1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
% l1qc_logbarrier.m
%
% Solve quadratically constrained l1 minimization:
% min ||x||_1 s.t. ||Ax - b||_2 <= \epsilon
%
% Reformulate as the second-order cone program
% min_{x,u} sum(u) s.t. x - u <= 0,
% -x - u <= 0,
% 1/2(||Ax-b||^2 - \epsilon^2) <= 0
% and use a log barrier algorithm.
%
% Usage: xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
%
% x0 - Nx1 vector, initial point.
%
% A - Either a handle to a function that takes a N vector and returns a K
% vector , or a KxN matrix. If A is a function handle, the algorithm
% operates in "largescale" mode, solving the Newton systems via the
% Conjugate Gradients algorithm.
%
% At - Handle to a function that takes a K vector and returns an N vector.
% If A is a KxN matrix, At is ignored.
%
% b - Kx1 vector of observations.
%
% epsilon - scalar, constraint relaxation parameter
%
% lbtol - The log barrier algorithm terminates when the duality gap <= lbtol.
% Also, the number of log barrier iterations is completely
% determined by lbtol.
% Default = 1e-3.
%
% mu - Factor by which to increase the barrier constant at each iteration.
% Default = 10.
%
% cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix.
% Default = 1e-8.
%
% cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored
% if A is a matrix.
% Default = 200.
%
% Written by: Justin Romberg, Caltech
% Email: jrom@acm.caltech.edu
% Created: October 2005
%
function xp = l1qc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter)
largescale = isa(A,'function_handle');
if (nargin < 6), lbtol = 1e-3; end
if (nargin < 7), mu = 10; end
if (nargin < 8), cgtol = 1e-8; end
if (nargin < 9), cgmaxiter = 200; end
newtontol = lbtol;
newtonmaxiter = 50;
N = length(x0);
% starting point --- make sure that it is feasible
if (largescale)
if (norm(A(x0)-b) > epsilon)
disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
AAt = @(z) A(At(z));
[w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0);
if (cgres > 1/2)
disp('A*At is ill-conditioned: cannot find starting point');
xp = x0;
return;
end
x0 = At(w);
end
else
if (norm(A*x0-b) > epsilon)
disp('Starting point infeasible; using x0 = At*inv(AAt)*y.');
opts.POSDEF = true; opts.SYM = true;
[w, hcond] = linsolve(A*A', b, opts);
if (hcond < 1e-14)
disp('A*At is ill-conditioned: cannot find starting point');
xp = x0;
return;
end
x0 = A'*w;
end
end
x = x0;
u = (0.95)*abs(x0) + (0.10)*max(abs(x0));
disp(sprintf('Original l1 norm = %.3f, original functional = %.3f', sum(abs(x0)), sum(u)));
% choose initial value of tau so that the duality gap after the first
% step will be about the origial norm
tau = max((2*N+1)/sum(abs(x0)), 1);
lbiter = ceil((log(2*N+1)-log(lbtol)-log(tau))/log(mu));
disp(sprintf('Number of log barrier iterations = %d\n', lbiter));
totaliter = 0;
for ii = 1:lbiter
[xp, up, ntiter] = l1qc_newton(x, u, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter);
totaliter = totaliter + ntiter;
disp(sprintf('\nLog barrier iter = %d, l1 = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ...
ii, sum(abs(xp)), sum(up), tau, totaliter));
x = xp;
u = up;
tau = mu*tau;
end
|