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2. Modeling a hydrogen atom with a spherical resonator

Background:

The hydrogen atom, with a single electron in thell@mb potential of the nucleus, is an ideal
object for studying the basic principles of atompitysics. As the simplest of all atoms, without
any electron correlations, it can be solved anzdj.

The spherical symmetry of the three-dimensionalblerm makes it possible to separate the
angular and radial variables for the solution diif8dinger’s equation. The acoustic analog uses a
spherical resonator that allows a separation aalibas for the solution of the Helmholtz equation
in the same way as is done for the hydrogen atoewW see that the eigenfunctions with respect

to the angular variables — the spherical harmon€¢d,¢) — are exactly the same for both
problems. The radial eigenfunctions, however, #ferent.

The three-dimensional Schrédinger equation

R .oe?
Eyg(r) = —%Al//(f) —Tlﬂ(r) (2.1)

expressed in polar coordinates
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can be separated in two differential equations tighansatz
W(r.6,0)=Y"(6.9) xi(r). (2.2)

The spherical harmonics are solutions of the diffigal equation

1 o(. .0 1 9% |, _ m
—[wﬁ(smeﬁ}sngﬁ}q 6,9)=1(1+)Y"(6,9) (2.3)

and yx, (r ) is a solution of the so called radial equation

P ).
2mr or? X 2mr?

xm—%ﬂn=avy (2.4)

In the case of the spherical acoustic resonatdramsform eqn. 1.4

°p_ 1
=~ A 2.5
o oK p (2.5)

with the ansatzp(r,t) = p(') cost) into the time independent Helmholtz equation
~ 1 ~
W p(F) = ——20p(F), (2.6)
PK

Usingc as the speed of sound, equation 2.6 can be watten

—% p(F) = &p(F) (2.7)
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The Helmholtz equation in polar coordinates is gitg

2
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It separates into a radial-functif(n) and the spherical harmoni¥s" (6, @) .

p(r.6,¢) =Y"(6,9) f(r) (2.8)

With this ansatz the Helmholtz equation is sepdratene differential equation for the spherical
harmonics

1 o0/ . 0 1 02
- ——|sin— |+ ————¥"(8,9) =11 +1) Y"(8, 2.9
[siné’aé’( aej sin26’6¢2}' (6.0) =10+ ¥7.9) (2:9)
and another for the radial function
0°f 2af 1(1+1) o’
- -——+ f(r)=—-f(r 2.10
arZ r ar r.2 ( ) CZ ( ) ( )

You see immediately that eqn. 2.3 and eqgn. 2.9 exctly the same and have the same
eigenfunctions and eigenvalues for the quantum musib(angular momentum or azimuthal
guantum number) ama (magnetic quantum number). The radial equatioesidferent, which, of
course, results in different solutions. The Coulgpotential only appears in the radial equation
(egn. 2.4). Therefore, it does not affect the gphkeharmonics. The eigenvalues of the radial
equations are numerated by the quantum numbéadial quantum number).

The energy levelE,, of the hydrogen atom are the eigenvalues of thelraquation (2.4) and

the eigenfrequencies of the spherical acoustionasow), are eigenvalues of the radial equation

(2.10). Since the two differential equations araliéferent form, the resonance frequencies in the
resonator can not be compared quantitatively with énergy levels of the hydrogen atom.
However, the resonances can be classified withséime quantum numbers (radial quantum
number),| (azimuthal quantum number) anmd (magnetic quantum number). The quantum
numbers are integers and

n'=0 >0 -l <m<l| (2.11)

In the non-relativistic description of the hydrogom many energy levels are degenerate, due to
the special form of the Coulomb potential. Thergigs can be written in the form

) me?
Ey=d— | ——. (2.12)
hc) 2(1+1+n)

All levels with the same value fdt +1+n’) are degenerate. Therefpeenew quantum number is
introduced that is called the “principal quantunmoer”n. It is given by

n=I+1+n' (2.13)
For a given principal quantum numbethe azimuthal quantum numbdezan take the values
O<l<n-1 (2.14)

even though it runs to infinity for a given radiplantum number.
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In the diagrams of the hydrogen atom spectrum shmsiow, the energy levels are labeled in two
different ways. In the left figure they are lalzkle the ordinary manner, using the principal
quantum number. The right figure shows the endeggls labeled using the radial quantum
number.

