function [ final_possible_lens_placement, initial_possible_lens_placement, possible_lens_set, possible_sample_energy] = mode_match( q0, qf, Ltot, lambda, lens_permutations ) %Shuffles lenses into random positions and stores possible solutions % Shuffles over entire lens permutation array for n_shuffles times. % Afterwards, solutions are sorted by Energy and truncated to n_truncate % decimal places. Similar solutions are then removed from the array. n_perms = size(lens_permutations,1); n_shuffles=20; %number of random placements of lenses initial_MaxFunEvals = 1e8; initial_MaxIter = 10; final_MaxFunEvals = 1e8; final_MaxIter = 100; %Initialize sample arrays N = n_perms * n_shuffles; possible_lens_placement = zeros(N,3); possible_lens_set = zeros(N,3); possible_sample_energy = zeros(N,1); initial_rand_lens_placement=zeros(N,3); lens_size = .03; % physical size of the lens for ip = 1:n_perms f3=lens_permutations(ip,3); x3=Ltot-f3; % last lense transfer collimated region to focused spot for is = 1:n_shuffles possible_lens_set((ip-1)*n_shuffles + is,:) = lens_permutations(ip,:); initial_rand_lens_placement_tmp = sort(lens_size+(x3-2*lens_size)*rand(1,2)); initial_rand_lens_placement((ip-1)*n_shuffles + is,:) = [initial_rand_lens_placement_tmp, x3]; end end parfor i = 1:N fitness_simplified=@(x) fitness(q0, qf, Ltot, x, possible_lens_set(i,:), lambda ); [ x_sol, energy ] = find_min(i, initial_rand_lens_placement, fitness_simplified, initial_MaxFunEvals, initial_MaxIter ) initial_possible_lens_placement(i,:) =x_sol; end parfor i = 1:N fitness_simplified=@(x) fitness(q0, qf, Ltot, x, possible_lens_set(i,:), lambda ); [ x_sol, energy ] = find_min(i, initial_possible_lens_placement, fitness_simplified, final_MaxFunEvals, final_MaxIter ) final_possible_lens_placement(i,:) =x_sol; possible_sample_energy(i) = energy; end end