diff options
Diffstat (limited to 'faraday/psr_vs_detuning.m')
-rw-r--r-- | faraday/psr_vs_detuning.m | 161 |
1 files changed, 0 insertions, 161 deletions
diff --git a/faraday/psr_vs_detuning.m b/faraday/psr_vs_detuning.m deleted file mode 100644 index acf7d43..0000000 --- a/faraday/psr_vs_detuning.m +++ /dev/null @@ -1,161 +0,0 @@ -function [psr_rad]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) -% calculates psr in rad vs detunings of the probe field -% for given laser probe and B field. -% Probe field defined by field strength (Ep) and ellipticity angle (pse_el) -% Magnetic field defined by magnitude (B_field) and angles theta and phi. -% -% Note: it is expensive to recalculate atom property for each given B_field strength -% so run as many calculation for constant magnetic field as possible - -t0 = clock (); % we will use this latter to calculate elapsed time - - -% load useful functions; -useful_functions; - -% some physical constants -useful_constants; - -basis_transformation; % load subroutines - -% load atom energy levels and decay description -rb87_D1_line; -%four_levels_with_polarization; -%four_levels; -%three_levels; -%two_levels; - -% load EM field description -%field_description; - -%Nfreq=length(modulation_freq); - - - -%tune probe frequency -detuning_p=0; -%detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting -%detuning_freq=zeros(1,N_detun_steps+1); -N_detun_steps=length(detuning_freq); -kappa_p =zeros(1,N_detun_steps+1); -kappa_m =zeros(1,N_detun_steps+1); -%detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; - -fprintf (stderr, "calculating atom properties\n"); -fflush (stderr); -pfile='atomic_B_field.mat'; % the parent file where B_field is stored. This is the parameter for calculated L0_and_polarization_submatrices -cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices are written -need_update=false; -[s, err_p, msg] = stat (pfile); -if(err_p) - %file does not exist - need_update=true; - else - B_field_cur=B_field; - load (pfile); % loading old B_field value - if (B_field ~= B_field_cur) - % old and current B field are different - B_field=B_field_cur; - need_update=true; - else - need_update=false; - endif -endif - -[s, err, msg] = stat (cfile); -if(err) - %file does not exist - need_update=true; -endif; -if ( !need_update) - % matrices already calculated and up to date, all we need to load them - load(cfile); - else - % calculate E_field independent properties of the atom - % to be used as sub matrix templates for Liouville operator matrix - [L0m, polarizability_m]=L0_and_polarization_submatrices( ... - Nlevels, ... - H0, g_decay, g_dephasing, dipole_elements ... - ); - save(pfile, 'B_field'); - save(cfile, 'L0m', 'polarizability_m'); - endif -elapsed_time = etime (clock (), t0); -fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); -fflush (stderr); - -global atom_properties; -atom_properties.L0m=L0m; -atom_properties.polarizability_m=polarizability_m; -atom_properties.dipole_elements=dipole_elements; - -%light_positive_freq = [wp]; -E_field_drive = [0 ]; -E_field_probe = [Ep ]; -E_field_zero = [0 ]; -E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; -%E_field_lab_pos_freq.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; -%E_field_lab_pos_freq.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; - -% phi is angle between linear polarization and axis x -%phi=pi*2/8; -% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') -%theta=0; -% psi_el is the ellipticity parameter (phase difference between left and right polarization) -%psi_el=-30/180*pi; - -% we define light as linearly polarized -% where phi is angle between light polarization and axis x - % only sign of modulation frequency is important now - % we define actual frequency later on - [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); - % we add required ellipticity - E_field_lab_pos_freq.x*=exp(I*psi_el); - E_field_lab_pos_freq.y*=exp(-I*psi_el); - E_field_lab_pos_freq.z=E_field_zero; - - E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); - - -fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); -fflush (stderr); -for detuning_p_cntr=1:length(detuning_freq); - wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1 - %wd=w_pf1-w_hpf_ground; - %detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1); - detuning_p=detuning_freq(detuning_p_cntr); - wp=wp0+detuning_p; - light_positive_freq=[ wp]; - % we calculate dc and negative frequiencies as well as amplitudes - [modulation_freq, E_field] = ... - light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... - light_positive_freq, E_field_pos_freq); - freq_index=freq2index(wp,modulation_freq); - - atom_field_problem.E_field = E_field; - atom_field_problem.modulation_freq = modulation_freq; - atom_field_problem.freq_index = freq_index; - - problems_cell_array{detuning_p_cntr}=atom_field_problem; - - - %kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem); - %detuning_freq(detuning_p_cntr)=detuning_p; -endfor - -save '/tmp/problem_definition.mat' problems_cell_array atom_properties detuning_freq ; -fprintf (stderr, "now really hard calculations begin\n"); -fflush (stderr); -% once we define all problems the main job is done here -[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); -%[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); - -%save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning; -save '/tmp/xi_vs_detuning.mat' detuning_freq xi_linear xi_left xi_right E_field_pos_freq E_field_probe B_field psi_el; - -psr_rad=output_psr_results_vs_detuning; - -elapsed_time = etime (clock (), t0) -return - -% vim: ts=2:sw=2:fdm=indent |