(4,0)=4s (4.1)=4p (4,2)=4d (4,3)=4f (3.0)=4s (2,1)=4p (1,2)=4d (0,3)=4f
(3.0)=3s (3.1)=3p (3.2)=3d (2,0)=3s (1,1)=3p (0,2)=3d

(2,0)=2s (2,1)=2p (1,0)=2s (0,1)=2p

(1.0)=1s (0,0)=1s

Energy levels of the hydrogen atom Energy levels of the hydrogen atom
labeled with the principal quantum labeled with the radial quantum
number in the ordinary wagn,l) . number(n',1) .

The degeneracy of levels with the same principaihtum number does not have an analog in the
spherical acoustic resonator, since the radialtemjues different.

In the spherically symmetric case, the eigenvafaeslifferent magnetic quantum numbensare
degenerate for any form of the radial equationis T true for both the hydrogen atom and the
spherical acoustic resonator. In general, theneiglees numbered by the quantum numl{ark)

or by (n',1) are (2 +1)-fold degenerate. This degeneracy is lifted mtiee spherical symmetry is
broken.

Now let's do some experiments that allow us torse@y of these effects. First, we will identify
the resonances by their angular dependence.
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21 Measureresonancesin the spherical resonator and deter mine their quantum
numbers

Objective: Determine the resonance frequencies for the gatheesonator and gather data to
determine their angular-momentum quantum numbers.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Hpheses, Accessories
Sine wave generator capable of producing 1-50 kiz avpeak-to-peak voltage of 0.50 V
Two-Channel Oscilloscope

Setup:

Assemble two of the hemispheres so that the speakethe lower
hemisphere and a microphone is in the upper hemisph{Looking

carefully at the photo, you will see the speakerevdt the lower
right.) Adjust the position of the upper hemisgheo thatt =180°

on the scale is at the reference mark. In thistipas the speaker
and the upper microphone are at opposite endsl@naeter. (The
microphones will be one above the other.)

Attach a BNC splitter of “tee”t@NE WAVE INPUT on the Controller
Connect the output of your sine wave generatomi® side of the
splitter. Use a BNC cable to send the sound sigm@hannel 1 of ‘
the oscilloscope. Plug the lead from the speakerthe lower ~ Atom Analog
hemisphere tGPEAKER OUTPUT on the Controller. The same sine Microphonesareimbedded

der BNC tors.
wave now goes to both the speaker and Channel 1. ggeg{(er ot lomer :’ir;ht

Use a BNC cable to connect the microphone outpum ftheupper hemisphere to1CROPHONE
INPUT on the Controller Connecixc MONITOR on the Controller to Channel 2 of the oscillosctpe
display the sound signal received by the microphdfmggger the oscilloscope on Channel 1.

Use theaTTENUATOR dial on the Controller to keep the signal on Clerihfrom going off scale.
Remember, with an attenuator, a higher readingherndtal gives a smaller signal. (Appendix 1
describes the function of each part of the Corergll

Experiment:
Start at a low frequency and sweep the frequendy apout 8 kHz (8,000 Hz).

Write down all the resonance frequencies you olesei¥f you listen carefully, you may actually
hear some of them.)
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Objective:

Observe, qualitatively, the way the amplitude of tbsonance signal depends on the location of
the microphone.

Experiment:

We will now gather data that will allow us to inféhe angular quantum numbers of the
resonances. Go to the second resonance, at ab@QitH&. Fine-tune the frequency until it is as
close as possible to the peak of the resonancit ti#hcurves on the oscilloscope horizontally so
that a maximum of the microphone signal (Channdak2pcated in the center of the image and
marked by a vertical line. Now, watching the sigma the oscilloscope, slowly rotate the upper
hemisphere, with respect to the lower one, foom 180° toa = 0°.

