diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2009-12-09 23:12:07 +0000 |
---|---|---|
committer | Eugeniy Mikhailov <evgmik@gmail.com> | 2009-12-09 23:12:07 +0000 |
commit | 3c4e365adaaa98a6c967bc679ca14008c94d2581 (patch) | |
tree | 8dd8de9ce82003ad1f51279e1015e08b004a2cb2 /liouville.m | |
parent | 596fbba9a1e802f34e497f893ff6c2194cc688c3 (diff) | |
download | multi_mode_eit-3c4e365adaaa98a6c967bc679ca14008c94d2581.tar.gz multi_mode_eit-3c4e365adaaa98a6c967bc679ca14008c94d2581.zip |
added calculation of the adjasent sideband sucsectibilty in for wave mixing
Diffstat (limited to 'liouville.m')
-rw-r--r-- | liouville.m | 28 |
1 files changed, 19 insertions, 9 deletions
diff --git a/liouville.m b/liouville.m index 4812775..6fe83be 100644 --- a/liouville.m +++ b/liouville.m @@ -1,3 +1,6 @@ +1; +t0 = clock (); % we will use this latter to calculate elapsed time + % load useful functions; useful_functions; @@ -19,17 +22,19 @@ Nfreq=length(modulation_freq); %tune probe frequency detuning_p=0; N_detun_steps=100; -detuning_p_min=-15; +detuning_p_min=-1; detuning_p_max=-detuning_p_min; detuning_freq=zeros(1,N_detun_steps+1); kappa_p =zeros(1,N_detun_steps+1); +kappa_m =zeros(1,N_detun_steps+1); detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; for detuning_p_cntr=1:N_detun_steps+1; wp0=w12; detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1); wp=wp0+detuning_p; -modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; +wm=wd-(wp-wd); +modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; % now we create Liouville indexes list [N, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c]=unfold_density_matrix(Nlevels,Nfreq); @@ -49,22 +54,27 @@ L=Liouville_operator_matrix( N, L, modulation_freq, rhoLiouville_w, rhoLiouville_r, rhoLiouville_c); + %solving for density matrix vector rhoLiouville=L\rhoLiouville_dot; -rho_0=rhoOfFreq(rhoLiouville, 1, Nlevels, Nfreq); -rho_1=rhoOfFreq(rhoLiouville, 2, Nlevels, Nfreq); -rho_2=rhoOfFreq(rhoLiouville, 3, Nlevels, Nfreq); -%rho_l=rhoOfFreq(rhoLiouville, Nfreq, Nlevels, Nfreq) +%rho_0=rhoOfFreq(rhoLiouville, 1, Nlevels, Nfreq); % 0 frequency, +%rho_p=rhoOfFreq(rhoLiouville, 2, Nlevels, Nfreq); % probe frequency +%rho_d=rhoOfFreq(rhoLiouville, 3, Nlevels, Nfreq); % drive frequency +%rho_m=rhoOfFreq(rhoLiouville, 4, Nlevels, Nfreq); % opposite sideband frequency -kappa_p(detuning_p_cntr)=sum(sum(rho_1)); +kappa_p(detuning_p_cntr)=sucseptibility(2, rhoLiouville, dipole_elements, Nlevels, Nfreq); +kappa_m(detuning_p_cntr)=sucseptibility(4, rhoLiouville, dipole_elements, Nlevels, Nfreq); detuning_freq(detuning_p_cntr)=detuning_p; %kappa_p_re=real(kappa_p); %kappa_p_im=imag(kappa_p); endfor -figure(1); plot(detuning_freq, real(kappa_p)); -figure(2); plot(detuning_freq, imag(kappa_p)); +figure(1); plot(detuning_freq, real(kappa_p)); title("probe dispersion"); +figure(2); plot(detuning_freq, imag(kappa_p)); title("probe absorption"); +figure(3); plot(detuning_freq, real(kappa_m)); title("off resonant sideband dispersion"); +figure(4); plot(detuning_freq, imag(kappa_m)); title("off resonant absorption"); +elapsed_time = etime (clock (), t0) |