levels=1:3; % ----------- |1> % / \ % E_d / \ % / \ E_p % / \ % -------- |3> \ % \ % ___________ |2> % some physical constants hbar=1; im_one=0+1i; Nlevels=3; w12=1e9; w_hpf=6800; w13=w12-w_hpf % unperturbed Hamiltonian energy levels levels_energy=[ w12, 0, w_hpf]; levels_energy=levels_energy*hbar; H0=zeros(Nlevels); H0=diag(levels_energy); %for i=1:Nlevels %H0(i,i)=levels_energy(i); %endfor % decay matrix g(i,j) correspnds to decay from i-->j gamma=6; gamma_13=.01 g_decay=zeros(Nlevels); g_decay(1,2)=gamma; %upper level decay g_decay(1,3)=gamma; %upper level decay g_decay(3,2)=gamma_13; % lower levels mixing g_decay(2,3)=gamma_13; % lower levels mixing %defasing matris g_deph=0; g_dephasing=zeros(Nlevels); g_dephasing(1,2)=g_deph; g_dephasing(2,1)=g_dephasing(1,2); g_dephasing(1,3)=g_deph; g_dephasing(3,1)=g_dephasing(1,3); % dipole matrix dipole_elements=zeros(Nlevels); dipole_elements(1,2)=1; dipole_elements(2,1)=dipole_elements(1,2); dipole_elements(3,1)=1; dipole_elements(1,3)=dipole_elements(3,1); %EM field definition Ep=100.0; Epc=conj(Ep); Ed=0; Edc=conj(Ed); wd=w13; wp=w12; modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; E_field =[0, Ep, Ed, Epc, Edc, 0, 0 ]; Nfreq=length(modulation_freq); % now we create Liouville indexes list % we unwrap density matrix and assign all posible % frequencies as well % resulting vector should be Nlevels x Nlevels x length(modulation_freq) i=0; for w=1:length(modulation_freq) for r=1:Nlevels for c=1:Nlevels i+=1; rhoLiouville(i)=0; rhoLiouville_w(i)=w; rhoLiouville_r(i)=r; rhoLiouville_c(i)=c; endfor endfor endfor \ N=length(rhoLiouville); % Liouville operator matrix L=zeros(N); % NxN matrix Li=zeros(N); % NxN Liouville interactive L0=zeros(N); % NxN Liouville from unperturbed hamiltonian function ret=decay_total(g_decay,i) ret=0; for k=1:size(g_decay)(1) ret=ret+g_decay(i,k); endfor endfunction function ret=kron_delta(i,j) ret=((i==j)); endfunction for p=1:N for s=1:N j=rhoLiouville_r(p); k=rhoLiouville_c(p); m=rhoLiouville_r(s); n=rhoLiouville_c(s); % we garanted to know frequency of final and initial rhoLiouville w1i=rhoLiouville_w(p); w2i=rhoLiouville_w(s); w_jk=modulation_freq(w1i); w_mn=modulation_freq(w2i); % thus we know L matrix element frequency which we need to match w_l=w_jk-w_mn; % lets search this wrequency in the list of available frequencyes % but since we not garanteed to find it lets assign temporary 0 to Liouville matrix element L(p,s)=0; for w3i=1:length(modulation_freq) w_iner=modulation_freq(w3i); if ((w_iner == w_l)) %such frequency exist in the list of modulation frequencies if ((w_iner == 0)) L0=H0(j,m)*kron_delta(k,n)-H0(n,k)*kron_delta(j,m); decay_part=\ ( decay_total(g_decay,k)/2 + decay_total(g_decay,j)/2 + g_dephasing(j,k) )* kron_delta(j,m)*kron_delta(k,n) \ - kron_delta(m,n)*kron_delta(j,k)*g_decay(m,j) ; decay_part=decay_part*hbar/im_one; L0=decay_part; Lt=L0; else Li= ( dipole_elements(j,m)*kron_delta(k,n)+dipole_elements(n,k)*kron_delta(j,m) )*E_field(w3i); Lt=Li; endif Lt=-im_one/hbar*Lt*kron_delta(w_jk-w_iner,w_mn); % above if should be done only if kron_delta is not zero Lt+=-im_one*w_jk*kron_delta(w_iner,w_jk); L(p,s)=Lt; endif endfor endfor endfor % now generally rhoL_dot=0=L*rhoL has infinite number of solutions % since we always can resclale rho vector with arbitrary constant % lets constrain our density matrix with some physical meaning % sum(rho_ii)=1 (sum of all populations (with zero modulation frequency) scales to 1 % we will replace first row of Liouville operator with this condition % thus rhoLiouville_dot(1)=1 for i=1:N w2i=rhoLiouville_w(i); m=rhoLiouville_r(i); n=rhoLiouville_c(i); w=modulation_freq(w2i); if ((w==0) & (m==n)) L(1,i)=1; endif endfor rhoLiouville_dot=rhoLiouville*0; % sum(rho_ii)=1 (sum of all populations (with zero modulation frequency) scales to 1 % we will replace first row of Liouville operator with this condition % thus rhoLiouville_dot(1)=1 rhoLiouville_dot(1)=1; %solving for density matrix vector rhoLiouville=L\rhoLiouville_dot; % this function create from Liouville density vector % the density matrix with given modulation frequency function rho=rhoOfFreq(rhoLiouville, freqIndex, Nlevels, Nfreq) rho=zeros(Nlevels); for r=1:Nlevels for c=1:Nlevels rho(r,c)=rhoLiouville((freqIndex-1)*Nlevels^2+(r-1)*Nlevels+c); endfor endfor endfunction rho_0=rhoOfFreq(rhoLiouville, 1, Nlevels, Nfreq) %rho_l=rhoOfFreq(rhoLiouville, Nfreq, Nlevels, Nfreq) %L*rhoLiouville