1; clear all; t0 = clock (); % we will use this latter to calculate elapsed time % load useful functions; useful_functions; % some physical constants useful_constants; % load atom energy levels and decay description %rb87_D1_line; %four_levels_with_polarization; %four_levels; three_levels; %two_levels; % load EM field description field_description; %Nfreq=length(modulation_freq); %tune probe frequency detuning_p=0; N_detun_steps=100; %detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting %detuning_p_max=-detuning_p_min; detuning_freq=zeros(1,N_detun_steps+1); kappa_p =zeros(1,N_detun_steps+1); kappa_m =zeros(1,N_detun_steps+1); %detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; fprintf (stderr, "calculating atom properties\n"); fflush (stderr); % calculate E_field independent properties of the atom % to be used as sub matrix templates for Liouville operator matrix [L0m, polarizability_m]=L0_and_polarization_submatrices( ... Nlevels, ... H0, g_decay, g_dephasing, dipole_elements ... ); elapsed_time = etime (clock (), t0); fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); fflush (stderr); global atom_properties; atom_properties.L0m=L0m; atom_properties.polarizability_m=polarizability_m; atom_properties.dipole_elements=dipole_elements; Ed=.1; Edc=conj(Ed); Ep=0.8*Ed; Epc=conj(Ep); %modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; E_field_drive =[0, 0 , Ed, 0 , Edc, 0, 0 ]; E_field_probe =[0, Ep, 0 , Epc, 0 , 0, 0 ]; E_field_zero =[0, 0 , 0 , 0 , 0 , 0, 0 ]; E_field_lab.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; E_field_lab.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; E_field_lab.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; % phi is angle between linear polarization and axis x phi=pi*2/8; % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') theta=pi/2; theta=0; % we define light as linearly polarized E_field_lab.x=cos(phi)*E_field_lab.linear; E_field_lab.y=sin(phi)*E_field_lab.linear; E_field_lab.z=E_field_zero; basis_transformation; % load subroutines coord_transf_m = lin2circ * oldlin2newlin(theta); E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); fflush (stderr); detuning_freq=[-.075, -.05, -.025, 0 , .025, .05 , .075, .1]; problem_cntr=1; N_angle_steps=15; min_angle=0; max_angle=pi/2; phis=min_angle:((max_angle-min_angle)/N_angle_steps):max_angle; for phi=phis; for detuning_p_cntr=1:length(detuning_freq); % we define light as linearly polarized % where phi is angle between light polarization and axis x E_field_lab.x=cos(phi)*E_field_lab.linear; E_field_lab.y=sin(phi)*E_field_lab.linear; E_field_lab.z=E_field_zero; % now we transfor x,y,z, to x',y', and z' with respect to magnetic field az z' axis coord_transf_m = lin2circ * oldlin2newlin(theta); E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; wp0=w_pf1; wd=w_pf1-w_hpf_ground; detuning_p=detuning_freq(detuning_p_cntr); wp=wp0+detuning_p; wm=wd-(wp-wd); %modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; atom_field_problem.modulation_freq = modulation_freq; atom_field_problem.freq_index = freq_index; problems_cell_array{problem_cntr}=atom_field_problem; problem_cntr++; %kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem); endfor endfor save '/tmp/problem_definition.mat' problems_cell_array atom_properties detuning_freq theta; fprintf (stderr, "now really hard calculations begin\n"); fflush (stderr); % once we define all problems the main job is done here %kappa_p=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); %kappa_p=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); %[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); total_absorption_vs_detuning=parcellfun(2, @total_field_absorption, problems_cell_array); %save 'xi_vs_detuning.mat' detuning_freq xi_linear xi_left xi_right ; problem_cntr--; save '/tmp/total_absorption_vs_detuning_and_angle_phi.mat' detuning_freq total_absorption_vs_detuning phis problem_cntr; compass_output_results; elapsed_time = etime (clock (), t0) % vim: ts=2:sw=2:fdm=indent