diff options
Diffstat (limited to 'solution_visualization.m')
-rw-r--r-- | solution_visualization.m | 38 |
1 files changed, 36 insertions, 2 deletions
diff --git a/solution_visualization.m b/solution_visualization.m index 6f8fddb..280860c 100644 --- a/solution_visualization.m +++ b/solution_visualization.m @@ -1,11 +1,19 @@ -function [waste_at_the_end, radius_at_the_end] = solution_visualization(q0,x0, qf, xf, optics, lambda) +function [waste_at_the_end, radius_at_the_end, waist_at_lens_position] = solution_visualization(q0,x0, qf, xf, optics, lambda) %Propagates beam with given input parameters % Forward propagation and backward propagation are taken in order to % visualize reasonable solutions. +%Array of lens positions +n_lens = size(optics,2); + +for i = 1:n_lens + lens_position(i) = optics{i}.x; +end + x=linspace(x0,xf,1000); % we will calculate beam profile between x0 and xf + %Forward propagation -q_forward=gbeam_propagation(x,q0,x0,optics); +[q_forward, q_lens] =gbeam_propagation(x,q0,x0,optics); [w_forward,r_forward]=q2wr(q_forward, lambda); %Backward propagation @@ -20,6 +28,32 @@ subplot(2,1,1); plot ( ... x, -w_backward, '-.b') legend({'forward propagation', '', 'backward propagation', ''}) +%Find waist at lens positions +waist_at_lens_position = zeros(1,n_lens); + +for i = 1:n_lens + waist_at_lens_position(i) = q2wr(q_lens(i), lambda); +end + + +%Distance from x-axis +waist_at_lens_position = waist_at_lens_position; + +%Plot lenses +color = ['r' 'g' 'b']; +for i = 1:n_lens + x1 = optics{i}.x; + y1 = waist_at_lens_position(i); + x2 = x1; + y2 = -waist_at_lens_position(i); + + line([x1;x2], [y1;y2], 'LineWidth', 5, 'Color', color(i)); +end + + + [waste_at_the_end,radius_at_the_end] = q2wr(q_forward(end), lambda); + + |