1; clear all; t0 = clock (); % we will use this latter to calculate elapsed time % load useful functions; useful_functions; % some physical constants useful_constants; % load atom energy levels and decay description rb87_D1_line; %four_levels_with_polarization; %four_levels; %three_levels; %two_levels; % load EM field description field_description; %Nfreq=length(modulation_freq); %tune probe frequency detuning_p=0; N_detun_steps=100; detuning_p_min=-1; detuning_p_max=-detuning_p_min; detuning_freq=zeros(1,N_detun_steps+1); kappa_p =zeros(1,N_detun_steps+1); kappa_m =zeros(1,N_detun_steps+1); detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; fprintf (stderr, "calculating atom properties\n"); fflush (stderr); % calculate E_field independent properties of the atom % to be used as sub matrix templates for Liouville operator matrix [L0m, polarizability_m]=L0_and_polarization_submatrices( ... Nlevels, ... H0, g_decay, g_dephasing, dipole_elements ... ); elapsed_time = etime (clock (), t0); fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); fflush (stderr); global atom_properties; atom_properties.L0m=L0m; atom_properties.polarizability_m=polarizability_m; atom_properties.dipole_elements=dipole_elements; fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); fflush (stderr); for detuning_p_cntr=1:N_detun_steps+1; wp0=w_pf1; wd=w_pf1-w_hpf_ground; detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1); wp=wp0+detuning_p; wm=wd-(wp-wd); %modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; %E_field =[0, Ep, Ed, Em, Epc, Edc, Emc, 0, 0 ]; modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; E_field_drive =[0, 0 , Ed, 0 , Edc, 0, 0 ]; E_field_probe =[0, Ep, 0 , Epc, 0 , 0, 0 ]; E_field_zero =[0, 0 , 0 , 0 , 0 , 0, 0 ]; E_field.linear = E_field_zero + 0.00*E_field_probe + 0.00*E_field_drive; E_field.right = E_field_zero + 1.00*E_field_probe + 0.00*E_field_drive; E_field.left = E_field_zero + 0.00*E_field_probe + 1.00*E_field_drive; freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; atom_field_problem.modulation_freq = modulation_freq; atom_field_problem.freq_index = freq_index; problems_cell_array{detuning_p_cntr}=atom_field_problem; %kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem); detuning_freq(detuning_p_cntr)=detuning_p; endfor save 'problem_definition.mat' problems_cell_array atom_properties detuning_freq ; fprintf (stderr, "now really hard calculations begin\n"); fflush (stderr); % once we define all problems the main job is done here %kappa_p=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); %kappa_p=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); [xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); figure(1); hold off; plot(detuning_freq, imag(xi_linear), '-1;linear;'); hold on; plot(detuning_freq, imag(xi_left), '-2;left;'); plot(detuning_freq, imag(xi_right), '-3;right;'); title("probe absorption"); hold off; figure(2); hold off; plot(detuning_freq, real(xi_linear), '-1;linear;'); hold on; plot(detuning_freq, real(xi_left), '-2;left;'); plot(detuning_freq, real(xi_right), '-3;right;'); title("probe dispersion"); hold off; elapsed_time = etime (clock (), t0) % vim: ts=2:sw=2:fdm=indent