diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2010-01-12 22:16:06 +0000 |
---|---|---|
committer | Eugeniy Mikhailov <evgmik@gmail.com> | 2010-01-12 22:16:06 +0000 |
commit | 97c16478c617405d5c7e8e2e8fc7511fd0904709 (patch) | |
tree | 0491631c02d32e8ae6b8a080aeef971dfc6fd8e0 /compass.m | |
parent | 44edaf08dbbd1ae86d7281a9b3a8d759b8d86fcf (diff) | |
download | multi_mode_eit-97c16478c617405d5c7e8e2e8fc7511fd0904709.tar.gz multi_mode_eit-97c16478c617405d5c7e8e2e8fc7511fd0904709.zip |
added code for compass signals output
Diffstat (limited to 'compass.m')
-rw-r--r-- | compass.m | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/compass.m b/compass.m new file mode 100644 index 0000000..1970ac7 --- /dev/null +++ b/compass.m @@ -0,0 +1,132 @@ +1; +clear all; +t0 = clock (); % we will use this latter to calculate elapsed time + + +% load useful functions; +useful_functions; + +% some physical constants +useful_constants; + +% load atom energy levels and decay description +rb87_D1_line; +%four_levels_with_polarization; +%four_levels; +%three_levels; +%two_levels; + +% load EM field description +field_description; + +%Nfreq=length(modulation_freq); + + + +%tune probe frequency +detuning_p=0; +N_detun_steps=100; +detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting +detuning_p_max=-detuning_p_min; +detuning_freq=zeros(1,N_detun_steps+1); +kappa_p =zeros(1,N_detun_steps+1); +kappa_m =zeros(1,N_detun_steps+1); +detun_step=(detuning_p_max-detuning_p_min)/N_detun_steps; + +fprintf (stderr, "calculating atom properties\n"); +fflush (stderr); +% calculate E_field independent properties of the atom +% to be used as sub matrix templates for Liouville operator matrix +[L0m, polarizability_m]=L0_and_polarization_submatrices( ... + Nlevels, ... + H0, g_decay, g_dephasing, dipole_elements ... + ); +elapsed_time = etime (clock (), t0); +fprintf (stderr, "elapsed time so far is %.3f sec\n",elapsed_time); +fflush (stderr); + +global atom_properties; +atom_properties.L0m=L0m; +atom_properties.polarizability_m=polarizability_m; +atom_properties.dipole_elements=dipole_elements; + +%modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; +E_field_drive =[0, 0 , Ed, 0 , Edc, 0, 0 ]; +E_field_probe =[0, Ep, 0 , Epc, 0 , 0, 0 ]; +E_field_zero =[0, 0 , 0 , 0 , 0 , 0, 0 ]; +E_field_lab.linear = E_field_zero + (1.00000+0.00000i)*E_field_probe + (1.00000+0.00000i)*E_field_drive; +E_field_lab.right = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; +E_field_lad.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000+0.00000i)*E_field_drive; + +% phi is angle between linear polarization and axis x +phi=pi*2/8; +% theta is angle between lab z axis (light porpagation dirextion) and magnetic field axis (z') +theta=pi/2; + +% we define light as linearly polarized +E_field_lab.x=cos(phi)*E_field_lab.linear; +E_field_lab.y=sin(phi)*E_field_lab.linear; +E_field_lab.z=E_field_zero; + +basis_transformation; % load subroutines +coord_transf_m = lin2circ * oldlin2newlin(theta); +E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; +E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; +E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; + + +fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); +fflush (stderr); + +detuning_freq=[-.75, -.5, -.25, 0 , .25, .5 , .75, 1.0]; + +problem_cntr=1; +N_angle_steps=5; +min_angle=0; max_angle=pi/2; +for theta=min_angle:((max_angle-min_angle)/N_angle_steps):max_angle; + for detuning_p_cntr=1:length(detuning_freq); + coord_transf_m = lin2circ * oldlin2newlin(theta); + E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; + E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; + E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; + + wp0=w_pf1; + wd=w_pf1-w_hpf_ground; + detuning_p=detuning_p_min+detun_step*(detuning_p_cntr-1); + detuning_p=detuning_freq(detuning_p_cntr); + wp=wp0+detuning_p; + wm=wd-(wp-wd); + %modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; + modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; + freq_index=freq2index(wp,modulation_freq); + + atom_field_problem.E_field = E_field; + atom_field_problem.modulation_freq = modulation_freq; + atom_field_problem.freq_index = freq_index; + + problems_cell_array{problem_cntr}=atom_field_problem; + problem_cntr++; + + + %kappa_p(detuning_p_cntr)=susceptibility_steady_state_at_freq( atom_field_problem); + endfor +endfor + +save 'problem_definition.mat' problems_cell_array atom_properties detuning_freq ; +fprintf (stderr, "now really hard calculations begin\n"); +fflush (stderr); +% once we define all problems the main job is done here +%kappa_p=cellfun( @susceptibility_steady_state_at_freq, problems_cell_array); +%kappa_p=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); +%[xi_linear, xi_left, xi_right]=parcellfun(2, @susceptibility_steady_state_at_freq, problems_cell_array); +total_absorption_vs_detuning=parcellfun(2, @total_field_absorption, problems_cell_array); + +%save 'xi_vs_detuning.mat' detuning_freq xi_linear xi_left xi_right ; +problem_cntr--; +save 'total_absorption_vs_detuning.mat' detuning_freq total_absorption_vs_detuning theta problem_cntr; + +compass_output_results; + +elapsed_time = etime (clock (), t0) + +% vim: ts=2:sw=2:fdm=indent |