aboutsummaryrefslogtreecommitdiff
path: root/python_originals/takagi.py
diff options
context:
space:
mode:
authorEugeniy E. Mikhailov <evgmik@gmail.com>2024-11-20 17:38:02 -0500
committerEugeniy E. Mikhailov <evgmik@gmail.com>2024-11-20 17:39:07 -0500
commitdb7ee776d2a10f50752c23f57b11184cb3347a15 (patch)
treeb77da6830cafcaec80cef4568d4d8e87bfa3eb12 /python_originals/takagi.py
parent984d56b4d94bf298a197f1567834451acf49cab9 (diff)
downloadmatlab_strawberryfields-db7ee776d2a10f50752c23f57b11184cb3347a15.tar.gz
matlab_strawberryfields-db7ee776d2a10f50752c23f57b11184cb3347a15.zip
draft of bloch_messiah
Diffstat (limited to 'python_originals/takagi.py')
-rw-r--r--python_originals/takagi.py75
1 files changed, 75 insertions, 0 deletions
diff --git a/python_originals/takagi.py b/python_originals/takagi.py
new file mode 100644
index 0000000..4f3fbd9
--- /dev/null
+++ b/python_originals/takagi.py
@@ -0,0 +1,75 @@
+def takagi(N, tol=1e-13, rounding=13):
+ r"""Autonne-Takagi decomposition of a complex symmetric (not Hermitian!) matrix.
+
+ Note that singular values of N are considered equal if they are equal after np.round(values, tol).
+
+ See :cite:`cariolaro2016` and references therein for a derivation.
+
+ Args:
+ N (array[complex]): square, symmetric matrix N
+ rounding (int): the number of decimal places to use when rounding the singular values of N
+ tol (float): the tolerance used when checking if the input matrix is symmetric: :math:`|N-N^T| <` tol
+
+ Returns:
+ tuple[array, array]: (rl, U), where rl are the (rounded) singular values,
+ and U is the Takagi unitary, such that :math:`N = U \diag(rl) U^T`.
+ """
+ (n, m) = N.shape
+ if n != m:
+ raise ValueError("The input matrix must be square")
+ if np.linalg.norm(N - np.transpose(N)) >= tol:
+ raise ValueError("The input matrix is not symmetric")
+
+ N = np.real_if_close(N)
+
+ if np.allclose(N, 0):
+ return np.zeros(n), np.eye(n)
+
+ if np.isrealobj(N):
+ # If the matrix N is real one can be more clever and use its eigendecomposition
+ l, U = np.linalg.eigh(N)
+ vals = np.abs(l) # These are the Takagi eigenvalues
+ phases = np.sqrt(np.complex128([1 if i > 0 else -1 for i in l]))
+ Uc = U @ np.diag(phases) # One needs to readjust the phases
+ list_vals = [(vals[i], i) for i in range(len(vals))]
+ list_vals.sort(reverse=True)
+ sorted_l, permutation = zip(*list_vals)
+ permutation = np.array(permutation)
+ Uc = Uc[:, permutation]
+ # And also rearrange the unitary and values so that they are decreasingly ordered
+ return np.array(sorted_l), Uc
+
+ v, l, ws = np.linalg.svd(N)
+ w = np.transpose(np.conjugate(ws))
+ rl = np.round(l, rounding)
+
+ # Generate list with degenerancies
+ result = []
+ for k, g in groupby(rl):
+ result.append(list(g))
+
+ # Generate lists containing the columns that correspond to degenerancies
+ kk = 0
+ for k in result:
+ for ind, j in enumerate(k): # pylint: disable=unused-variable
+ k[ind] = kk
+ kk = kk + 1
+
+ # Generate the lists with the degenerate column subspaces
+ vas = []
+ was = []
+ for i in result:
+ vas.append(v[:, i])
+ was.append(w[:, i])
+
+ # Generate the matrices qs of the degenerate subspaces
+ qs = []
+ for i in range(len(result)):
+ qs.append(sqrtm(np.transpose(vas[i]) @ was[i]))
+
+ # Construct the Takagi unitary
+ qb = block_diag(*qs)
+
+ U = v @ np.conj(qb)
+ return rl, U
+