function fs_abcd = abcd_free_space( distance) fs_abcd=[1, distance; 0,1]; endfunction function lens_abcd =abcd_lens(focal_distance) lens_abcd = [1, 0; -1/focal_distance, 1]; endfunction function qnew=q_afteer_element(q_old,abcd) qnew=(q_old*abcd(1,1)+abcd(1,2))/(q_old*abcd(2,1)+abcd(2,2)); endfunction function q = prop_forward(x_pos, q_in, x_in, optics_elements) % calculate the 'q' parameter of the Gaussian beam propagating through optical % 'optics_elements' array along 'x' axis at points 'x_pos' % takes the gaussian beam with initial q_in parameter at x_in % % all x_pos must be to the right of x_in if (any(x_pos < x_in)) error('all beam positions must be to the right of the x_in'); end optics_elements=arrange_optics_along_x(optics_elements); % Forward propagation to the right of x_in Np=length(x_pos); % number of 'x' points Nel=length(optics_elements) ; q=0*x_pos; % q vector initialization q_last_calc=q_in; x_last_calc=x_in; % the furthest calculated point for i=1:Np x_pos_i=x_pos(i); for k=1:length(optics_elements) % iterates through optics_elements to make sure % we take them in account for the beam propagation el=optics_elements{k}; if ( (x_last_calc < el.x) && (el.x <= x_pos_i) ) abcd=abcd_free_space(el.x-x_last_calc); q_last_calc=q_afteer_element(q_last_calc,abcd); q_last_calc=q_afteer_element(q_last_calc,el.abcd); x_last_calc=el.x; endif endfor if (x_pos_i > x_last_calc); abcd=abcd_free_space(x_pos_i-x_last_calc); q_last_calc=q_afteer_element(q_last_calc,abcd); x_last_calc=x_pos_i; endif q(i)=q_last_calc; endfor end function optics = arrange_optics_along_x(optics_unsorted) % arrange optics in proper order so it x position increases with number N=length(optics_unsorted); % assign x positions x=zeros(1,N); for i=1:N x(i)=optics_unsorted{i}.x; end [xs,indx]=sort(x); cntr=1; for i=indx optics{cntr}=optics_unsorted{i}; cntr=cntr+1; end end function q = prop(x_pos, q_in, x_in, optics_elements) % calculate the 'q' parameter of the Gaussian beam propagating through optical % 'optics_elements' array along 'x' axis at points 'x_pos' % takes the gaussian beam with initial q_in parameter at x_in q=0*x_pos; % q vector initialization if any(x_pos >= x_in) % Forward propagation to the right of x_in q(x_pos >= x_in) = prop_forward(x_pos(x_pos>=x_in), q_in, x_in, optics_elements); end if any(x_pos < x_in) % Backward propagation part the left of x_in % do it as forward propagation of the reverse beam x_backw=x_pos(x_pos