From 6187aede8dc13a4fc4d5fd5463574955d702d7f4 Mon Sep 17 00:00:00 2001 From: "Eugeniy E. Mikhailov" Date: Tue, 19 Nov 2024 13:00:14 -0500 Subject: initial release --- python_src/williamson.py | 70 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 70 insertions(+) create mode 100644 python_src/williamson.py (limited to 'python_src/williamson.py') diff --git a/python_src/williamson.py b/python_src/williamson.py new file mode 100644 index 0000000..19a2f5f --- /dev/null +++ b/python_src/williamson.py @@ -0,0 +1,70 @@ +def williamson(V, tol=1e-11): + r"""Williamson decomposition of positive-definite (real) symmetric matrix. + + See :ref:`williamson`. + + Note that it is assumed that the symplectic form is + + .. math:: \Omega = \begin{bmatrix}0&I\\-I&0\end{bmatrix} + + where :math:`I` is the identity matrix and :math:`0` is the zero matrix. + + See https://math.stackexchange.com/questions/1171842/finding-the-symplectic-matrix-in-williamsons-theorem/2682630#2682630 + + Args: + V (array[float]): positive definite symmetric (real) matrix + tol (float): the tolerance used when checking if the matrix is symmetric: :math:`|V-V^T| \leq` tol + + Returns: + tuple[array,array]: ``(Db, S)`` where ``Db`` is a diagonal matrix + and ``S`` is a symplectic matrix such that :math:`V = S^T Db S` + """ + (n, m) = V.shape + + if n != m: + raise ValueError("The input matrix is not square") + + diffn = np.linalg.norm(V - np.transpose(V)) + + if diffn >= tol: + raise ValueError("The input matrix is not symmetric") + + if n % 2 != 0: + raise ValueError("The input matrix must have an even number of rows/columns") + + n = n // 2 + omega = sympmat(n) + vals = np.linalg.eigvalsh(V) + + for val in vals: + if val <= 0: + raise ValueError("Input matrix is not positive definite") + + Mm12 = sqrtm(np.linalg.inv(V)).real + r1 = Mm12 @ omega @ Mm12 + s1, K = schur(r1) + X = np.array([[0, 1], [1, 0]]) + I = np.identity(2) + seq = [] + + # In what follows I construct a permutation matrix p so that the Schur matrix has + # only positive elements above the diagonal + # Also the Schur matrix uses the x_1,p_1, ..., x_n,p_n ordering thus I use rotmat to + # go to the ordering x_1, ..., x_n, p_1, ... , p_n + + for i in range(n): + if s1[2 * i, 2 * i + 1] > 0: + seq.append(I) + else: + seq.append(X) + + p = block_diag(*seq) + Kt = K @ p + s1t = p @ s1 @ p + dd = xpxp_to_xxpp(s1t) + perm_indices = xpxp_to_xxpp(np.arange(2 * n)) + Ktt = Kt[:, perm_indices] + Db = np.diag([1 / dd[i, i + n] for i in range(n)] + [1 / dd[i, i + n] for i in range(n)]) + S = Mm12 @ Ktt @ sqrtm(Db) + return Db, np.linalg.inv(S).T + -- cgit v1.2.3