summaryrefslogtreecommitdiff
path: root/psr/useful_functions.m
diff options
context:
space:
mode:
Diffstat (limited to 'psr/useful_functions.m')
-rw-r--r--psr/useful_functions.m337
1 files changed, 337 insertions, 0 deletions
diff --git a/psr/useful_functions.m b/psr/useful_functions.m
new file mode 100644
index 0000000..eb3e880
--- /dev/null
+++ b/psr/useful_functions.m
@@ -0,0 +1,337 @@
+1;
+
+function ret=decay_total(g_decay,i)
+% calculate total decay for particular level taking in account all branches
+ ret=sum(g_decay(i,:));
+endfunction
+
+function ret=kron_delta(i,j)
+% kroneker delta symbol
+ if ((i==j))
+ ret=1;
+ else
+ ret=0;
+ endif
+endfunction
+
+function rho=rhoOfFreq(rhoLiouville, freqIndex, Nlevels)
+% this function create from Liouville density vector
+% the density matrix with given modulation frequency
+ rho=zeros(Nlevels);
+ rho(:)=rhoLiouville((freqIndex-1)*Nlevels^2+1:(freqIndex)*Nlevels^2);
+ rho=rho.';
+endfunction
+
+function [N, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c]=unfold_density_matrix(Nlevels,Nfreq)
+% unwrap density matrix to Liouville density vector and assign all possible
+% modulation frequencies as well
+% resulting vector should be Nlevels x Nlevels x length(modulation_freq)
+ N = Nfreq*Nlevels*Nlevels;
+ rho_size = Nlevels*Nlevels;
+ rhoLiouville_w=zeros(N,1);
+ rhoLiouville_r=zeros(N,1);
+ rhoLiouville_c=zeros(N,1);
+
+ w=1:Nfreq;
+ w_tmplate=(repmat(w,rho_size,1))(:);
+ rhoLiouville_w=w_tmplate;
+ r=1:Nlevels;
+ r_tmplate=(repmat(r,Nlevels,1))(:);
+ rhoLiouville_r=(repmat(r_tmplate,Nfreq,1))(:)';
+ c=(1:Nlevels)';% hold column value of rho_rc
+ rhoLiouville_c=repmat(c,Nfreq*Nlevels,1);
+endfunction
+
+
+function [L0m, polarizability_m]=L0_and_polarization_submatrices( ...
+ Nlevels, ...
+ H0, g_decay, g_dephasing, dipole_elements ...
+ )
+% create (Nlevels*Nlevels)x*(Nlevels*Nlevels)
+% sub matrices of Liouville operator
+% which repeat themselves for each modulation frequency
+% based on recipe from Eugeniy Mikhailov thesis
+ %-------------------------
+ useful_constants;
+ rho_size=Nlevels*Nlevels;
+
+ % now we create Liouville indexes list
+ [Ndummy, rhoLiouville_w_notused, rhoLiouville_r, rhoLiouville_c]=unfold_density_matrix(Nlevels,1);
+
+ kron_delta_m=eye(Nlevels);
+ % note that L0 and decay parts depend only on combination of indexes
+ % jk,mn but repeats itself for every frequency
+ L0m=zeros(rho_size); % (Nlevels^2)x(Nlevels^2) matrix
+ decay_part_m=zeros(rho_size); % (NxN)x(NxN) matrix
+ % polarization matrix will be multiplied by field amplitude letter
+ % polarization is part of perturbation part of Hamiltonian
+ polarizability_m.linear = zeros(rho_size); % (NxN)x(NxN) matrix
+ polarizability_m.left = zeros(rho_size); % (NxN)x(NxN) matrix
+ polarizability_m.right = zeros(rho_size); % (NxN)x(NxN) matrix
+ for p=1:rho_size
+ % p= j*Nlevels+k
+ % this might speed up stuff since less matrix passed back and force
+ j=rhoLiouville_r(p);
+ k=rhoLiouville_c(p);
+ for s=1:rho_size
+ % s= m*Nlevels+n
+ m=rhoLiouville_r(s);
+ n=rhoLiouville_c(s);
+
+ % calculate unperturbed part (Hamiltonian without EM field)
+ L0m(p,s)=H0(j,m)*kron_delta_m(k,n)-H0(n,k)*kron_delta_m(j,m);
+ decay_part_m(p,s)= ...
