diff options
Diffstat (limited to 'faraday/faraday_vs_B.m')
-rw-r--r-- | faraday/faraday_vs_B.m | 141 |
1 files changed, 61 insertions, 80 deletions
diff --git a/faraday/faraday_vs_B.m b/faraday/faraday_vs_B.m index acf7d43..11ba11b 100644 --- a/faraday/faraday_vs_B.m +++ b/faraday/faraday_vs_B.m @@ -1,6 +1,6 @@ -function [psr_rad]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, phi) -% calculates psr in rad vs detunings of the probe field -% for given laser probe and B field. +function [psr_rad]=faraday_vs_B(detuning_freq, Ep, psi_el, B_fields, theta, phi) +% calculates transmission if light polarizations vs B field in the cell +% for given laser probe and B fields array % Probe field defined by field strength (Ep) and ellipticity angle (pse_el) % Magnetic field defined by magnitude (B_field) and angles theta and phi. % @@ -9,6 +9,11 @@ function [psr_rad]=psr_vs_detuning(detuning_freq, Ep, psi_el, B_field, theta, ph t0 = clock (); % we will use this latter to calculate elapsed time +%tune probe frequency +detuning_p=0; +N_steps=length(B_fields) +kappa_p =zeros(1,N_steps+1); +kappa_m =zeros(1,N_steps+1); % load useful functions; useful_functions; @@ -18,36 +23,22 @@ useful_constants; basis_transformation; % load subroutines -% load atom energy levels and decay description -rb87_D1_line; -%four_levels_with_polarization; -%four_levels; -%three_levels; -%two_levels; - -% load EM field description -%field_description; - -%Nfreq=length(modulation_freq); +fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); +fflush (stderr); +for B_field_cntr=1:N_steps; + B_field=B_fields(B_field_cntr); + % load atom energy levels and decay description + rb87_D1_line; -%tune probe frequency -detuning_p=0; -%detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting -%detuning_freq=zeros(1,N_detun_steps+1); -N_detun_steps=length(detuning_freq); -kappa_p =zeros(1,N_detun_steps+1); -kappa_m =zeros(1,N_detun_steps+1); -%detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; - -fprintf (stderr, "calculating atom properties\n"); -fflush (stderr); -pfile='atomic_B_field.mat'; % the parent file where B_field is stored. This is the parameter for calculated L0_and_polarization_submatrices -cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices are written -need_update=false; -[s, err_p, msg] = stat (pfile); -if(err_p) + fprintf (stderr, "calculating atom properties\n"); + fflush (stderr); + pfile='atomic_B_field.mat'; % the parent file where B_field is stored. This is the parameter for calculated L0_and_polarization_submatrices + cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices are written + need_update=false; + [s, err_p, msg] = stat (pfile); + if(err_p) %file does not exist need_update=true; else @@ -60,14 +51,15 @@ if(err_p) else need_update=false; endif -endif - -[s, err, msg] = stat (cfile); -if(err) - %file does not exist - need_update=true; -endif; -if ( !need_update) + endif + + [s, err, msg] = stat (cfile); + if(err) + %file does not exist + need_update=true; + endif; + + if ( !need_update) % matrices already calculated and up to date, all we need to load them load(cfile); else @@ -80,32 +72,31 @@ if ( !need_update) save(pfile, 'B_field'); save(cfile, 'L0m', 'polarizability_m'); endif -elapsed_time = etime (clock (), t0); -fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); -fflush (stderr); -global atom_properties; -atom_properties.L0m=L0m; -atom_properties.polarizability_m=polarizability_m; -atom_properties.dipole_elements=dipole_elements; - -%light_positive_freq = [wp]; -E_field_drive = [0 ]; -E_field_probe = [Ep ]; -E_field_zero = [0 ]; -E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; -%E_field_lab_pos_freq.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; -%E_field_lab_pos_freq.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; - -% phi is angle between linear polarization and axis x -%phi=pi*2/8; -% theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') -%theta=0; -% psi_el is the ellipticity parameter (phase difference between left and right polarization) -%psi_el=-30/180*pi; - -% we define light as linearly polarized -% where phi is angle between light polarization and axis x + elapsed_time = etime (clock (), t0); + fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); + fflush (stderr); + + global atom_properties; + atom_properties.L0m=L0m; + atom_properties.polarizability_m=polarizability_m; + atom_properties.dipole_elements=dipole_elements; + + %light_positive_freq = [wp]; + E_field_drive = [0 ]; + E_field_probe = [Ep ]; + E_field_zero = [0 ]; + E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; + + % phi is angle between linear polarization and axis x + %phi=pi*2/8; + % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') + %theta=0; + % psi_el is the ellipticity parameter (phase difference between left and right polarization) + %psi_el=-30/180*pi; + + % we define light as linearly polarized + % where phi is angle between light polarization and axis x % only sign of modulation frequency is important now % we define actual frequency later on [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear); @@ -117,30 +108,21 @@ E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq); -fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); -fflush (stderr); -for detuning_p_cntr=1:length(detuning_freq); wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1 - %wd=w_pf1-w_hpf_ground; - %detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1); - detuning_p=detuning_freq(detuning_p_cntr); - wp=wp0+detuning_p; + wp=wp0; light_positive_freq=[ wp]; - % we calculate dc and negative frequiencies as well as amplitudes + % we calculate dc and negative frequencies as well as amplitudes [modulation_freq, E_field] = ... - light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... - light_positive_freq, E_field_pos_freq); + light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(... + light_positive_freq, E_field_pos_freq); freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; atom_field_problem.modulation_freq = modulation_freq; atom_field_problem.freq_index = freq_index; - problems_cell_array{detuning_p_cntr}=atom_field_problem; - + problems_cell_array{B_field_cntr}=atom_field_problem; - %kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem); - %detuning_freq(detuning_p_cntr)=detuning_p; endfor save '/tmp/problem_definition.mat' problems_cell_array atom_properties detuning_freq ; @@ -150,10 +132,9 @@ fflush (stderr); [xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); %[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); -%save '/tmp/relative_transmission_vs_detuning.mat' detuning_freq relative_transmission_vs_detuning; -save '/tmp/xi_vs_detuning.mat' detuning_freq xi_linear xi_left xi_right E_field_pos_freq E_field_probe B_field psi_el; +save '/tmp/xi_vs_B.mat' detuning_freq xi_linear xi_left xi_right E_field_pos_freq E_field_probe B_field psi_el; -psr_rad=output_psr_results_vs_detuning; +psr_rad=output_faraday_results_vs_B; elapsed_time = etime (clock (), t0) return |