summaryrefslogtreecommitdiff
path: root/faraday/faraday_vs_B.m
diff options
context:
space:
mode:
authorEugeniy Mikhailov <evgmik@gmail.com>2011-11-16 22:21:04 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2020-09-21 16:29:52 -0400
commit396592e99e9c7aac3fd6f5445bcd7b7e675adfcb (patch)
treecb8d587cf60a9d63a1174a713444a05fd893504a /faraday/faraday_vs_B.m
parentac875a1797efcc9ce138208b6e4712f558fc49cd (diff)
downloadmulti_mode_eit-396592e99e9c7aac3fd6f5445bcd7b7e675adfcb.tar.gz
multi_mode_eit-396592e99e9c7aac3fd6f5445bcd7b7e675adfcb.zip
more unused files removed
Diffstat (limited to 'faraday/faraday_vs_B.m')
-rw-r--r--faraday/faraday_vs_B.m147
1 files changed, 0 insertions, 147 deletions
diff --git a/faraday/faraday_vs_B.m b/faraday/faraday_vs_B.m
deleted file mode 100644
index 733657e..0000000
--- a/faraday/faraday_vs_B.m
+++ /dev/null
@@ -1,147 +0,0 @@
-function [psr_rad]=faraday_vs_B(detuning_freq, Ep, psi_el, B_fields, theta, phi)
-% calculates transmission if light polarizations vs B field in the cell
-% for given laser probe and B fields array
-% Probe field defined by field strength (Ep) and ellipticity angle (pse_el)
-% Magnetic field defined by magnitude (B_field) and angles theta and phi.
-%
-% Note: it is expensive to recalculate atom property for each given B_field strength
-% so run as many calculation for constant magnetic field as possible
-
-t0 = clock (); % we will use this latter to calculate elapsed time
-
-%tune probe frequency
-detuning_p=0;
-N_steps=length(B_fields)
-kappa_p =zeros(1,N_steps+1);
-kappa_m =zeros(1,N_steps+1);
-xi_linear=zeros(1,N_steps);
-xi_left =zeros(1,N_steps);
-xi_right =zeros(1,N_steps);
-
-% load useful functions;
-useful_functions;
-
-% some physical constants
-useful_constants;
-
-basis_transformation; % load subroutines
-
-fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n");
-fflush (stderr);
-for B_field_cntr=1:N_steps;
- B_field=B_fields(B_field_cntr)
-
- % load atom energy levels and decay description
- rb87_D1_line;
-
-
- fprintf (stderr, "calculating atom properties\n");
- fflush (stderr);
- pfile='atomic_B_field.mat'; % the parent file where B_field is stored. This is the parameter for calculated L0_and_polarization_submatrices
- cfile='L0m_and_polarizability_calculated.mat'; % the child file to which calculated matrices are written
- need_update=false;
- [s, err_p, msg] = stat (pfile);
- if(err_p)
- %file does not exist
- need_update=true;
- else
- B_field_cur=B_field;
- load (pfile); % loading old B_field value
- if (B_field ~= B_field_cur)
- % old and current B field are different
- B_field=B_field_cur;
- need_update=true;
- else
- need_update=false;
- endif
- endif
-
- [s, err, msg] = stat (cfile);
- if(err)
- %file does not exist
- need_update=true;
- endif;
-
- if ( !need_update)
- % matrices already calculated and up to date, all we need to load them
- load(cfile);
- else
- % calculate E_field independent properties of the atom
- % to be used as sub matrix templates for Liouville operator matrix
- [L0m, polarizability_m]=L0_and_polarization_submatrices( ...
- Nlevels, ...
- H0, g_decay, g_dephasing, dipole_elements ...
- );
- save(pfile, 'B_field');
- save(cfile, 'L0m', 'polarizability_m');
- endif
-
- elapsed_time = etime (clock (), t0);
- fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time);
- fflush (stderr);
-
- global atom_properties;
- atom_properties.L0m=L0m;
- atom_properties.polarizability_m=polarizability_m;
- atom_properties.dipole_elements=dipole_elements;
-
- %light_positive_freq = [wp];
- E_field_drive = [0 ];
- E_field_probe = [Ep ];
- E_field_zero = [0 ];
- E_field_lab_pos_freq.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive;
-
- % phi is angle between linear polarization and axis x
- %phi=pi*2/8;
- % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z')
- %theta=0;
- % psi_el is the ellipticity parameter (phase difference between left and right polarization)
- %psi_el=-30/180*pi;
-
- % we define light as linearly polarized
- % where phi is angle between light polarization and axis x
- % only sign of modulation frequency is important now
- % we define actual frequency later on
- [E_field_lab_pos_freq.x, E_field_lab_pos_freq.y] = rotXpolarization(phi, E_field_lab_pos_freq.linear);
- % we add required ellipticity
- E_field_lab_pos_freq.x*=exp(I*psi_el);
- E_field_lab_pos_freq.y*=exp(-I*psi_el);
- E_field_lab_pos_freq.z=E_field_zero;
-
- E_field_pos_freq=xyz_lin2atomic_axis_polarization(theta, E_field_lab_pos_freq);
-
-
- wp0=w_pf1-w_sf2; %Fg=2 -> Fe=1
- wp=wp0;
- light_positive_freq=[ wp];
- % we calculate dc and negative frequencies as well as amplitudes
- [modulation_freq, E_field] = ...
- light_positive_frequencies_and_amplitudes2full_set_of_modulation_frequencies_and_amlitudes(...
- light_positive_freq, E_field_pos_freq);
- freq_index=freq2index(wp,modulation_freq);
-
- atom_field_problem.E_field = E_field;
- atom_field_problem.modulation_freq = modulation_freq;
- atom_field_problem.freq_index = freq_index;
-
- problems_cell_array=atom_field_problem;
-
-save '/tmp/problem_definition.mat' problems_cell_array atom_properties detuning_freq ;
-fprintf (stderr, "now really hard calculations begin\n");
-fflush (stderr);
- [xi_linear_i, xi_left_i, xi_right_i]=susceptibility_steady_state_at_freq( problems_cell_array);
- %[xi_linear, xi_left, xi_right]=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array);
- xi_left(B_field_cntr)=xi_left_i;
- xi_right(B_field_cntr)=xi_right_i;
- xi_linear(B_field_cntr)=xi_linear_i;
-
-endfor
-
-save '/tmp/xi_vs_B.mat' detuning_freq xi_linear xi_left xi_right E_field_pos_freq E_field_probe B_fields psi_el;
-
-psr_rad=output_faraday_results_vs_B;
-
-elapsed_time = etime (clock (), t0)
-return
-
-% vim: ts=2:sw=2:fdm=indent