diff options
Diffstat (limited to 'abcd.m')
-rw-r--r-- | abcd.m | 80 |
1 files changed, 0 insertions, 80 deletions
@@ -29,87 +29,7 @@ function optics = arrange_optics_along_x(optics_unsorted) end end -function q = prop_forward(x_pos, q_in, x_in, optics_elements) -% calculate the 'q' parameter of the Gaussian beam propagating through optical -% 'optics_elements' only in the positive direction along 'x' axis at points 'x_pos' -% takes the gaussian beam with initial q_in parameter at x_in -% -% all x_pos must be to the right of x_in -% x_pos must be monotonic! - if (any(x_pos < x_in)) - error('all beam positions must be to the right of the x_in'); - end - - optics_elements=arrange_optics_along_x(optics_elements); - - % Forward propagation to the right of x_in - Np=length(x_pos); % number of 'x' points - Nel=length(optics_elements) ; - q=0*x_pos; % q vector initialization - q_last_calc=q_in; - x_last_calc=x_in; % the furthest calculated point - for i=1:Np - x_pos_i=x_pos(i); - for k=1:length(optics_elements) - % iterates through optics_elements to make sure - % we take them in account for the beam propagation - el=optics_elements{k}; - if ( (x_last_calc < el.x) && (el.x <= x_pos_i) ) - abcd=abcd_free_space(el.x-x_last_calc); - q_last_calc=q_afteer_element(q_last_calc,abcd); - q_last_calc=q_afteer_element(q_last_calc,el.abcd); - x_last_calc=el.x; - endif - endfor - if (x_pos_i > x_last_calc); - abcd=abcd_free_space(x_pos_i-x_last_calc); - q_last_calc=q_afteer_element(q_last_calc,abcd); - x_last_calc=x_pos_i; - endif - q(i)=q_last_calc; - endfor -end - -function q = prop(x_pos, q_in, x_in, optics_elements) -% calculate the 'q' parameter of the Gaussian beam propagating through optical -% 'optics_elements' array along 'x' axis at points 'x_pos' -% takes the gaussian beam with initial q_in parameter at x_in -% x_pos must be monotonic! - - q=0*x_pos; % q vector initialization - if any(x_pos >= x_in) - % Forward propagation to the right of x_in - q(x_pos >= x_in) = prop_forward(x_pos(x_pos>=x_in), q_in, x_in, optics_elements); - end - - if any(x_pos < x_in) - % Backward propagation part the left of x_in - % do it as forward propagation of the reverse beam - x_backw=x_pos(x_pos<x_in); - % now let's reflect the beam with respect to x_in - % and solve the problem as forward propagating. - x_backw=x_in-x_backw; - % now we need to flip x positions - x_backw=fliplr(x_backw); - % reflected beam means inverted radius of curvature or real part of q parameter - q_in_backw = -real(q_in) + 1i*imag(q_in); - optics_elements_backw=optics_elements; - % we need to flip all optics elements around x_in as well - for i=1:length(optics_elements_backw) - optics_elements_backw{i}.x=x_in-optics_elements_backw{i}.x; - end - - q_backw = prop_forward(x_backw, q_in_backw, 0, optics_elements_backw); - % now we need to flip the radius of curvature again - q_backw = -real(q_backw) + 1i*imag(q_backw); - - % final assignment of the backwards propagating beam - % which we need to flip back - q(x_pos<x_in) = fliplr(q_backw); - end - -endfunction function waste =q2waste(q, lambda) for i=1:size(q,2) |