function [ ] = pick_visualization( fitness_energy, possible_lens_placement_uniq, possible_lens_placement, possible_lens_set, index, n_visualizations, q0, qf, Ltot, lambda, lens_width, display_prop ) %Picks n_visualizations of sets of data and graphs each x0 = 0; n_possible_lens_placement = min(n_visualizations,size(possible_lens_placement_uniq,1)); for n_graph = 1:n_possible_lens_placement figure(n_graph) [w_final_trial, r_final_trial] = solution_visualization(q0, x0, qf, Ltot, optics_placer(possible_lens_placement(index(n_graph),:), possible_lens_set(index(n_graph),:)), lambda, lens_width, display_prop); str1=sprintf('\n (red) f_1 = %0.4f, x_1 = %0.4f\n',possible_lens_set(index(n_graph),1),possible_lens_placement(index(n_graph),1)); str2=sprintf(' (green) f_2 = %0.4f, x_2 = %0.4f\n',possible_lens_set(index(n_graph),2),possible_lens_placement(index(n_graph),2)); str3=sprintf(' (blue) f_3 = %0.4f, x_3 = %0.4f\n',possible_lens_set(index(n_graph),3),possible_lens_placement(index(n_graph),3)); tstr='Solution #'; str_w = ['w_{final}= ',num2str(w_final_trial)]; str_r = [', r_{final}= ',num2str(r_final_trial)]; str_E = sprintf('\nEnergy = %.4g',fitness_energy(n_graph)); title([tstr, num2str(n_graph), str_E, str1, str2, str3, str_w, str_r]); end end