diff options
author | Eugeniy Mikhailov <evgmik@gmail.com> | 2011-04-13 11:10:28 -0400 |
---|---|---|
committer | Eugeniy Mikhailov <evgmik@gmail.com> | 2011-04-13 11:10:28 -0400 |
commit | e75e6f968d620fde5d5596092e6c6b0f2cc4aa94 (patch) | |
tree | 687bdfc42ff71a588e2bfb7208df78747914c99e | |
parent | 855e0053c56bbe2555e87b180f3bf3f3ecccf121 (diff) | |
download | mode_match-e75e6f968d620fde5d5596092e6c6b0f2cc4aa94.tar.gz mode_match-e75e6f968d620fde5d5596092e6c6b0f2cc4aa94.zip |
beam propagation function renamed and moved to separate files
Ignore-this: 972fa9dce2f57e8ddb1624bab32be1ed
darcs-hash:20110413151028-067c0-a7e6d0c98e2856fdff930d4bf3216056eb937367
-rw-r--r-- | abcd.m | 80 | ||||
-rw-r--r-- | gbeam_propagation.m | 41 | ||||
-rw-r--r-- | gbeam_propagation_froward_only.m | 40 | ||||
-rw-r--r-- | propagation.m | 6 |
4 files changed, 84 insertions, 83 deletions
@@ -29,87 +29,7 @@ function optics = arrange_optics_along_x(optics_unsorted) end end -function q = prop_forward(x_pos, q_in, x_in, optics_elements) -% calculate the 'q' parameter of the Gaussian beam propagating through optical -% 'optics_elements' only in the positive direction along 'x' axis at points 'x_pos' -% takes the gaussian beam with initial q_in parameter at x_in -% -% all x_pos must be to the right of x_in -% x_pos must be monotonic! - if (any(x_pos < x_in)) - error('all beam positions must be to the right of the x_in'); - end - - optics_elements=arrange_optics_along_x(optics_elements); - - % Forward propagation to the right of x_in - Np=length(x_pos); % number of 'x' points - Nel=length(optics_elements) ; - q=0*x_pos; % q vector initialization - q_last_calc=q_in; - x_last_calc=x_in; % the furthest calculated point - for i=1:Np - x_pos_i=x_pos(i); - for k=1:length(optics_elements) - % iterates through optics_elements to make sure - % we take them in account for the beam propagation - el=optics_elements{k}; - if ( (x_last_calc < el.x) && (el.x <= x_pos_i) ) - abcd=abcd_free_space(el.x-x_last_calc); - q_last_calc=q_afteer_element(q_last_calc,abcd); - q_last_calc=q_afteer_element(q_last_calc,el.abcd); - x_last_calc=el.x; - endif - endfor - if (x_pos_i > x_last_calc); - abcd=abcd_free_space(x_pos_i-x_last_calc); - q_last_calc=q_afteer_element(q_last_calc,abcd); - x_last_calc=x_pos_i; - endif - q(i)=q_last_calc; - endfor -end - -function q = prop(x_pos, q_in, x_in, optics_elements) -% calculate the 'q' parameter of the Gaussian beam propagating through optical -% 'optics_elements' array along 'x' axis at points 'x_pos' -% takes the gaussian beam with initial q_in parameter at x_in -% x_pos must be monotonic! - - q=0*x_pos; % q vector initialization - if any(x_pos >= x_in) - % Forward propagation to the right of x_in - q(x_pos >= x_in) = prop_forward(x_pos(x_pos>=x_in), q_in, x_in, optics_elements); - end - - if any(x_pos < x_in) - % Backward propagation part the left of x_in - % do it as forward propagation of the reverse beam - x_backw=x_pos(x_pos<x_in); - % now let's reflect the beam with respect to x_in - % and solve the problem as forward propagating. - x_backw=x_in-x_backw; - % now we need to flip x positions - x_backw=fliplr(x_backw); - % reflected beam means inverted radius of curvature or real part of q parameter - q_in_backw = -real(q_in) + 1i*imag(q_in); - optics_elements_backw=optics_elements; - % we need to flip all optics elements around x_in as well - for i=1:length(optics_elements_backw) - optics_elements_backw{i}.x=x_in-optics_elements_backw{i}.x; - end - - q_backw = prop_forward(x_backw, q_in_backw, 0, optics_elements_backw); - % now we need to flip the radius of curvature again - q_backw = -real(q_backw) + 1i*imag(q_backw); - - % final assignment of the backwards propagating beam - % which we need to flip back - q(x_pos<x_in) = fliplr(q_backw); - end - -endfunction function waste =q2waste(q, lambda) for i=1:size(q,2) diff --git a/gbeam_propagation.m b/gbeam_propagation.m new file mode 100644 index 0000000..524d4ae --- /dev/null +++ b/gbeam_propagation.m @@ -0,0 +1,41 @@ +function q = gbeam_propagation(x_pos, q_in, x_in, optics_elements) +% calculate the 'q' parameter of the Gaussian beam propagating through optical +% 'optics_elements' array along 'x' axis at points 'x_pos' +% takes the gaussian beam with initial q_in parameter at x_in +% x_pos must be monotonic! + + q=0*x_pos; % q vector initialization + + if any(x_pos >= x_in) + % Forward propagation to the right of x_in + q(x_pos >= x_in) = gbeam_propagation_froward_only(x_pos(x_pos>=x_in), q_in, x_in, optics_elements); + end + + if any(x_pos < x_in) + % Backward propagation part the left of x_in + % do it as forward propagation of the reverse beam + x_backw=x_pos(x_pos<x_in); + % now let's reflect the beam with respect to x_in + % and solve the problem as forward propagating. + x_backw=x_in-x_backw; + % now we need to flip x positions + x_backw=fliplr(x_backw); + % reflected beam means inverted radius of curvature or real part of q parameter + q_in_backw = -real(q_in) + 1i*imag(q_in); + optics_elements_backw=optics_elements; + % we need to flip all optics elements around x_in as well + for i=1:length(optics_elements_backw) + optics_elements_backw{i}.x=x_in-optics_elements_backw{i}.x; + end + + q_backw = gbeam_propagation_froward_only(x_backw, q_in_backw, 0, optics_elements_backw); + % now we need to flip the radius of curvature again + q_backw = -real(q_backw) + 1i*imag(q_backw); + + % final assignment of the backwards propagating beam + % which we need to flip back + q(x_pos<x_in) = fliplr(q_backw); + end + +endfunction + diff --git a/gbeam_propagation_froward_only.m b/gbeam_propagation_froward_only.m new file mode 100644 index 0000000..ba8c1cf --- /dev/null +++ b/gbeam_propagation_froward_only.m @@ -0,0 +1,40 @@ +function q = gbeam_propagation_froward_only(x_pos, q_in, x_in, optics_elements) +% calculate the 'q' parameter of the Gaussian beam propagating through optical +% 'optics_elements' only in the positive direction along 'x' axis at points 'x_pos' +% takes the gaussian beam with initial q_in parameter at x_in +% +% all x_pos must be to the right of x_in +% x_pos must be monotonic! + if (any(x_pos < x_in)) + error('all beam positions must be to the right of the x_in'); + end + + optics_elements=arrange_optics_along_x(optics_elements); + + % Forward propagation to the right of x_in + Np=length(x_pos); % number of 'x' points + Nel=length(optics_elements) ; + q=0*x_pos; % q vector initialization + q_last_calc=q_in; + x_last_calc=x_in; % the furthest calculated point + for i=1:Np + x_pos_i=x_pos(i); + for k=1:length(optics_elements) + % iterates through optics_elements to make sure + % we take them in account for the beam propagation + el=optics_elements{k}; + if ( (x_last_calc < el.x) && (el.x <= x_pos_i) ) + abcd=abcd_free_space(el.x-x_last_calc); + q_last_calc=q_afteer_element(q_last_calc,abcd); + q_last_calc=q_afteer_element(q_last_calc,el.abcd); + x_last_calc=el.x; + endif + endfor + if (x_pos_i > x_last_calc); + abcd=abcd_free_space(x_pos_i-x_last_calc); + q_last_calc=q_afteer_element(q_last_calc,abcd); + x_last_calc=x_pos_i; + endif + q(i)=q_last_calc; + endfor +end diff --git a/propagation.m b/propagation.m index 35547f5..15d52c2 100644 --- a/propagation.m +++ b/propagation.m @@ -23,7 +23,7 @@ optics={lns1,lns2,lns3}; x=0:.001:Ltot; printf('======== Forward propagation ======\n') -q1=prop(x,q0,0,optics); +q1=gbeam_propagation(x,q0,0,optics); w1=q2waste(q1, lambda); r1=q2radius(q1,lambda); @@ -32,7 +32,7 @@ printf('======== Backward propagation ===\n') rf=-rf; q1b=waste_r2q(wf,rf,lambda); -q2b=prop(x,q1b,Ltot,optics); +q2b=gbeam_propagation(x,q1b,Ltot,optics); printf('=================================\n') wb=q2waste(q2b, lambda); rb=q2radius(q2b,lambda); @@ -48,7 +48,7 @@ r0 wf rf q0=waste_r2q(w0,r0,lambda); -qtf=prop(Ltot, q0,0, optics); +qtf=gbeam_propagation(Ltot, q0,0, optics); printf('values below should match wf and rf: \n') waste = q2waste(qtf, lambda) radius = q2radius(qtf,lambda) |