Questions:

How did the amplitude change? Did the signal ckaitgysign? Determine the angle where the
amplitude is zero. At which angles is the signalximal? Do both extrema have the same
amplitude?

Note: Do not warm the aluminum parts too much by tomgtthem with your hands. The speed
of sound is temperature-dependent, and, in consegquéhe resonance frequency would shift with
temperature. While analyzing the angular depergletiee chosen generator frequency should
remain on top of the resonance.

Analyze the data:

The anglen read on the scale is not a suitable angle for eoisn with theory. Notice that the
scale readingq, running from 0 — 180°, tells you the rotationtb&é upper hemisphere about a
vertical axis. The symmetry axis for this systdmawever, is determined by the speaker. The
angle of interest, therefore, is measured usingspeaker location as zero. To analyze the data,
you must first usex to calculate the polar anglé, It is this angle which we use for polar
coordinates. To clarify how this works try theléoling.

Assemble the sphere with the upper hemi-
sphere set so that = 180°. Temporarily
open the resonator and notice that at t
setting the speaker and the upp
microphone are 180 degrees apart in spa
6 = 180°. Reassemble the spheres, tyg
the upper sphere te = 0°, and open the
resonator again. You will see that t
spatial separation of the speaker a

microphone, the polar angle of interest, is Atom Analog -
o Hp— 00° p g Speaker isat lower right  Sample Sound Amplitude Pattern

speaker
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Both the speaker and microphone are at an anghbdfwith respect to the horizontal plane
between the hemispheres. By rotating the hemisgheith respect to each other, the argéan

be changed fron® = 90° (ata = 0°) to @ = 180° (ata = 180°). Intermediate angles can be
calculated using the formula

6 = arccosf cosa - 3). (2.15)

You have measured thigédependence of the spherical harmonic func¥gHé, ¢) with | = 2 and

m= 0. Now we need to learn more about the sphehn@ahonics to compare the experiment with
theory.

Derivation of equation 2.15

Assume that the speaker is located in the x-z-pdangkthe vertical axis is the z-axis. The positjon
of the speaker in a sphere with unit-radius is mibg the vectos = (/3 ,O,—\/%).

We want to calculate the angle between speakemégrdphone, which is the angbe
To calculated we use rotary matrices. In the first step, watethe vectos from the position of]
the speaker (vecta@) by 90 degrees around the y-axis arriving\g 0, \/%).

In the second step, we rotate by the angéound the z axis. Lets call the resulting vecior,
the position of the microphone.

From the scalar-producfi(3 = |3 cosf = cosd, we get the angle.
First rotation:
—sin9e° 1 1
cos90° 0 -sin90 \/; \/z 7 A
0 1 0 0O (=] 0
sing® 0 cos90 | (- /1| |3

Second rotation:

cosa -sina 0] |43 \/%cosa >
sina cosa 0| O |=|.4sina X
0 0 1]|3 1

scalar-product:

\/% cosa 3

mis = \/%sina 0 |=tcosa-1

2 2
Vio[E

with
mI[S = cosd
we get the result:

bpoo =)
@ = arccos—cosa ——
2 2
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Spherical Har monics and L egendr e Polynomials:
The spherical harmonicg™(8,¢) can be written as

Y,"(6,¢) O R™(cosf) €™ (2.16)

in terms of the associated Legendre polynomRls For these experiments, we can restrict

ourselves to the case = 0, because our speaker creates waves with cidaldsymmetry about
the speaker axis. Fon = 0 the spherical harmonics do not havg-dependence and the wave
function has the same amplitude for all azimutmglles,¢ . The dependence on the polar argjle
is given by the Legendre polynomials

Y°(6,¢) O R°(cost) (2.17)
The first nine Legendre polynomials are shown below

P,(cosd) =1
P,(cosd) = cosd

P,(cosh) = % (3cos 8-1)