+ ( ...
+ decay_total(g_decay,k)/2 ...
+ + decay_total(g_decay,j)/2 ...
+ + g_dephasing(j,k) ...
+ )* kron_delta_m(j,m)*kron_delta_m(k,n) ...
+ - kron_delta_m(m,n)*kron_delta_m(j,k)*g_decay(m,j) ;
+ polarizability_m.linear(p,s)= ( dipole_elements.linear(j,m)*kron_delta_m(k,n)-dipole_elements.linear(n,k)*kron_delta_m(j,m) );
+ polarizability_m.left(p,s)= ( dipole_elements.left(j,m)*kron_delta_m(k,n)-dipole_elements.left(n,k)*kron_delta_m(j,m) );
+ polarizability_m.right(p,s)= ( dipole_elements.right(j,m)*kron_delta_m(k,n)-dipole_elements.right(n,k)*kron_delta_m(j,m) );
+ endfor
+ endfor
+ L0m=-im_one/hbar*L0m - decay_part_m;
+endfunction
+
+function L=Liouville_operator_matrix( ...
+ N, ...
+ L0m, polarizability_m, ...
+ E_field, ...
+ modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c ...
+ )
+% Liouville operator matrix construction
+% based on recipe from Eugeniy Mikhailov thesis
+ %-------------------------
+ useful_constants;
+ L=zeros(N); % NxN matrix
+ Nfreq=length(modulation_freq);
+
+ % Lets be supper smart and speed up L matrix construction
+ % since it has a lot of voids.
+ % By creation of rhoLiouville we know that there are
+ % consequent chunks of rho_ij modulated with same frequency
+ % this means that rhoLiouville is split in to Nfreq chunks
+ % with length Nlevels*Nlevels=N/Nfreq
+ rho_size=N/Nfreq;
+
+ % creating building blocks of L by rho_size * rho_size
+ for w3i=1:Nfreq
+ w_iner=modulation_freq(w3i);
+ if ((w_iner == 0))
+ % calculate unperturbed part (Hamiltonian without EM field)
+ L_sub{w3i}=L0m;
+ else
+ % calculate perturbed part (Hamiltonian with EM field)
+ % in other word interactive part of Hamiltonian
+ L_sub{w3i} = ...
+ -im_one/hbar*polarizability_m.linear * E_field.linear(w3i) ...
+ -im_one/hbar*polarizability_m.left * E_field.left(w3i) ...
+ -im_one/hbar*polarizability_m.right * E_field.right(w3i) ...
+ ;
+ endif
+ endfor
+
+ % Liouville matrix operator has Nlevels*Nlevels blocks
+ % which governed by the same modulation frequency
+ for p_freq_cntr=1:Nfreq
+ p0=1+(p_freq_cntr-1)*rho_size;
+ % we guaranteed to know frequency of final and initial rhoLiouville
+ w1i=rhoLiouville_w(p0); % final
+ w_jk=modulation_freq(w1i);
+ for s_freq_cntr=1:Nfreq
+ s0=1+(s_freq_cntr-1)*rho_size;
+ w2i=rhoLiouville_w(s0); % initial
+ w_mn=modulation_freq(w2i);
+ % thus we know L matrix element frequency which we need to match
+ w_l=w_jk-w_mn;
+ % lets search this frequency in the list of available frequencies
+ % but since we not guaranteed to find it lets assign temporary 0 to Liouville matrix element
+ w3i=(w_l == modulation_freq);
+ if (any(w3i))
+ % yey, requested modulation frequency exist
+ % lets do L sub matrix filling
+ % at most we should have only one matching frequency
+ w_iner=modulation_freq(w3i);
+ L(p0:p0+rho_size-1,s0:s0+rho_size-1) = L_sub{w3i};
+
+ endif
+ endfor
+ % diagonal elements are self modulated
+ % due to rotating wave approximation
+ L(p0:p0+rho_size-1,p0:p0+rho_size-1)+= -im_one*w_jk*eye(rho_size);
+ endfor
+endfunction
+
+
+function [rhoLiouville_dot, L]=constrain_rho_and_match_L( ...
