_update=true; endif; if ( !need_update) % matrices already calculated and up to date, all we need to load them load(cfile); else % calculate E_field independent properties of the atom % to be used as sub matrix templates for Liouville operator matrix [L0m, polarizability_m]=L0_and_polarization_submatrices( ... Nlevels, ... H0, g_decay, g_dephasing, dipole_elements ... ); save(pfile, 'B_field'); save(cfile, 'L0m', 'polarizability_m'); endif elapsed_time = etime (clock (), t0); fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); fflush (stderr); global atom_properties; atom_properties.L0m=L0m; atom_properties.polarizability_m=polarizability_m; atom_properties.dipole_elements=dipole_elements; %light_positive_freq = [wp]; E_field_drive = [0 ]; E_field_probe = [Ep ]; E_field_zero = [0 ]; E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; %E_field_lab_pos_freq.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; %E_field_lab_pos_freq.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; % phi is angle between linear polarization and axis x %phi=pi*2/8; % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') %theta=0; % psi_el is the ellipticity parameter (phase difference between left and right polarization) %psi_el=-30/180*pi; % we define light as linearly polarized % where phi is angle between light polarization and axis x % only sign of modulation frequency is important now % we define actual frequency later on [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); % we add required ellipticity E_field_lab_pos_freq.x*=exp(I*psi_el); E_field_lab_pos_freq.y*=exp(-I*psi_el); E_field_lab_pos_freq.z=E_field_zero; E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); fflush (stderr); for detuning_p_cntr=1:length(detuning_freq); wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1 %wd=w_pf1-w_hpf_ground; %detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1); detuning_p=detuning_freq(detuning_p_cntr); wp=wp0+detuning_p; light_positive_freq=[ wp]; % we calculate dc and negative frequiencies as well as amplitudes [modulation_freq, E_field] = ... light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... light_positive_freq, E_field_pos_freq); freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; atom_field_problem.modulation_freq = modulation_freq; atom_field_problem.freq_index = freq_index; problems_cell_array{detuning_p_cntr}=atom_field_problem; %kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem); %detuning_freq(detuning_p_cntr)=detuning_p; endfor save '/tmp/problem_definition.mat' problems_cell_array atom_properties detuning_freq ; fprintf (stderr, "now really hard calculations begin\n"); fflush (stderr); % once we define all problems the main job is done here [xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); %[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); %save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning; save '/tmp/xi_vs_detuning.mat' detuning_freq xi_linear xi_left xi_right E_field_pos_freq E_field_probe B_field psi_el; psr_rad=output_psr_results_vs_detuning; elapsed_time = etime (clock (), t0) return % vim: ts=2:sw=2:fdm=indent