function [ possible_lens_placement, possible_lens_set, possible_sample_energy, n_possible_lens_placement, index ] = mode_match( q0, qf, Ltot, lambda, lens_permutations ) %MODE_MATCH Summary of this function goes here % Detailed explanation goes here n_perms = size(lens_permutations,1); n_shuffles=20; %number of random placements of lenses %Initialize sample arrays N = n_perms * n_shuffles; possible_lens_placement = zeros(N,3); possible_lens_set = zeros(N,3); possible_sample_energy = zeros(N,1); initial_rand_lens_placement=zeros(N,3); lens_size = .03; % physical size of the lens for ip = 1:n_perms f3=lens_permutations(ip,3); x3=Ltot-f3; % last lense transfer collimated region to focused spot for is = 1:n_shuffles possible_lens_set((ip-1)*n_shuffles + is,:) = lens_permutations(ip,:); initial_rand_lens_placement_tmp = sort(lens_size+(x3-2*lens_size)*rand(1,2)); initial_rand_lens_placement((ip-1)*n_shuffles + is,:) = [initial_rand_lens_placement_tmp, x3]; end end parfor i = 1:N fitness_simplified=@(x) fitness(q0, qf, Ltot, x, possible_lens_set(i,:), lambda ); [x_sol, energy]=fminsearch(fitness_simplified, initial_rand_lens_placement(i,:), optimset('TolX',1e-8,'TolFun',1e-8,'MaxFunEvals',1e8,'MaxIter',200)); possible_lens_placement(i,:) =x_sol; possible_sample_energy(i) = energy; end %Sorting possible solution according to energy [possible_sample_energy, index] = sort(possible_sample_energy); possible_lens_placement = possible_lens_placement(index,:); possible_lens_set = possible_lens_set(index,:); %Truncate other possible solutions to an accuracy of n decimal places n=4; possible_lens_placement_trunc = round(possible_lens_placement*10^n)./10^n; [possible_lens_placement_uniq, index] = unique(possible_lens_placement_trunc,'rows','stable'); %Unique solutions only n_possible_lens_placement = min(5,size(possible_lens_placement_uniq,1)); end