+ N, L, ...
+ modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c)
+% now generally rhoL_dot=0=L*rhoL has infinite number of solutions
+% since we always can resclale rho vector with arbitrary constant
+% lets constrain our density matrix with some physical meaning
+% sum(rho_ii)=1 (sum of all populations (with zero modulation frequency) scales to 1
+% we will replace first row of Liouville operator with this condition
+% thus rhoLiouville_dot(1)=1
+ for i=1:N
+ w2i=rhoLiouville_w(i);
+ m=rhoLiouville_r(i);
+ n=rhoLiouville_c(i);
+ w=modulation_freq(w2i);
+ if ((w==0) & (m==n))
+ L(1,i)=1;
+ else
+ L(1,i)=0;
+ endif
+ endfor
+ rhoLiouville_dot= zeros(N,1);
+ % sum(rho_ii)=1 (sum of all populations (with zero modulation frequency) scales to 1
+ % we will replace first row of Liouville operator with this condition
+ % thus rhoLiouville_dot(1)=1
+ rhoLiouville_dot(1)=1;
+endfunction
+
+function kappa=susceptibility(wi, rhoLiouville, dipole_elements, E_field)
+% calculate susceptibility for the field at given frequency index
+ Nlevels=( size(dipole_elements.linear)(1) );
+ rho=rhoOfFreq(rhoLiouville, wi, Nlevels);
+ kappa.linear=0;
+ kappa.left=0;
+ kappa.right=0;
+
+ kappa.linear = sum( sum( transpose(dipole_elements.linear) .* rho ) );
+ kappa.left = sum( sum( transpose(dipole_elements.left) .* rho ) );
+ kappa.right = sum( sum( transpose(dipole_elements.right) .* rho ) );
+
+ kappa.linear /= E_field.linear( wi );
+ kappa.left /= E_field.left( wi );
+ kappa.right /= E_field.right( wi );
+endfunction
+
+function index=freq2index(freq, modulation_freq)
+% convert modulation freq to its index in the modulation_freq vector
+ index=[1:length(modulation_freq)](modulation_freq==freq);
+endfunction
+
+function rhoLiouville=rhoLiouville_steady_state(L0m, polarizability_m, E_field, modulation_freq)
+% calculates rhoLiouville vector assuming steady state situation and normalization of rho_ii to 1
+ Nlevels=sqrt( size(L0m)(1) );
+ Nfreq=length(modulation_freq);
+
+ % now we create Liouville indexes list
+ [N, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c]=unfold_density_matrix(Nlevels,Nfreq);
+
+ % Liouville operator matrix construction
+ L=Liouville_operator_matrix(
+ N,
+ L0m, polarizability_m,
+ E_field,
+ modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c
+ );
+
+ %use the fact that sum(rho_ii)=1 to constrain solution
+ [rhoLiouville_dot, L]=constrain_rho_and_match_L(
+ N, L,
+ modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c);
+
+ %solving for density matrix vector
+ rhoLiouville=L\rhoLiouville_dot;
+endfunction
+
+function [xi_linear, xi_left, xi_right]=susceptibility_steady_state_at_freq( atom_field_problem)
+ % find steady state susceptibility at particular modulation frequency element
+ % at given E_field
+ global atom_properties;
+ L0m = atom_properties.L0m ;
+ polarizability_m = atom_properties.polarizability_m ;
+ dipole_elements = atom_properties.dipole_elements ;
+
+ E_field = atom_field_problem.E_field ;
+ modulation_freq = atom_field_problem.modulation_freq ;
+ freq_index = atom_field_problem.freq_index ;
+
+ rhoLiouville=rhoLiouville_steady_state(L0m, polarizability_m, E_field, modulation_freq);
+ xi=susceptibility(freq_index, rhoLiouville, dipole_elements, E_field);
+ xi_linear = xi.linear;
+ xi_right = xi.right;
+ xi_left = xi.left;
+endfunction
+
+function [dEdz_coef_linear, dEdz_coef_left, dEdz_coef_right] =dEdz_at_freq(wi, rhoLiouville, dipole_elements, E_field)
