diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2010-01-20 22:57:44 +0000 |
---|---|---|
committer | Eugeniy Mikhailov <evgmik@gmail.com> | 2010-01-20 22:57:44 +0000 |
commit | bd8cf4946962e609ee9b7f75bec4ff8ed764066e (patch) | |
tree | ec7ea35430fd6ffed4d347560446f98d3d43575b | |
parent | 581724f599c8c858ff34dd1873907ecf536cbd21 (diff) | |
download | multi_mode_eit-bd8cf4946962e609ee9b7f75bec4ff8ed764066e.tar.gz multi_mode_eit-bd8cf4946962e609ee9b7f75bec4ff8ed764066e.zip |
proper rotation of polarization now code behave as it physically should
-rw-r--r-- | compass.m | 32 | ||||
-rw-r--r-- | liouville.m | 13 |
2 files changed, 20 insertions, 25 deletions
@@ -9,6 +9,8 @@ useful_functions; % some physical constants useful_constants; +basis_transformation; % load subroutines + % load atom energy levels and decay description %rb87_D1_line; %four_levels_with_polarization; @@ -65,18 +67,9 @@ E_field_lab.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000 phi=pi*2/8; % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') theta=pi/2; -theta=0; +theta=pi/4; -% we define light as linearly polarized -E_field_lab.x=cos(phi)*E_field_lab.linear; -E_field_lab.y=sin(phi)*E_field_lab.linear; -E_field_lab.z=E_field_zero; -basis_transformation; % load subroutines -coord_transf_m = lin2circ * oldlin2newlin(theta); -E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; -E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; -E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; fprintf (stderr, "tuning laser in forloop to set conditions vs detuning\n"); @@ -90,16 +83,6 @@ min_angle=0; max_angle=pi/2; phis=min_angle:((max_angle-min_angle)/N_angle_steps):max_angle; for phi=phis; for detuning_p_cntr=1:length(detuning_freq); - % we define light as linearly polarized - % where phi is angle between light polarization and axis x - E_field_lab.x=cos(phi)*E_field_lab.linear; - E_field_lab.y=sin(phi)*E_field_lab.linear; - E_field_lab.z=E_field_zero; - % now we transfor x,y,z, to x',y', and z' with respect to magnetic field az z' axis - coord_transf_m = lin2circ * oldlin2newlin(theta); - E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; - E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; - E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; wp0=w_pf1; wd=w_pf1-w_hpf_ground; @@ -108,6 +91,15 @@ for phi=phis; wm=wd-(wp-wd); %modulation_freq=[0, wp, wd, wm, -wp, -wd, -wm, wp-wd, wd-wp]; modulation_freq=[0, wp, wd, -wp, -wd, wp-wd, wd-wp]; + % we define light as linearly polarized + % where phi is angle between light polarization and axis x + [E_field_lab.x, E_field_lab.y] = rotXpolarization(phi, E_field_lab.linear, modulation_freq); + E_field_lab.z=E_field_zero; + % now we transfor x,y,z, to x',y', and z' with respect to magnetic field az z' axis + coord_transf_m = lin2circ * oldlin2newlin(theta); + E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; + E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; + E_field.linear = coord_transf_m(3,1)*E_field_lab.x + coord_transf_m(3,2)*E_field_lab.y + coord_transf_m(3,3)*E_field_lab.z; freq_index=freq2index(wp,modulation_freq); atom_field_problem.E_field = E_field; diff --git a/liouville.m b/liouville.m index 8280e9c..10ccc95 100644 --- a/liouville.m +++ b/liouville.m @@ -9,6 +9,8 @@ useful_functions; % some physical constants useful_constants; +basis_transformation; % load subroutines + % load atom energy levels and decay description %rb87_D1_line; %four_levels_with_polarization; @@ -27,7 +29,7 @@ field_description; detuning_p=0; N_detun_steps=200; %detuning_p_min=-B_field*gmg*4; % span +/-4 Zeeman splitting -detuning_p_min=-1.1; +detuning_p_min=-0.1; detuning_p_max=-detuning_p_min; detuning_freq=zeros(1,N_detun_steps+1); kappa_p =zeros(1,N_detun_steps+1); @@ -63,15 +65,16 @@ E_field_lab.left = E_field_zero + (0.00000+0.00000i)*E_field_probe + (0.00000 phi=pi*2/8; % theta is angle between lab z axis (light propagation direction) and magnetic field axis (z') theta=0/2; -phi=0/4; +phi=pi/4; % we define light as linearly polarized % where phi is angle between light polarization and axis x -E_field_lab.x=cos(phi)*E_field_lab.linear; -E_field_lab.y=sin(phi)*E_field_lab.linear; + % only sign of modulation frequency is important now + % we define actual frequency later on + modulation_freq=[0, 1, 1, -1, -1, 1, -1]; + [E_field_lab.x, E_field_lab.y] = rotXpolarization(phi, E_field_lab.linear, modulation_freq); E_field_lab.z=E_field_zero; -basis_transformation; % load subroutines coord_transf_m = lin2circ * oldlin2newlin(theta); E_field.right = coord_transf_m(1,1)*E_field_lab.x + coord_transf_m(1,2)*E_field_lab.y + coord_transf_m(1,3)*E_field_lab.z; E_field.left = coord_transf_m(2,1)*E_field_lab.x + coord_transf_m(2,2)*E_field_lab.y + coord_transf_m(2,3)*E_field_lab.z; |