%Permute all possible lens combinations out of set of lenses % keep this list short - computation time goes as factorial of lens set size lens_set = [.05, 0.025, 0.50 ]; %Given lenses of unique focal lengths %lens_set = [0.025, 0.035, 0.05, .075, 0.10, .125, 0.150, 0.20, 0.25, 0.300, 0.50, 0.75, -.05, -0.10 ]; % Thorlabs lenses set %lens_set = [0.025, 0.05, .075, 0.10, .125, 0.20, 0.25, 0.300, 0.50, 0.75, 1.00 ]; % Available in the lab lens_permutations = pick(lens_set,3,'or'); %3 lens solutions %Pre-defined Constants lambda= .795e-6 ; %Wavelength of beam extra_space = 0.05; % to allow lens holder placement Ltot=0.63+0.055+0.09 ; %Length of optical system %% Fiber output parameters r0= 1.0E+100 ; %Initial radius of curvature w0= 5.65e-4 ; %Initial waist x0= 0 ; %Starting position of beam q0 = wr2q(w0, r0, lambda); %% this will be used to propagate beam in free space dummy_lens.abcd = abcd_lens(inf); dummy_lens.x = 10000; dummy_optic = {dummy_lens}; %% Cavity parameters calculated by cavity_design_demo.m Lcav = 0.8025; zc = 0.5062; % with respect to front mirror % cavity waist wc=2.6732e-04; rc=Inf; % however this inside of the cavity so we need to propagate it to the front mirror dist = Lcav - zc; % calculate beam parameter at the front mirror % watch out that indeed there is only free space qf = gbeam_propagation ( dist, wr2q(wc, rc, lambda), 0, dummy_optic ); %% some parameters for visualizer and solution search lens_width = .03; %Lens width show_lens_width = 1; %Set to 1 to enable display of lens width on solution propagation plot show_lens_position = 1; %Set to 1 to enable display of position of center of lens on solution propagation plot display_prop = [show_lens_width, show_lens_position]; n_truncate = 3; %number of digits in truncated solution n_visualizations = 5; %number of best solutions to visualize n_hist = 1000; %number of sample points in histogram stability_max = 1; %max stability (y-axis) shown on energy vs. stability graph self_flag = 0; %Set to 1 to use Self's gaussian beam propagation, otherwise set to 0 %End list %q0=wr2q(w0,r0,lambda); %Calculate intial q %qf=wr2q(wf,rf,lambda); %Calculate final q %Mode match [ possible_lens_placement, initial_lens_placement, possible_lens_set, possible_sample_energy] = mode_match( q0, qf, Ltot, lambda, lens_permutations, lens_width, self_flag ); %Remove similar solutions [ possible_lens_placement_uniq, possible_lens_placement, possible_sample_energy, possible_lens_set, index ] = remove_similar_soln( possible_sample_energy, possible_lens_placement, possible_lens_set, n_truncate ); %Visualize solutions pick_visualization( possible_sample_energy, possible_lens_placement_uniq, possible_lens_placement, possible_lens_set, index, n_visualizations, q0, qf, Ltot, lambda, lens_width, display_prop ); %Plot energy vs. stability for each solution [stability] = stability_visualization( possible_lens_placement_uniq, q0, qf, Ltot, possible_lens_placement, possible_lens_set, lambda, n_visualizations, n_hist, index, self_flag ); energy_vs_stability( possible_sample_energy, stability, index, stability_max)