1; % matrix of circular to linear transformation % [x, y, z]' = lin2circ * [r, l, z]' circ2lin= [ ... [ 1/sqrt(2), 1/sqrt(2), 0]; ... [-1i/sqrt(2), 1i/sqrt(2), 0]; ... [ 0, 0, 1] ... ]; % matrix of linear to circular transformation % [r, l, z]' = lin2circ * [x, y, z]' lin2circ= [ [ 1/sqrt(2), 1i/sqrt(2), 0]; ... [ 1/sqrt(2), -1i/sqrt(2), 0]; ... [ 0, 0, 1] ... ]; % linear basis rotation % x axis untouched % z and y rotated by angle theta around 'x' axis % [x_new, y_new, z_new]' = oldlin2newlin * [x_old, y_old, z_old]' function oldlin2newlin_m = oldlin2newlin(theta) oldlin2newlin_m = [ ... [ 1, 0, 0]; ... [ 0, cos(theta), -sin(theta)]; ... [ 0, sin(theta), cos(theta)]... ]; endfunction % rotate x polarized light by angle phi around % light propagation axis (Z) function [E_field_x, E_field_y] = rotXpolarization(phi, E_field_linear, modulation_freq) % important negative frequency behave as they rotate in opposite direction E_field_x=cos(phi*sign(modulation_freq)).*E_field_linear; E_field_y=sin(phi*sign(modulation_freq)).*E_field_linear; endfunction % vim: ts=2:sw=2:fdm=indent