P,(cosf) = % (5cos’ 8 -3cosh)

P,(cosh) = :—é (35cos' @ - 30cos 4+ 3)

P.(cosf) = :—é (63cos’ @ - 70cos’ 8 +15co0sb)

P,(cosf) = 1_16 (231cos’ 6 - 315co0s' 8 +105cos 6 - 5)

P,(cosh) = 1_16 (429cos’ 8 - 693cos 8+ 315cos’ 8 - 35c0sH)

P,(cosd) = 1 (6435c0¢ 6 -12012cos 6 +6930cos’ @ —1260cos’ 4 + 35)
8 12€
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In Fig. 2.1 and 2.2 the first six Legendre polynalsiare plotted. The number of nodes in each
Legendre polynomial is equal to the azimuthal quamnbumbet.
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Fig. 2.1: Legendre Polynomials
P (cosf) = cosh inred,

P,(cosd) =1 (3cos’ 8 -1) in blue and
P,(cosf) =1 (5cos 8-3cosb) in green.

Fig. 2.2: Legendre Polynomials
P,(cosd) =1 (35cos' @ —30cos & +3) in red,

P.(cosd) =1 (63cos’ & —-70cos’ 8 +15c0sb) in blue
P.(cosd) =L (231cos & -315cos §+105c0s 6 -5)

in gree

In the following table, the nodes of the Legendolypomials are listedBe awarethat these are
the polar angles 8 and not the angles you read on the scale.

Po

Py 90°

P, 54.74° | 125.26¢

Ps 39.23° 90° 140.77

P 30.56° 70.12°| 109.887 149.44°

Ps 25.02° 57.42° 90° 122.58° 154.98°

Ps 21.18° | 48.61°| 76.199 103.81° 131.39° 158.82°

P, 18.36° | 42.14°| 66.06° 90° 113.94° 137.86° 161.p4°

Ps 16.20° 37.19°| 58.30°9 79.437 100.57° 121.70° 142/8163.80°

Table 2.1: Nodes of the first eight Legendre polynomialsegivn the polar angle@
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Questions:

Now you can identify the angular quantum nunlbafrthe second resonance you have measured.
As you variech from 180° to 0°, what range 6fdid you cover?

How many nodes did you discover in the range yoeiced?

Based on your observations, to whaalue does the resonance you examined correspond?

Does thed angle measurement of the node you have measured agh the angle predicted by
the theory?

Do the relative magnitudes of the extrema fit t tieory?

Note about the magnetic quantum number:

The resonance that you have analyzed is1(2fold degenerate with respect to the magnetic
guantum numbem. However, in this experiment we observe almostusively them = O state.
The standing sound wave in the sphere is drivethéyocal speaker. The speaker defines the z-
axis of the problem. It emits a wave traveling mordess back and forth along the z-axis and
having cylindrical symmetry around that axis. Thygnmetry of the standing wave is described
by them = 0O state. States with other# O describe waves that move on an orbit insidesgiere.
These types of waves are much less effectivelyedriyy our speaker located on the z-axis, since
these states have nodegJat 0° andd= 180°.

Objective: We will trace out the angular dependence of thelidunde of the wave function.
Additional Apparatus. dc voltmeter

Setup:

As in the first part of this experiment, attach Id@splitter tosSINE WAVE INPUT on the Controller.
Connect the output of your sine wave generatomi side of the splitter. Use a BNC cable to
send the sound signal to Channel 1 of the oscolesc Plug the lead from the speaker on the
lower hemisphere tePEAKER OUTPUT on the Controller. The same sine wave now goéstio the
speaker and Channel 1.

Use a BNC cable to connect the microphone outpuh fthe upper hemisphere MdCROPHONE
INPUT. Connectac MONITOR on the Controller to Channel 2 of the oscilloscopelisplay the
sound signal received by the microphone. Trigherascilloscope on Channel 1.

This time put the upper hemisphere in the positior 0° on the scale. In this position the
microphone is directly above the speaker which meagled will be 90°.

