% tvqc_newton.m % % Newton algorithm for log-barrier subproblems for TV minimization % with quadratic constraints. % % Usage: % [xp,tp,niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, % newtontol, newtonmaxiter, cgtol, cgmaxiter) % % x0,t0 - starting points % % A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes a K vector and returns an N vector. % If A is a KxN matrix, At is ignored. % % b - Kx1 vector of observations. % % epsilon - scalar, constraint relaxation parameter % % tau - Log barrier parameter. % % newtontol - Terminate when the Newton decrement is <= newtontol. % % newtonmaxiter - Maximum number of iterations. % % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. % % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored % if A is a matrix. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function [xp, tp, niter] = tvqc_newton(x0, t0, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); alpha = 0.01; beta = 0.5; N = length(x0); n = round(sqrt(N)); % create (sparse) differencing matrices for TV Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); if (~largescale), AtA = A'*A; end; % initial point x = x0; t = t0; if (largescale), r = A(x) - b; else r = A*x - b; end Dhx = Dh*x; Dvx = Dv*x; ft = 1/2*(Dhx.^2 + Dvx.^2 - t.^2); fe = 1/2*(r'*r - epsilon^2); f = sum(t) - (1/tau)*(sum(log(-ft)) + log(-fe)); niter = 0; done = 0; while (~done) if (largescale), Atr = At(r); else Atr = A'*r; end ntgx = Dh'*((1./ft).*Dhx) + Dv'*((1./ft).*Dvx) + 1/fe*Atr; ntgt = -tau - t./ft; gradf = -(1/tau)*[ntgx; ntgt]; sig22 = 1./ft + (t.^2)./(ft.^2); sig12 = -t./ft.^2; sigb = 1./ft.^2 - (sig12.^2)./sig22; w1p = ntgx - Dh'*(Dhx.*(sig12./sig22).*ntgt) - Dv'*(Dvx.*(sig12./sig22).*ntgt); if (largescale) h11pfun = @(z) H11pFun(z, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, Atr); [dx, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Cannot solve system. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; tp = t; return end Adx = A(dx); else H11p = Dh'*sparse(diag(-1./ft + sigb.*Dhx.^2))*Dh + ... Dv'*sparse(diag(-1./ft + sigb.*Dvx.^2))*Dv + ... Dh'*sparse(diag(sigb.*Dhx.*Dvx))*Dv + ... Dv'*sparse(diag(sigb.*Dhx.*Dvx))*Dh - ... (1/fe)*AtA + (1/fe^2)*Atr*Atr'; opts.POSDEF = true; opts.SYM = true; [dx,hcond] = linsolve(H11p, w1p, opts); if (hcond < 1e-14) disp('Matrix ill-conditioned. Returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; tp = t; return end Adx = A*dx; end Dhdx = Dh*dx; Dvdx = Dv*dx; dt = (1./sig22).*(ntgt - sig12.*(Dhx.*Dhdx + Dvx.*Dvdx)); % minimum step size that stays in the interior aqt = Dhdx.^2 + Dvdx.^2 - dt.^2; bqt = 2*(Dhdx.*Dhx + Dvdx.*Dvx - t.*dt); cqt = Dhx.^2 + Dvx.^2 - t.^2; tsols = [(-bqt+sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt); ... (-bqt-sqrt(bqt.^2-4*aqt.*cqt))./(2*aqt) ]; indt = find([(bqt.^2 > 4*aqt.*cqt); (bqt.^2 > 4*aqt.*cqt)] & (tsols > 0)); aqe = Adx'*Adx; bqe = 2*r'*Adx; cqe = r'*r - epsilon^2; smax = min(1,min([... tsols(indt); ... (-bqe+sqrt(bqe^2-4*aqe*cqe))/(2*aqe) ])); s = (0.99)*smax; % backtracking line search suffdec = 0; backiter = 0; while (~suffdec) xp = x + s*dx; tp = t + s*dt; rp = r + s*Adx; Dhxp = Dhx + s*Dhdx; Dvxp = Dvx + s*Dvdx; ftp = 1/2*(Dhxp.^2 + Dvxp.^2 - tp.^2); fep = 1/2*(rp'*rp - epsilon^2); fp = sum(tp) - (1/tau)*(sum(log(-ftp)) + log(-fep)); flin = f + alpha*s*(gradf'*[dx; dt]); suffdec = (fp <= flin); s = beta*s; backiter = backiter + 1; if (backiter > 32) disp('Stuck on backtracking line search, returning previous iterate. (See Section 4 of notes for more information.)'); xp = x; tp = t; return end end % set up for next iteration x = xp; t = tp; r = rp; Dvx = Dvxp; Dhx = Dhxp; ft = ftp; fe = fep; f = fp; lambda2 = -(gradf'*[dx; dt]); stepsize = s*norm([dx; dt]); niter = niter + 1; done = (lambda2/2 < newtontol) | (niter >= newtonmaxiter); disp(sprintf('Newton iter = %d, Functional = %8.3f, Newton decrement = %8.3f, Stepsize = %8.3e', ... niter, f, lambda2/2, stepsize)); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % H11p auxiliary function function y = H11pFun(v, A, At, Dh, Dv, Dhx, Dvx, sigb, ft, fe, atr) Dhv = Dh*v; Dvv = Dv*v; y = Dh'*((-1./ft + sigb.*Dhx.^2).*Dhv + sigb.*Dhx.*Dvx.*Dvv) + ... Dv'*((-1./ft + sigb.*Dvx.^2).*Dvv + sigb.*Dhx.*Dvx.*Dhv) - ... 1/fe*At(A(v)) + 1/fe^2*(atr'*v)*atr; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%