+% complex absorption coefficient
+% at given E_field frequency component
+ Nlevels=( size(dipole_elements.linear)(1) );
+ rho=rhoOfFreq(rhoLiouville, wi, Nlevels);
+
+ dEdz_coef_linear = sum( sum( transpose(dipole_elements.linear) .* rho ) );
+ dEdz_coef_left = sum( sum( transpose(dipole_elements.left) .* rho ) );
+ dEdz_coef_right = sum( sum( transpose(dipole_elements.right) .* rho ) );
+
+endfunction
+
+function [dEdz_linear, dEdz_left, dEdz_right]=dEdz( atom_field_problem)
+% complex absorption coefficient for each field
+ global atom_properties;
+ L0m = atom_properties.L0m ;
+ polarizability_m = atom_properties.polarizability_m ;
+ dipole_elements = atom_properties.dipole_elements ;
+
+ E_field = atom_field_problem.E_field ;
+ modulation_freq = atom_field_problem.modulation_freq ;
+ Nfreq=length(modulation_freq);
+
+ rhoLiouville=rhoLiouville_steady_state(L0m, polarizability_m, E_field, modulation_freq);
+ for wi=1:Nfreq
+ [dEdz_linear(wi), dEdz_left(wi), dEdz_right(wi)] = dEdz_at_freq(wi, rhoLiouville, dipole_elements, E_field);
+ endfor
+endfunction
+
+function relative_transmission=total_relative_transmission(atom_field_problem)
+% summed across all frequencies field absorption coefficient
+ global atom_properties;
+ [dEdz_linear, dEdz_left, dEdz_right]=dEdz( atom_field_problem);
+ %dEdz_total= dEdz_linear .* conj(dEdz_linear) ...
+ %+dEdz_left .* conj(dEdz_left) ...
+ %+dEdz_right .* conj(dEdz_right);
+ %total_absorption = sum(dEdz_total);
+
+ %total_absorption = |E|^2 - | E - dEdz | ^2
+ E_field.linear = atom_field_problem.E_field.linear;
+ E_field.right = atom_field_problem.E_field.right;
+ E_field.left = atom_field_problem.E_field.left;
+
+ modulation_freq = atom_field_problem.modulation_freq ;
+ pos_freq_indexes=(modulation_freq>0);
+ % WARNING INTRODUCED HERE BUT MUST BE DEFINE IN ATOM PROPERTIES FILE
+ %n_atoms - proportional to a number of interacting atoms
+ n_atoms=500;
+ transmited_intensities_vector = ...
+ abs(E_field.linear + n_atoms*(1i)*dEdz_linear).^2 ...
+ +abs(E_field.right + n_atoms*(1i)*dEdz_right).^2 ...
+ +abs(E_field.left + n_atoms*(1i)*dEdz_left).^2;
+ transmited_intensities_vector = transmited_intensities_vector(pos_freq_indexes);
+ input_intensities_vector = ...
+ abs(E_field.linear).^2 ...
+ +abs(E_field.right).^2 ...
+ +abs(E_field.left).^2;
+ input_intensities_vector = input_intensities_vector(pos_freq_indexes);
+
+ relative_transmission = sum(transmited_intensities_vector) / sum(input_intensities_vector);
+endfunction
+
+% create full list of atom modulation frequencies from positive light frequency amplitudes
+function [modulation_freq, E_field_amplitudes] = ...
+light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(...
+ positive_light_frequencies, positive_light_field_amplitudes )
+ % we should add 0 frequency as first element of our frequencies list
+ modulation_freq = cat(2, 0, positive_light_frequencies, -positive_light_frequencies);
+ % negative frequencies have complex conjugated light fields amplitudes
+ E_field_amplitudes.left = cat(2, 0, positive_light_field_amplitudes.left, conj(positive_light_field_amplitudes.left) );
+ E_field_amplitudes.right = cat(2, 0, positive_light_field_amplitudes.right, conj(positive_light_field_amplitudes.right) );
+ E_field_amplitudes.linear = cat(2, 0, positive_light_field_amplitudes.linear, conj(positive_light_field_amplitudes.linear) );
+endfunction
+
+
+
+% vim: ts=2:sw=2:fdm=indent