To observe the amplitude of the sound signal abhtleeophone, connect a voltmetertereECTOR-
OUTPUT. You should also observe the sound signal itsgl€onnecting thec-MONITOR on the
Controller with Channel 2 of the oscilloscope. Beg the oscilloscope to Channel 1.
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Experiment:

For a couple of major resonances, measure the taihplas function of the angte You can read
the absolute value of the amplitude on the voltmated use the oscilloscope to determine the
sign.

Record the nodes (angle at which the amplituderig)Zor the same resonances.

Analyze the data:

Plot your data as function of the polar angkend fit the data with the Legendre polynomial ilsat
the best match. Do this for all the resonanceshgaue measured.

Compare the nodes you have measured with the mdke corresponding Legendre polynomial
given in table 2.1.

Note:

Some of the resonances are very close to each sthidnat the peaks are overlapping. This will
result in a superposition of two wavefunctions wdifferent quantum numbers. In this case, the
angular dependence you have measured does notditsingle Legendre polynomial. We will
analyze these cases in more detail by taking specth the computer.



Stud. Man. Rev 2.0 12/09

2.2  Measure spectra and wavefunctionsin the spherical resonator with the computer

Objective: In this experiment, you will use a computer souaddcboth to generate the sound
wave and to sweep its frequency. You will usedkeilloscope to observe the actual sine wave
signals both going into the speaker and coming ftoenxmicrophone. Simultaneously, you will
use the computer to display a spectrum which shthesamplitude of the signal from the
microphone as a function of the frequency of thensio

Equipment Required:

TeachSpin Quantum Analog System: Controller, Hehesps, Accessories
Two-Channel Oscilloscope

Two adapter cables (BNC - 3.5 mm plug)

Computer with sound card installed and Quantum égml'SpectrumSLC.exe” running

WARNING: The BNC-to-3.5-mm adapter cables are provided esnvenient way to couple
signals between the Controller and sound card. ottiniately, they could also provide a way
for excessive external voltage sources to damageiad card. Most sound cards are somewhat
protected against excessive inputs, ibus the user's responsibility to ensure that adap
cable voltages are kept BELOWVolts peak-to-peak

The maximum peak-to-peak value for optimum perforoeaof the Quantum Analogs system
depends on your sound card and can vary from 50@a@WV.

Setup:

Now, using connectors on the Controller, you walhd the sound card signal to both the speaker
and Channel 1 of the oscilloscope, and the microptsagnal to both the microphone input of the
computer and to Channel 2 of the oscilloscope.

First, make surethat the ATTENUATOR knob on the Controller isset at 10 (out of 10) turns.

Let’s start with the sound signal. Attach a BN@tgg or “tee” toSINE WAVE INPUT oOn the
Controller. Using the adapter cable, connect titput of the sound card to one arm of the
splitter. With a BNC cable, convey the sound cagmhal from the splitter to Channel 1 of your
oscilloscope. Plug the lead from the speaker erder hemisphere ®PEAKER OUTPUT On the
Controller. The sound card signal is now goingath the speaker and Channel 1.

The microphone signal will also be sent two differglaces. Connect the microphone on the
upper hemisphere t0CROPHONE INPUT 0On the Controller. Put a BNC splitter on the Colter
connector labeledc-moNITOR. From the splitter, use an adapter cable to femdicrophone
signal to the microphone input on the computer dazard. Use a BNC cable to send the same
signal to Channel @f the oscilloscope to show the actual signal cgnfiiom the microphone.

The computer will plot the instantaneous frequegeyerated by the sound card on the x-axis and
the amplitude of the microphone input signal onytheis.
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Thenext job isto adjust the magnitude of both the speaker and microphone signals so that
you will have maximum signal while keeping the microphone input to the computer from
saturating. Peak-to-peak signals to the microphone input reenge from 0.50 to 2.0 volts
depending upon your sound card.

