function [xi_linear, xi_left, xi_right, E_field_pos_freq, light_positive_freq]=susceptibility_problem(detuning_freq, Ep, psi_el, B_field, theta, phi) % calculates transmission if light polarizations vs B field in the cell % for given laser probe and B fields array % Probe field defined by field strength (Ep) and ellipticity angle (pse_el) % Magnetic field defined by magnitude (B_field) and angles theta and phi. % % Note: it is expensive to recalculate atom property for each given B_field strength % so run as many calculation for constant magnetic field as possible t0 = clock (); % we will use this latter to calculate elapsed time % load useful functions; useful_functions; % some physical constants useful_constants; basis_transformation; % load subroutines % load atom energy levels and decay description rb87_D1_line; B_str=num2str(B_field(1),"%g"); % the child file to which calculated matrices are written cfile='L0m.cache/L0m_and_polarizability_calculated_for_B='; cfile=strcat(cfile,B_str,'.mat'); need_update=true; [s, err, msg] = stat (cfile); if(err) %file does not exist need_update=true; else need_update=false; endif; if ( !need_update) % matrices already calculated and up to date, all we need to load them load(cfile); else % calculate E_field independent properties of the atom % to be used as sub matrix templates for Liouville operator matrix [L0m, polarizability_m]=L0_and_polarization_submatrices( ... Nlevels, ... H0, g_decay, g_dephasing, dipole_elements ... ); save(cfile, 'L0m', 'polarizability_m'); endif global atom_properties; atom_properties.L0m=L0m; atom_properties.polarizability_m=polarizability_m; atom_properties.dipole_elements=dipole_elements; %light_positive_freq = [wp]; E_field_drive = [0 ]; E_field_probe = [Ep ]; E_field_zero = [0 ]; E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; % we define light as linearly polarized % where phi is angle between light polarization and axis x % only sign of modulation frequency is important now % we define actual frequency later on [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); % we add required ellipticity E_field_lab_pos_freq.x*=exp(I*psi_el); E_field_lab_pos_freq.y*=exp(-I*psi_el); E_field_lab_pos_freq.z=E_field_zero; E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); %wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1 wp0=w_pf1-w_hpf_exited+w_hpf_exited; %Fg=2 -> Fe=2 wp=wp0+detuning_freq; light_positive_freq=[ wp]; % we calculate dc and negative frequencies as well as amplitudes [modulation_freq, E_field] = ... light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... light_positive_freq, E_field_pos_freq); freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; atom_field_problem.modulation_freq = modulation_freq; atom_field_problem.freq_index = freq_index; problems_cell_array=atom_field_problem; [xi_linear, xi_left, xi_right]=susceptibility_steady_state_at_freq( problems_cell_array); elapsed_time = etime (clock (), t0) return endfunction % vim: ts=2:sw=2:fdm=indent