% tvqc_logbarrier.m % % Solve quadractically constrained TV minimization % min TV(x) s.t. ||Ax-b||_2 <= epsilon. % % Recast as the SOCP % min sum(t) s.t. ||D_{ij}x||_2 <= t, i,j=1,...,n % ||Ax - b||_2 <= epsilon % and use a log barrier algorithm. % % Usage: xp = tvqc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) % % x0 - Nx1 vector, initial point. % % A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes a K vector and returns an N vector. % If A is a KxN matrix, At is ignored. % % b - Kx1 vector of observations. % % epsilon - scalar, constraint relaxation parameter % % lbtol - The log barrier algorithm terminates when the duality gap <= lbtol. % Also, the number of log barrier iterations is completely % determined by lbtol. % Default = 1e-3. % % mu - Factor by which to increase the barrier constant at each iteration. % Default = 10. % % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. % Default = 1e-8. % % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored % if A is a matrix. % Default = 200. % % Written by: Justin Romberg, Caltech % Email: jrom@acm.caltech.edu % Created: October 2005 % function [xp, tp] = tvqc_logbarrier(x0, A, At, b, epsilon, lbtol, mu, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); if (nargin < 6), lbtol = 1e-3; end if (nargin < 7), mu = 10; end if (nargin < 8), cgtol = 1e-8; end if (nargin < 9), cgmaxiter = 200; end newtontol = lbtol; newtonmaxiter = 50; N = length(x0); n = round(sqrt(N)); % create (sparse) differencing matrices for TV Dv = spdiags([reshape([-ones(n-1,n); zeros(1,n)],N,1) ... reshape([zeros(1,n); ones(n-1,n)],N,1)], [0 1], N, N); Dh = spdiags([reshape([-ones(n,n-1) zeros(n,1)],N,1) ... reshape([zeros(n,1) ones(n,n-1)],N,1)], [0 n], N, N); % starting point --- make sure that it is feasible if (largescale) if (norm(A(x0)-b) > epsilon) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); AAt = @(z) A(At(z)); [w, cgres] = cgsolve(AAt, b, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = At(w); end else if (norm(A*x0-b) > epsilon) disp('Starting point infeasible; using x0 = At*inv(AAt)*y.'); opts.POSDEF = true; opts.SYM = true; [w, hcond] = linsolve(A*A', b, opts); if (hcond < 1e-14) disp('A*At is ill-conditioned: cannot find starting point'); xp = x0; return; end x0 = A'*w; end end x = x0; Dhx = Dh*x; Dvx = Dv*x; t = (0.95)*sqrt(Dhx.^2 + Dvx.^2) + (0.1)*max(sqrt(Dhx.^2 + Dvx.^2)); % choose initial value of tau so that the duality gap after the first % step will be about the origial TV tau = (N+1)/sum(sqrt(Dhx.^2+Dvx.^2)); lbiter = ceil((log((N+1))-log(lbtol)-log(tau))/log(mu)); disp(sprintf('Number of log barrier iterations = %d\n', lbiter)); totaliter = 0; for ii = 1:lbiter [xp, tp, ntiter] = tvqc_newton(x, t, A, At, b, epsilon, tau, newtontol, newtonmaxiter, cgtol, cgmaxiter); totaliter = totaliter + ntiter; tvxp = sum(sqrt((Dh*xp).^2 + (Dv*xp).^2)); disp(sprintf('\nLog barrier iter = %d, TV = %.3f, functional = %8.3f, tau = %8.3e, total newton iter = %d\n', ... ii, tvxp, sum(tp), tau, totaliter)); x = xp; t = tp; tau = mu*tau; end