Once the program, SpectrumSLC.exe., is running, gau configure the computer. Go to the
menu at the top of the screen and choose Configurgut Channel/Volume At this point,

chooselLine In, if it is available; otherwise chooddicrophone. On this screen, set the
microphone volume slider to the middle of its range

To set the speaker volume, use Argplitude Output Sgnal on the lower left of the computer
screen. That slider should also be set to midulige.

The microphone signal coming from the apparatist fiasses through a built-in amplifier, and
then through theTTENUATOR, before reaching thec-MONITOR connector. The ten-turn knob on

the attenuatodecreases the incoming signal by a factor ranging from zerd00. For example,

a setting of 9.0 turns (out of the 10 turns posgilstands for an attenuation of 9/10 or 90%
attenuation of the signal. (A higher setting meassnaller signal.)

After taking an initial wide range spectrum, choasgection that includes the highest peak and a
smaller one next to it. Readjust the scan to cuadrthis portion. Using the option that allows
you to keep successive spectra visible, take Specty, 2, 3, etc. with the attenuator knob set at
9.9,9.8,9.7, ...turns (out of ten). The mgsheights of the peaks will tell you whether ot n
the system is behaving in a linear fashion. CQumito go lower on the 10-turn dial setting until
the computer program flashes ‘saturation’. You @al$o have visual evidence of saturation — a
flat section on the tallest peak or a smaller “‘mgStspacing. (See Appendix 2 or 3 for details.)

Once you have reached saturation, drop back irtditkear range. Now you can operate with
confidence that the signals you see really are @tmmal to the amplitude of the sound wave
you are studying.

Experiment:
Set the hemispheres so that the scale angld80°.

Start the program SpectrumSLC.exe and measureamiew spectrum. You can use coarse
steps such as 10 Hz and a short time per stepasust ms.

Change the angle between the upper and the lowaispkere several times and observe the how
the spectrum changes. Be sure to look at therspedora = 0°.

Question: What changes do you notice?

Experiment:

Go back tax = 0° and look in more detail at the peak near 3890 Actually, there are two peaks
close to each other. Take a spectrum that measlanwsenough and with sufficiently small steps
to show the details of these two peaks. Also, sgertra for this range at= 20° andx = 40°.

Question: What do you notice?
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Objective: Create polar plots for a series of resonances sadhe plots to identify the angular
momentum number and spherical harmonic functiosash resonance.

Experiment:

Now we will measure the wavefunctions of the dif@r resonances and visualize them by a
polar plot of the amplitud&(8). The computer calculates the polar argfeom the angler and

it plots the absolute value of the amplitude asfiom of &in a polar plot. This diagram makes it
easy to identify the angular quantum number andgpierical harmonic function.

Take a spectrum with = 180° from 2000 Hz to 7000 Hz sufficiently slowlyf you click with

the left mouse button on a peak, the output freques adjusted to the value at which you
clicked. Look at the oscilloscope and convince gelirthat you are at a resonance. In the
computer menu, go to “Windows” > “Measure Wave Rianc.

Adjust the hemispheres = 0°, and measure the amplitude in steps of 1DRe program
converts the angle automatically to the polar angiand plots the absolute of the amplitude in
a polar plot. Use the function “complete by symyietio complete the figure.

Create polar-plots for the prominent peaks andtifiethe quantum numbers.

Analyze data:

Compare the polar plots you have generated withrgabts of the Legendre polynomials. Some
of them are given below, the others you can vigeahith the program PlotYIm.exe.

In case of overlapping peaks, you will find diséattfigures, since there are contributions to the
wave functions from two different eigenstates vdiffierent quantum numbers and symmetries.
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Fig. 2.3: Plots of the spherical harmonics:
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Fig. 2.4: Cut through the spherical harmonics with magngtiantum numbem = 0.

Yo (6,9) Y@, ) Y, (6.9 )

180°

Y, (6,9 ) Y, (6.9 ) Y5 (6,9

N—r

Y5 (6.9 ) (6.9 ) Y (6.9 )



