function [waste_at_the_end, radius_at_the_end, waist_at_lens_position] = solution_visualization(q0,x0, qf, xf, optics, lambda, lens_width, display_prop) %Propagates beam with given input parameters % Forward propagation and backward propagation are taken in order to % visualize reasonable solutions. %Array of lens positions n_lens = size(optics,2); for i = 1:n_lens lens_position(i) = optics{i}.x; end x=linspace(x0,xf,1000); % we will calculate beam profile between x0 and xf %Forward propagation q_forward =gbeam_propagation(x,q0,x0,optics); [w_forward,r_forward]=q2wr(q_forward, lambda); %Backward propagation q_backward=gbeam_propagation(x,qf,xf,optics); [w_backward,r_backward]=q2wr(q_backward, lambda); %Plot beam profile subplot(2,1,1); plot ( ... x,w_forward, '-r', ... x,-w_forward, '-r', ... x, w_backward, '-.b', ... x, -w_backward, '-.b') legend({'forward propagation', '', 'backward propagation', ''}) %Find q and waist at lens positions waist_at_lens_position = zeros(1,n_lens); q_lens = zeros(1,n_lens); for i = 1:n_lens q_lens(i) = gbeam_propagation(lens_position(i),q0,x0,optics); end for i = 1:n_lens waist_at_lens_position(i) = q2wr(q_lens(i), lambda); end %Plot lenses color = ['m' 'g' 'c']; if display_prop(1) == 1 for i = 1:n_lens half_width = lens_width/2; corrected_lens_position = lens_position(i)-half_width; corrected_waist = waist_at_lens_position(i)*2; rectangle('Position', [corrected_lens_position,-waist_at_lens_position(i),lens_width,corrected_waist], 'EdgeColor', color(i), 'LineWidth',1); end end if display_prop(2) == 1 for i = 1:n_lens x1 = optics{i}.x; y1 = waist_at_lens_position(i); x2 = x1; y2 = -waist_at_lens_position(i); line([x1;x2], [y1;y2], 'LineWidth', 3, 'Color', color(i)); end end [waste_at_the_end,radius_at_the_end] = q2wr(q_forward(end), lambda);