From db7ee776d2a10f50752c23f57b11184cb3347a15 Mon Sep 17 00:00:00 2001 From: "Eugeniy E. Mikhailov" Date: Wed, 20 Nov 2024 17:38:02 -0500 Subject: draft of bloch_messiah --- python_originals/bloch_messiah.py | 96 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) create mode 100644 python_originals/bloch_messiah.py (limited to 'python_originals/bloch_messiah.py') diff --git a/python_originals/bloch_messiah.py b/python_originals/bloch_messiah.py new file mode 100644 index 0000000..a4cc310 --- /dev/null +++ b/python_originals/bloch_messiah.py @@ -0,0 +1,96 @@ +def bloch_messiah(S, tol=1e-10, rounding=9): + r"""Bloch-Messiah decomposition of a symplectic matrix. + + See :ref:`bloch_messiah`. + + Decomposes a symplectic matrix into two symplectic unitaries and squeezing transformation. + It automatically sorts the squeezers so that they respect the canonical symplectic form. + + Note that it is assumed that the symplectic form is + + .. math:: \Omega = \begin{bmatrix}0&I\\-I&0\end{bmatrix} + + where :math:`I` is the identity matrix and :math:`0` is the zero matrix. + + As in the Takagi decomposition, the singular values of N are considered + equal if they are equal after np.round(values, rounding). + + If S is a passive transformation, then return the S as the first passive + transformation, and set the the squeezing and second unitary matrices to + identity. This choice is not unique. + + For more info see: + https://math.stackexchange.com/questions/1886038/finding-euler-decomposition-of-a-symplectic-matrix + + Args: + S (array[float]): symplectic matrix + tol (float): the tolerance used when checking if the matrix is symplectic: + :math:`|S^T\Omega S-\Omega| \leq tol` + rounding (int): the number of decimal places to use when rounding the singular values + + Returns: + tuple[array]: Returns the tuple ``(ut1, st1, vt1)``. ``ut1`` and ``vt1`` are symplectic orthogonal, + and ``st1`` is diagonal and of the form :math:`= \text{diag}(s1,\dots,s_n, 1/s_1,\dots,1/s_n)` + such that :math:`S = ut1 st1 v1` + """ + (n, m) = S.shape + + if n != m: + raise ValueError("The input matrix is not square") + if n % 2 != 0: + raise ValueError("The input matrix must have an even number of rows/columns") + + n = n // 2 + omega = sympmat(n) + if np.linalg.norm(np.transpose(S) @ omega @ S - omega) >= tol: + raise ValueError("The input matrix is not symplectic") + + if np.linalg.norm(np.transpose(S) @ S - np.eye(2 * n)) >= tol: + + u, sigma = polar(S, side="left") + ss, uss = takagi(sigma, tol=tol, rounding=rounding) + + # Apply a permutation matrix so that the squeezers appear in the order + # s_1,...,s_n, 1/s_1,...1/s_n + perm = np.array(list(range(0, n)) + list(reversed(range(n, 2 * n)))) + + pmat = np.identity(2 * n)[perm, :] + ut = uss @ pmat + + # Apply a second permutation matrix to permute s + # (and their corresonding inverses) to get the canonical symplectic form + qomega = np.transpose(ut) @ (omega) @ ut + st = pmat @ np.diag(ss) @ pmat + + # Identifying degenerate subspaces + result = [] + for _k, g in groupby(np.round(np.diag(st), rounding)[:n]): + result.append(list(g)) + + stop_is = list(np.cumsum([len(res) for res in result])) + start_is = [0] + stop_is[:-1] + + # Rotation matrices (not permutations) based on svd. + # See Appendix B2 of Serafini's book for more details. + u_list, v_list = [], [] + + for start_i, stop_i in zip(start_is, stop_is): + x = qomega[start_i:stop_i, n + start_i : n + stop_i].real + u_svd, _s_svd, v_svd = np.linalg.svd(x) + u_list = u_list + [u_svd] + v_list = v_list + [v_svd.T] + + pmat1 = block_diag(*(u_list + v_list)) + + st1 = pmat1.T @ pmat @ np.diag(ss) @ pmat @ pmat1 + ut1 = uss @ pmat @ pmat1 + v1 = np.transpose(ut1) @ u + + else: + ut1 = S + st1 = np.eye(2 * n) + v1 = np.eye(2 * n) + + return ut1.real, st1.real, v1.real + + -- cgit v1.2.3